code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
UpperCAmelCase_ : Union[str, Any] = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
}
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =["""layers""", """blocks"""]
for k in ignore_keys:
state_dict.pop(lowerCamelCase , lowerCamelCase )
UpperCAmelCase_ : Optional[Any] = {
"blocks": "layers",
"mlp.0": "fc1",
"mlp.2": "fc2",
"mlp_ln": "final_layer_norm",
".attn.query": ".self_attn.q_proj",
".attn.key": ".self_attn.k_proj",
".attn.value": ".self_attn.v_proj",
".attn_ln": ".self_attn_layer_norm",
".attn.out": ".self_attn.out_proj",
".cross_attn.query": ".encoder_attn.q_proj",
".cross_attn.key": ".encoder_attn.k_proj",
".cross_attn.value": ".encoder_attn.v_proj",
".cross_attn_ln": ".encoder_attn_layer_norm",
".cross_attn.out": ".encoder_attn.out_proj",
"decoder.ln.": "decoder.layer_norm.",
"encoder.ln.": "encoder.layer_norm.",
"token_embedding": "embed_tokens",
"encoder.positional_embedding": "encoder.embed_positions.weight",
"decoder.positional_embedding": "decoder.embed_positions.weight",
"ln_post": "layer_norm",
}
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =list(s_dict.keys() )
for key in keys:
__magic_name__ : Optional[Any] =key
for k, v in WHISPER_MAPPING.items():
if k in key:
__magic_name__ : Tuple =new_key.replace(lowerCamelCase , lowerCamelCase )
print(F"{key} -> {new_key}" )
__magic_name__ : int =s_dict.pop(lowerCamelCase )
return s_dict
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ , __magic_name__ : Optional[Any] =emb.weight.shape
__magic_name__ : Optional[Any] =nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase )
__magic_name__ : Any =emb.weight.data
return lin_layer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase )
__magic_name__ : str =os.path.basename(lowerCamelCase )
__magic_name__ : Any =url.split("""/""" )[-2]
__magic_name__ : int =os.path.join(lowerCamelCase , lowerCamelCase )
if os.path.exists(lowerCamelCase ) and not os.path.isfile(lowerCamelCase ):
raise RuntimeError(F"{download_target} exists and is not a regular file" )
if os.path.isfile(lowerCamelCase ):
__magic_name__ : Any =open(lowerCamelCase , """rb""" ).read()
if hashlib.shaaaa(lowerCamelCase ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" )
with urllib.request.urlopen(lowerCamelCase ) as source, open(lowerCamelCase , """wb""" ) as output:
with tqdm(
total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowerCamelCase , unit_divisor=1024 ) as loop:
while True:
__magic_name__ : List[str] =source.read(8192 )
if not buffer:
break
output.write(lowerCamelCase )
loop.update(len(lowerCamelCase ) )
__magic_name__ : Optional[int] =open(lowerCamelCase , """rb""" ).read()
if hashlib.shaaaa(lowerCamelCase ).hexdigest() != expected_shaaaa:
raise RuntimeError(
"""Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" )
return model_bytes
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
if ".pt" not in checkpoint_path:
__magic_name__ : int =_download(_MODELS[checkpoint_path] )
else:
__magic_name__ : Tuple =torch.load(lowerCamelCase , map_location="""cpu""" )
__magic_name__ : Dict =original_checkpoint["""dims"""]
__magic_name__ : List[Any] =original_checkpoint["""model_state_dict"""]
__magic_name__ : Dict =state_dict["""decoder.token_embedding.weight"""]
remove_ignore_keys_(lowerCamelCase )
rename_keys(lowerCamelCase )
__magic_name__ : Optional[Any] =True
__magic_name__ : Dict =state_dict["""decoder.layers.0.fc1.weight"""].shape[0]
__magic_name__ : Dict =WhisperConfig(
vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowerCamelCase , decoder_ffn_dim=lowerCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , )
__magic_name__ : Tuple =WhisperForConditionalGeneration(lowerCamelCase )
__magic_name__ , __magic_name__ : Union[str, Any] =model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
if len(lowerCamelCase ) > 0 and not set(lowerCamelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
F" but all the following weights are missing {missing}" )
if tie_embeds:
__magic_name__ : List[Any] =make_linear_from_emb(model.model.decoder.embed_tokens )
else:
__magic_name__ : Optional[Any] =proj_out_weights
model.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase_ : Dict = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 21 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self :Dict ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 21 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class __A ( UpperCamelCase__ ):
UpperCamelCase = """philschmid/bart-large-cnn-samsum"""
UpperCamelCase = (
"""This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """
"""and returns a summary of the text."""
)
UpperCamelCase = """summarizer"""
UpperCamelCase = AutoTokenizer
UpperCamelCase = AutoModelForSeqaSeqLM
UpperCamelCase = ["""text"""]
UpperCamelCase = ["""text"""]
def A__ ( self :Union[str, Any] , __snake_case :Tuple ):
'''simple docstring'''
return self.pre_processor(__snake_case , return_tensors="""pt""" , truncation=__snake_case )
def A__ ( self :str , __snake_case :Optional[int] ):
'''simple docstring'''
return self.model.generate(**__snake_case )[0]
def A__ ( self :Optional[Any] , __snake_case :List[Any] ):
'''simple docstring'''
return self.pre_processor.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )
| 21 |
UpperCAmelCase_ : Tuple = 0 # The first color of the flag.
UpperCAmelCase_ : Any = 1 # The second color of the flag.
UpperCAmelCase_ : str = 2 # The third color of the flag.
UpperCAmelCase_ : Tuple = (red, white, blue)
def lowerCAmelCase_ ( lowerCamelCase ):
if not sequence:
return []
if len(lowerCamelCase ) == 1:
return list(lowerCamelCase )
__magic_name__ : int =0
__magic_name__ : str =len(lowerCamelCase ) - 1
__magic_name__ : Optional[Any] =0
while mid <= high:
if sequence[mid] == colors[0]:
__magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid]
high -= 1
else:
__magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values"
raise ValueError(lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip()
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 21 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase_ : List[Any] = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """ibert"""
def __init__( self :str , __snake_case :Optional[Any]=3_05_22 , __snake_case :int=7_68 , __snake_case :List[Any]=12 , __snake_case :str=12 , __snake_case :Optional[Any]=30_72 , __snake_case :List[Any]="gelu" , __snake_case :Tuple=0.1 , __snake_case :List[str]=0.1 , __snake_case :Optional[Any]=5_12 , __snake_case :Optional[Any]=2 , __snake_case :List[Any]=0.02 , __snake_case :int=1E-12 , __snake_case :int=1 , __snake_case :Optional[int]=0 , __snake_case :List[Any]=2 , __snake_case :Optional[Any]="absolute" , __snake_case :Optional[int]=False , __snake_case :int="none" , **__snake_case :Union[str, Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
__magic_name__ : Tuple =vocab_size
__magic_name__ : Tuple =hidden_size
__magic_name__ : Any =num_hidden_layers
__magic_name__ : Union[str, Any] =num_attention_heads
__magic_name__ : str =hidden_act
__magic_name__ : List[Any] =intermediate_size
__magic_name__ : List[str] =hidden_dropout_prob
__magic_name__ : Tuple =attention_probs_dropout_prob
__magic_name__ : Tuple =max_position_embeddings
__magic_name__ : Tuple =type_vocab_size
__magic_name__ : Dict =initializer_range
__magic_name__ : Optional[int] =layer_norm_eps
__magic_name__ : Optional[int] =position_embedding_type
__magic_name__ : Optional[Any] =quant_mode
__magic_name__ : Optional[Any] =force_dequant
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
__magic_name__ : Optional[int] ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : List[str] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 21 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __A ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = 1
@register_to_config
def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ):
'''simple docstring'''
__magic_name__ : Dict =None
__magic_name__ : List[str] =None
__magic_name__ : str =None
def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case )
def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__magic_name__ : int =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__magic_name__ : str =std.flatten()
while len(std.shape ) < len(score.shape ):
__magic_name__ : List[str] =std.unsqueeze(-1 )
__magic_name__ : Union[str, Any] =-score / std
# compute
__magic_name__ : Tuple =-1.0 / len(self.timesteps )
__magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__magic_name__ : Dict =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__magic_name__ : Any =beta_t.unsqueeze(-1 )
__magic_name__ : Dict =-0.5 * beta_t * x
__magic_name__ : Optional[int] =torch.sqrt(__snake_case )
__magic_name__ : int =drift - diffusion**2 * score
__magic_name__ : List[str] =x + drift * dt
# add noise
__magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype )
__magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self :List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 21 | 1 |
from collections.abc import Sequence
def lowerCAmelCase_ ( lowerCamelCase = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__magic_name__ : str =nums[0]
for i in range(1 , len(lowerCamelCase ) ):
__magic_name__ : Any =nums[i]
__magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip())
UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 21 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =feature_size
__magic_name__ : Union[str, Any] =sampling_rate
__magic_name__ : List[Any] =padding_value
__magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" )
__magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case )
super().__init__(**__snake_case )
def A__ ( self :Any , __snake_case :Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ):
'''simple docstring'''
if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
__magic_name__ : Union[str, Any] ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f" to this method that includes {self.model_input_names[0]}, but you provided"
f" {list(processed_features.keys() )}" )
__magic_name__ : int =processed_features[self.model_input_names[0]]
__magic_name__ : Union[str, Any] =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__snake_case ) == 0:
if return_attention_mask:
__magic_name__ : List[str] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
__magic_name__ : Optional[int] =required_input[0]
if isinstance(__snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
__magic_name__ : Optional[Any] =0
while len(required_input[index] ) == 0:
index += 1
if index < len(__snake_case ):
__magic_name__ : List[str] =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__snake_case ):
__magic_name__ : int ="""tf"""
elif is_torch_tensor(__snake_case ):
__magic_name__ : str ="""pt"""
elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ):
__magic_name__ : List[Any] ="""np"""
else:
raise ValueError(
f"type of {first_element} unknown: {type(__snake_case )}. "
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
__magic_name__ : List[str] =to_numpy(__snake_case )
else:
__magic_name__ : str =[to_numpy(__snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
__magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case )
__magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]]
__magic_name__ : Dict =len(__snake_case )
if not all(len(__snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
__magic_name__ : Optional[int] =[]
for i in range(__snake_case ):
__magic_name__ : Any ={k: v[i] for k, v in processed_features.items()}
# truncation
__magic_name__ : List[str] =self._truncate(
__snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , )
truncated_inputs.append(__snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
__magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
__magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH
__magic_name__ : str ={}
for i in range(__snake_case ):
# padding
__magic_name__ : List[str] =self._pad(
truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
__magic_name__ : Dict =[]
if value.dtype is np.dtype(np.floataa ):
__magic_name__ : Optional[int] =value.astype(np.floataa )
batch_outputs[key].append(__snake_case )
return BatchFeature(__snake_case , tensor_type=__snake_case )
def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
__magic_name__ : Dict =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
__magic_name__ : Any =len(__snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
__magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
__magic_name__ : List[Any] =max_length - len(__snake_case )
if self.padding_side == "right":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (0, difference) )
__magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
__magic_name__ : str =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (difference, 0) )
__magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
__magic_name__ : List[Any] =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
__magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : Any =len(__snake_case ) > max_length
if needs_to_be_truncated:
__magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
__magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length]
return processed_features
def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ):
'''simple docstring'''
if padding is not False:
if padding is True:
__magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__snake_case , __snake_case ):
__magic_name__ : Optional[int] =PaddingStrategy(__snake_case )
elif isinstance(__snake_case , __snake_case ):
__magic_name__ : Any =padding
else:
__magic_name__ : Any =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 21 | 1 |
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
UpperCAmelCase_ : Dict = datasets.logging.get_logger(__name__)
UpperCAmelCase_ : Optional[int] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n"
UpperCAmelCase_ : Union[str, Any] = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n"
UpperCAmelCase_ : Dict = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n"
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase="dummy_doc" ):
__magic_name__ : Optional[int] ={doc: key_lines}
__magic_name__ : Optional[int] ={doc: sys_lines}
__magic_name__ : Tuple ={}
__magic_name__ : Optional[Any] =0
__magic_name__ : str =0
__magic_name__ : str =0
__magic_name__ : Optional[Any] =0
__magic_name__ : str =0
__magic_name__ : Tuple =0
__magic_name__ , __magic_name__ : str =reader.get_doc_mentions(lowerCamelCase , key_doc_lines[doc] , lowerCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
__magic_name__ : List[Any] =reader.set_annotated_parse_trees(lowerCamelCase , key_doc_lines[doc] , lowerCamelCase , lowerCamelCase )
__magic_name__ , __magic_name__ : Dict =reader.get_doc_mentions(lowerCamelCase , sys_doc_lines[doc] , lowerCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
__magic_name__ : str =reader.set_annotated_parse_trees(lowerCamelCase , key_doc_lines[doc] , lowerCamelCase , lowerCamelCase )
if remove_nested:
__magic_name__ , __magic_name__ : List[str] =reader.remove_nested_coref_mentions(lowerCamelCase , lowerCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
__magic_name__ , __magic_name__ : int =reader.remove_nested_coref_mentions(lowerCamelCase , lowerCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
__magic_name__ : Optional[Any] =reader.get_mention_assignments(lowerCamelCase , lowerCamelCase )
__magic_name__ : str =reader.get_mention_assignments(lowerCamelCase , lowerCamelCase )
__magic_name__ : List[str] =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" )
logger.info(
"""Number of resulting singleton clusters in the key """
F"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" )
if not keep_singletons:
logger.info(
F"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system "
"""files, respectively""" )
return doc_coref_infos
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Dict =get_coref_infos(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : Union[str, Any] ={}
__magic_name__ : Union[str, Any] =0
__magic_name__ : Optional[Any] =0
for name, metric in metrics:
__magic_name__ , __magic_name__ , __magic_name__ : Any =evaluator.evaluate_documents(lowerCamelCase , lowerCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F"{name}/recall": recall, F"{name}/precision": precision, F"{name}/f1": fa} )
logger.info(
name.ljust(10 ) , F"Recall: {recall * 100:.2f}" , F" Precision: {precision * 100:.2f}" , F" F1: {fa * 100:.2f}" , )
if conll_subparts_num == 3:
__magic_name__ : Union[str, Any] =(conll / 3) * 100
logger.info(F"CoNLL score: {conll:.2f}" )
output_scores.update({"""conll_score""": conll} )
return output_scores
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
__magic_name__ : Dict =line.split()[5]
if not parse_col == "-":
__magic_name__ : int =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def A__ ( self :List[str] , __snake_case :Union[str, Any] , __snake_case :Optional[int] , __snake_case :Any=True , __snake_case :Union[str, Any]=False , __snake_case :str=False , __snake_case :Optional[Any]=False ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
__magic_name__ : List[str] =util.check_gold_parse_annotation(__snake_case )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
__magic_name__ : str =evaluate(
key_lines=__snake_case , sys_lines=__snake_case , metrics=__snake_case , NP_only=__snake_case , remove_nested=__snake_case , keep_singletons=__snake_case , min_span=__snake_case , )
return score
| 21 |
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class __A ( nn.Module ):
def __init__( self :List[Any] ):
'''simple docstring'''
super().__init__()
__magic_name__ : Tuple =nn.Linear(3 , 4 )
__magic_name__ : Union[str, Any] =nn.BatchNormad(4 )
__magic_name__ : List[str] =nn.Linear(4 , 5 )
def A__ ( self :Dict , __snake_case :Tuple ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) )
class __A ( UpperCamelCase__ ):
def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ):
'''simple docstring'''
return (args[0] + 1,) + args[1:], kwargs
class __A ( UpperCamelCase__ ):
def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ):
'''simple docstring'''
return output + 1
class __A ( unittest.TestCase ):
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : Tuple =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
self.assertEqual(test_model._hf_hook , __snake_case )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : List[str] =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
add_hook_to_module(__snake_case , __snake_case , append=__snake_case )
self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
__magic_name__ : Any =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(x + 1 )
__magic_name__ : Optional[Any] =test_model(x + 2 )
__magic_name__ : int =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : int =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : str =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : List[str] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
assert torch.allclose(__snake_case , __snake_case , atol=1E-5 )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
__magic_name__ : Dict =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(__snake_case )
__magic_name__ : Dict =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Optional[int] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
assert torch.allclose(__snake_case , output + 2 , atol=1E-5 )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : Tuple =ModelForTest()
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Dict =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 ) )
self.assertTrue(outputa.requires_grad )
__magic_name__ : Any =True
__magic_name__ : Any =test_model(__snake_case )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[Any] =model(__snake_case )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) )
__magic_name__ : int =torch.randn(2 , 3 ).to(0 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , torch.device(0 ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : Union[str, Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
__magic_name__ : Tuple ={
"""execution_device""": 0 if torch.cuda.is_available() else """cpu""",
"""offload""": True,
"""offload_buffers""": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Tuple =torch.randn(2 , 3 )
__magic_name__ : int =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : str =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Optional[int] =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Dict =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Any =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
| 21 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase_ : int = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
@require_sentencepiece
@require_tokenizers
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = SpeechTaTokenizer
UpperCamelCase = False
UpperCamelCase = True
def A__ ( self :Dict ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__magic_name__ : int =SpeechTaTokenizer(__snake_case )
__magic_name__ : Any =AddedToken("""<mask>""" , lstrip=__snake_case , rstrip=__snake_case )
__magic_name__ : List[Any] =mask_token
tokenizer.add_special_tokens({"""mask_token""": mask_token} )
tokenizer.add_tokens(["""<ctc_blank>"""] )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self :List[Any] , __snake_case :List[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] ="""this is a test"""
__magic_name__ : Tuple ="""this is a test"""
return input_text, output_text
def A__ ( self :str , __snake_case :Tuple , __snake_case :Union[str, Any]=False , __snake_case :List[str]=20 , __snake_case :str=5 ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[str] =self.get_input_output_texts(__snake_case )
__magic_name__ : Tuple =tokenizer.encode(__snake_case , add_special_tokens=__snake_case )
__magic_name__ : Optional[int] =tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case )
return text, ids
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : int ="""<pad>"""
__magic_name__ : Union[str, Any] =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case )
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : Optional[int] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-4] , """œ""" )
self.assertEqual(vocab_keys[-2] , """<mask>""" )
self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" )
self.assertEqual(len(__snake_case ) , 81 )
def A__ ( self :str ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : List[Any] =self.get_tokenizers(do_lower_case=__snake_case )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
__magic_name__ : Tuple =tokenizer.vocab_size
__magic_name__ : Optional[Any] =len(__snake_case )
self.assertNotEqual(__snake_case , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
__magic_name__ : Optional[Any] =["""aaaaa bbbbbb""", """cccccccccdddddddd"""]
__magic_name__ : Dict =tokenizer.add_tokens(__snake_case )
__magic_name__ : List[str] =tokenizer.vocab_size
__magic_name__ : Tuple =len(__snake_case )
self.assertNotEqual(__snake_case , 0 )
self.assertEqual(__snake_case , __snake_case )
self.assertEqual(__snake_case , len(__snake_case ) )
self.assertEqual(__snake_case , all_size + len(__snake_case ) )
__magic_name__ : Any =tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=__snake_case )
self.assertGreaterEqual(len(__snake_case ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
__magic_name__ : Any ={"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""}
__magic_name__ : Any =tokenizer.add_special_tokens(__snake_case )
__magic_name__ : Dict =tokenizer.vocab_size
__magic_name__ : str =len(__snake_case )
self.assertNotEqual(__snake_case , 0 )
self.assertEqual(__snake_case , __snake_case )
self.assertEqual(__snake_case , len(__snake_case ) )
self.assertEqual(__snake_case , all_size_a + len(__snake_case ) )
__magic_name__ : Optional[int] =tokenizer.encode(
""">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=__snake_case )
self.assertGreaterEqual(len(__snake_case ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def A__ ( self :Optional[int] ):
'''simple docstring'''
pass
def A__ ( self :List[str] ):
'''simple docstring'''
pass
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Optional[int] =self.get_tokenizer()
__magic_name__ : Optional[int] =tokenizer.tokenize("""This is a test""" )
# fmt: off
self.assertListEqual(__snake_case , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__snake_case ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
__magic_name__ : int =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__snake_case , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] )
__magic_name__ : Any =tokenizer.convert_tokens_to_ids(__snake_case )
# fmt: off
self.assertListEqual(__snake_case , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
__magic_name__ : List[str] =tokenizer.convert_ids_to_tokens(__snake_case )
self.assertListEqual(
__snake_case , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] )
@slow
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Dict =[
"""Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """
"""general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """
"""Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """
"""models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""",
"""BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """
"""conditioning on both left and right context in all layers.""",
"""The quick brown fox jumps over the lazy dog.""",
]
# fmt: off
__magic_name__ : Tuple ={
"""input_ids""": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__snake_case , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=__snake_case , )
| 21 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCamelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCamelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return 1_00
@property
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : str =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__magic_name__ : Tuple =MultilingualCLIP(__snake_case )
__magic_name__ : Optional[int] =text_encoder.eval()
return text_encoder
@property
def A__ ( self :Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[Any] ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case )
return model
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_text_encoder
__magic_name__ : Optional[Any] =self.dummy_tokenizer
__magic_name__ : Optional[Any] =self.dummy_unet
__magic_name__ : Tuple =self.dummy_movq
__magic_name__ : List[str] =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
__magic_name__ : str ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case )
# create init_image
__magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
__magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa )
__magic_name__ : Any =0
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Dict =torch.manual_seed(__snake_case )
else:
__magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : List[Any] ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple ="""cpu"""
__magic_name__ : List[Any] =self.get_dummy_components()
__magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case )
__magic_name__ : Tuple =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : List[Any] =output.images
__magic_name__ : Any =pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
__magic_name__ : int =image[0, -3:, -3:, -1]
__magic_name__ : str =image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
__magic_name__ : Optional[Any] =np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A__ ( self :Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
__magic_name__ : int =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa )
__magic_name__ : Any =0
__magic_name__ : int ="""a hat"""
__magic_name__ : int =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
__magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
__magic_name__ : int =pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ , __magic_name__ : Dict =pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Optional[Any] =pipeline(
__snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
__magic_name__ : Optional[int] =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ : List[str] = {
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = ["MobileViTFeatureExtractor"]
UpperCAmelCase_ : int = ["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Dict = [
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Tuple = [
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __A :
def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ):
'''simple docstring'''
__magic_name__ : Optional[int] =parent
__magic_name__ : List[Any] =batch_size
__magic_name__ : List[str] =is_training
__magic_name__ : List[str] =use_auxiliary_loss
__magic_name__ : Union[str, Any] =num_queries
__magic_name__ : str =num_channels
__magic_name__ : Union[str, Any] =min_size
__magic_name__ : Union[str, Any] =max_size
__magic_name__ : Optional[int] =num_labels
__magic_name__ : Tuple =hidden_dim
__magic_name__ : Any =hidden_dim
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__snake_case )
__magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case )
__magic_name__ : List[str] =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5
).float()
__magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long()
__magic_name__ : str =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Dict =MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__magic_name__ : str =self.num_queries
__magic_name__ : Dict =self.num_labels
__magic_name__ : int =[1, 1, 1, 1]
__magic_name__ : List[str] =self.num_channels
__magic_name__ : str =64
__magic_name__ : List[str] =1_28
__magic_name__ : Optional[Any] =self.hidden_dim
__magic_name__ : Tuple =self.hidden_dim
__magic_name__ : Optional[int] =self.hidden_dim
return config
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs()
__magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ):
'''simple docstring'''
__magic_name__ : int =output.encoder_hidden_states
__magic_name__ : List[str] =output.pixel_decoder_hidden_states
__magic_name__ : int =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , config.decoder_layers )
def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ):
'''simple docstring'''
with torch.no_grad():
__magic_name__ : List[str] =MaskaFormerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__snake_case , __snake_case )
def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
def comm_check_on_output(__snake_case :List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : List[str] =model(__snake_case )
comm_check_on_output(__snake_case )
__magic_name__ : Any =model(
pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
comm_check_on_output(__snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Any =MaskaFormerModelTester(self )
__magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def A__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def A__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def A__ ( self :int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def A__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple =model_class(__snake_case )
__magic_name__ : Optional[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple =[*signature.parameters.keys()]
__magic_name__ : Optional[Any] =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@slow
def A__ ( self :Tuple ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =(self.model_tester.min_size,) * 2
__magic_name__ : Union[str, Any] ={
"""pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ),
"""class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(),
}
__magic_name__ : Optional[Any] =self.model_tester.get_config()
__magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case )
__magic_name__ : Any =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case )
__magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case )
self.assertTrue(outputs.attentions is not None )
def A__ ( self :int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__magic_name__ : List[Any] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Dict =model_class(__snake_case )
model.to(__snake_case )
model.train()
__magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss
loss.backward()
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : List[str] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Tuple =True
__magic_name__ : Optional[int] =True
__magic_name__ : int =model_class(__snake_case ).to(__snake_case )
model.train()
__magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
__magic_name__ : Optional[int] =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__magic_name__ : Optional[int] =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCAmelCase_ : Dict = 1e-4
def lowerCAmelCase_ ( ):
__magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __A ( unittest.TestCase ):
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case )
__magic_name__ : int =self.default_image_processor
__magic_name__ : List[Any] =prepare_img()
__magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Dict =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : List[str] =model(**__snake_case )
__magic_name__ : Any =torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Dict =torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Any =torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Optional[int] =self.default_image_processor
__magic_name__ : Tuple =prepare_img()
__magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : str =model(**__snake_case )
# masks_queries_logits
__magic_name__ : List[Any] =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__magic_name__ : List[Any] =[
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
__magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
__magic_name__ : Any =outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__magic_name__ : int =torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Any =self.default_image_processor
__magic_name__ : Union[str, Any] =image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
__magic_name__ : str =inputs["""pixel_values"""].to(__snake_case )
__magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]]
__magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]]
with torch.no_grad():
__magic_name__ : Dict =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
| 21 | 1 |
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-canny""" , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ , __magic_name__ : Union[str, Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=__snake_case , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ : Union[str, Any] =controlnet_params
__magic_name__ : int ="""bird"""
__magic_name__ : Optional[int] =jax.device_count()
__magic_name__ : Optional[int] =pipe.prepare_text_inputs([prompts] * num_samples )
__magic_name__ : List[str] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" )
__magic_name__ : Union[str, Any] =pipe.prepare_image_inputs([canny_image] * num_samples )
__magic_name__ : Union[str, Any] =jax.random.PRNGKey(0 )
__magic_name__ : List[Any] =jax.random.split(__snake_case , jax.device_count() )
__magic_name__ : Dict =replicate(__snake_case )
__magic_name__ : Tuple =shard(__snake_case )
__magic_name__ : int =shard(__snake_case )
__magic_name__ : Optional[Any] =pipe(
prompt_ids=__snake_case , image=__snake_case , params=__snake_case , prng_seed=__snake_case , num_inference_steps=50 , jit=__snake_case , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
__magic_name__ : Any =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__magic_name__ : List[Any] =images[0, 2_53:2_56, 2_53:2_56, -1]
__magic_name__ : Dict =jnp.asarray(jax.device_get(image_slice.flatten() ) )
__magic_name__ : Optional[int] =jnp.array(
[0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Optional[int] =FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-openpose""" , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ , __magic_name__ : Tuple =FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=__snake_case , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ : List[Any] =controlnet_params
__magic_name__ : Optional[int] ="""Chef in the kitchen"""
__magic_name__ : Dict =jax.device_count()
__magic_name__ : Optional[int] =pipe.prepare_text_inputs([prompts] * num_samples )
__magic_name__ : Union[str, Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" )
__magic_name__ : Optional[Any] =pipe.prepare_image_inputs([pose_image] * num_samples )
__magic_name__ : Any =jax.random.PRNGKey(0 )
__magic_name__ : Optional[Any] =jax.random.split(__snake_case , jax.device_count() )
__magic_name__ : str =replicate(__snake_case )
__magic_name__ : Optional[int] =shard(__snake_case )
__magic_name__ : List[str] =shard(__snake_case )
__magic_name__ : List[str] =pipe(
prompt_ids=__snake_case , image=__snake_case , params=__snake_case , prng_seed=__snake_case , num_inference_steps=50 , jit=__snake_case , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
__magic_name__ : Union[str, Any] =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__magic_name__ : Dict =images[0, 2_53:2_56, 2_53:2_56, -1]
__magic_name__ : Union[str, Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) )
__magic_name__ : str =jnp.array(
[[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 21 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """segformer"""
def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(**__snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , )
__magic_name__ : Dict =num_channels
__magic_name__ : str =num_encoder_blocks
__magic_name__ : List[Any] =depths
__magic_name__ : Optional[Any] =sr_ratios
__magic_name__ : List[str] =hidden_sizes
__magic_name__ : List[str] =patch_sizes
__magic_name__ : Any =strides
__magic_name__ : Optional[Any] =mlp_ratios
__magic_name__ : str =num_attention_heads
__magic_name__ : int =hidden_act
__magic_name__ : List[Any] =hidden_dropout_prob
__magic_name__ : Optional[Any] =attention_probs_dropout_prob
__magic_name__ : Optional[Any] =classifier_dropout_prob
__magic_name__ : List[str] =initializer_range
__magic_name__ : List[str] =drop_path_rate
__magic_name__ : List[Any] =layer_norm_eps
__magic_name__ : List[str] =decoder_hidden_size
__magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case )
__magic_name__ : Dict =semantic_loss_ignore_index
class __A ( UpperCamelCase__ ):
UpperCamelCase = version.parse("""1.11""" )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A__ ( self :Any ):
'''simple docstring'''
return 1E-4
@property
def A__ ( self :int ):
'''simple docstring'''
return 12
| 21 | 1 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : str = logging.get_logger(__name__)
def lowerCAmelCase_ ( lowerCamelCase ):
print("""Loading config file...""" )
def flatten_yaml_as_dict(lowerCamelCase , lowerCamelCase="" , lowerCamelCase="." ):
__magic_name__ : int =[]
for k, v in d.items():
__magic_name__ : Dict =parent_key + sep + k if parent_key else k
if isinstance(lowerCamelCase , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(lowerCamelCase , lowerCamelCase , sep=lowerCamelCase ).items() )
else:
items.append((new_key, v) )
return dict(lowerCamelCase )
__magic_name__ : List[Any] =argparse.Namespace()
with open(lowerCamelCase , """r""" ) as yaml_file:
try:
__magic_name__ : List[Any] =yaml.load(lowerCamelCase , Loader=yaml.FullLoader )
__magic_name__ : List[Any] =flatten_yaml_as_dict(lowerCamelCase )
for k, v in flat_cfg.items():
setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(lowerCamelCase , str(lowerCamelCase ) ) )
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =MobileViTVaConfig()
__magic_name__ : Any =False
# dataset
if task_name.startswith("""imagenet1k_""" ):
__magic_name__ : Optional[Any] =1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
__magic_name__ : Dict =384
else:
__magic_name__ : Dict =256
__magic_name__ : Tuple ="""imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
__magic_name__ : Optional[Any] =21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
__magic_name__ : Optional[Any] =384
else:
__magic_name__ : List[Any] =256
__magic_name__ : Union[str, Any] ="""imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
__magic_name__ : List[str] =151
__magic_name__ : Union[str, Any] =512
__magic_name__ : List[str] ="""ade20k-id2label.json"""
__magic_name__ : Optional[int] =True
elif task_name.startswith("""voc_""" ):
__magic_name__ : Dict =21
__magic_name__ : Optional[Any] =512
__magic_name__ : Tuple ="""pascal-voc-id2label.json"""
__magic_name__ : int =True
# orig_config
__magic_name__ : int =load_orig_config_file(lowerCamelCase )
assert getattr(lowerCamelCase , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
__magic_name__ : List[str] =getattr(lowerCamelCase , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(lowerCamelCase , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
__magic_name__ : Dict =getattr(lowerCamelCase , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
__magic_name__ : Optional[int] =getattr(lowerCamelCase , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
__magic_name__ : str =getattr(lowerCamelCase , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
__magic_name__ : int =getattr(lowerCamelCase , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 )
__magic_name__ : str =getattr(lowerCamelCase , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
__magic_name__ : Tuple ="""huggingface/label-files"""
__magic_name__ : Dict =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
__magic_name__ : Optional[int] ={int(lowerCamelCase ): v for k, v in idalabel.items()}
__magic_name__ : List[str] =idalabel
__magic_name__ : str ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Optional[Any] =dct.pop(lowerCamelCase )
__magic_name__ : Optional[int] =val
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
if base_model:
__magic_name__ : Tuple =""""""
else:
__magic_name__ : int ="""mobilevitv2."""
__magic_name__ : Optional[Any] =[]
for k in state_dict.keys():
if k[:8] == "encoder.":
__magic_name__ : List[Any] =k[8:]
else:
__magic_name__ : int =k
if ".block." in k:
__magic_name__ : Dict =k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
__magic_name__ : List[str] =k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
__magic_name__ : List[Any] =k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
__magic_name__ : Optional[int] =k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." )
for i in [1, 2]:
if F"layer_{i}." in k:
__magic_name__ : Optional[Any] =k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
__magic_name__ : Optional[Any] =k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
__magic_name__ : Any =k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if F"layer_{i}.0." in k:
__magic_name__ : Optional[Any] =k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if F"layer_{i}.1.local_rep.0." in k:
__magic_name__ : List[str] =k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if F"layer_{i}.1.local_rep.1." in k:
__magic_name__ : Any =k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
__magic_name__ : int =[0, 1]
elif i == 4:
__magic_name__ : Tuple =[0, 1, 2, 3]
elif i == 5:
__magic_name__ : str =[0, 1, 2]
for j in j_in:
if F"layer_{i}.1.global_rep.{j}." in k:
__magic_name__ : List[Any] =k_new.replace(
F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if F"layer_{i}.1.global_rep.{j+1}." in k:
__magic_name__ : int =k_new.replace(
F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." )
if F"layer_{i}.1.conv_proj." in k:
__magic_name__ : List[Any] =k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
__magic_name__ : Dict =k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
__magic_name__ : Tuple =k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
__magic_name__ : List[Any] =k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
__magic_name__ : int =k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
__magic_name__ : Union[str, Any] =k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
__magic_name__ : int =k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
__magic_name__ : Any =k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
__magic_name__ : List[Any] =k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
__magic_name__ : str =k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Tuple =[]
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(lowerCamelCase )
for k in keys_to_ignore:
state_dict.pop(lowerCamelCase , lowerCamelCase )
def lowerCAmelCase_ ( ):
__magic_name__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
__magic_name__ : Optional[Any] =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Optional[int] =get_mobilevitva_config(lowerCamelCase , lowerCamelCase )
# load original state_dict
__magic_name__ : Union[str, Any] =torch.load(lowerCamelCase , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
__magic_name__ : Union[str, Any] =MobileViTVaForSemanticSegmentation(lowerCamelCase ).eval()
__magic_name__ : Any =False
else:
__magic_name__ : Tuple =MobileViTVaForImageClassification(lowerCamelCase ).eval()
__magic_name__ : Dict =False
# remove and rename some keys of load the original model
__magic_name__ : Tuple =checkpoint
remove_unused_keys(lowerCamelCase )
__magic_name__ : List[str] =create_rename_keys(lowerCamelCase , base_model=lowerCamelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# load modified state_dict
model.load_state_dict(lowerCamelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
__magic_name__ : Optional[int] =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
__magic_name__ : Optional[int] =image_processor(images=prepare_img() , return_tensors="""pt""" )
__magic_name__ : Tuple =model(**lowerCamelCase )
# verify classification model
if task_name.startswith("""imagenet""" ):
__magic_name__ : int =outputs.logits
__magic_name__ : str =logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
__magic_name__ : str =torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 )
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
print(F"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCamelCase )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowerCamelCase )
if __name__ == "__main__":
UpperCAmelCase_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase_ : Optional[int] = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 21 |
import heapq
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
__magic_name__ : Tuple =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0]
chosen_vertices.add(lowerCamelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__magic_name__ : Tuple =elem[1][1].index(lowerCamelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCAmelCase_ : Any = 16
UpperCAmelCase_ : int = 32
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 16 ):
__magic_name__ : List[str] =AutoTokenizer.from_pretrained("""bert-base-cased""" )
__magic_name__ : str =load_dataset("""glue""" , """mrpc""" )
def tokenize_function(lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
__magic_name__ : List[str] =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__magic_name__ : int =datasets.map(
lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__magic_name__ : Any =tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__magic_name__ : List[Any] =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__magic_name__ : List[str] =16
elif accelerator.mixed_precision != "no":
__magic_name__ : Tuple =8
else:
__magic_name__ : Dict =None
return tokenizer.pad(
lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
__magic_name__ : Tuple =DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
__magic_name__ : Dict =DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCAmelCase_ : Tuple = mocked_dataloaders # noqa: F811
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase ) == "1":
__magic_name__ : Tuple =2
# New Code #
__magic_name__ : List[Any] =int(args.gradient_accumulation_steps )
__magic_name__ : int =int(args.local_sgd_steps )
# Initialize accelerator
__magic_name__ : List[str] =Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__magic_name__ : List[str] =config["""lr"""]
__magic_name__ : Dict =int(config["""num_epochs"""] )
__magic_name__ : Optional[int] =int(config["""seed"""] )
__magic_name__ : Tuple =int(config["""batch_size"""] )
__magic_name__ : Dict =evaluate.load("""glue""" , """mrpc""" )
set_seed(lowerCamelCase )
__magic_name__ , __magic_name__ : Union[str, Any] =get_dataloaders(lowerCamelCase , lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__magic_name__ : str =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__magic_name__ : List[str] =model.to(accelerator.device )
# Instantiate optimizer
__magic_name__ : Tuple =AdamW(params=model.parameters() , lr=lowerCamelCase )
# Instantiate scheduler
__magic_name__ : Dict =get_linear_schedule_with_warmup(
optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =accelerator.prepare(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Now we train the model
for epoch in range(lowerCamelCase ):
model.train()
with LocalSGD(
accelerator=lowerCamelCase , model=lowerCamelCase , local_sgd_steps=lowerCamelCase , enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(lowerCamelCase ):
__magic_name__ : Tuple =model(**lowerCamelCase )
__magic_name__ : Optional[int] =output.loss
accelerator.backward(lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__magic_name__ : int =model(**lowerCamelCase )
__magic_name__ : int =outputs.logits.argmax(dim=-1 )
__magic_name__ , __magic_name__ : Optional[int] =accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=lowerCamelCase , references=lowerCamelCase , )
__magic_name__ : Tuple =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}:" , lowerCamelCase )
def lowerCAmelCase_ ( ):
__magic_name__ : List[str] =argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=lowerCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument(
"""--local_sgd_steps""" , type=lowerCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
__magic_name__ : Tuple =parser.parse_args()
__magic_name__ : Any ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(lowerCamelCase , lowerCamelCase )
if __name__ == "__main__":
main()
| 21 |
UpperCAmelCase_ : int = range(2, 20 + 1)
UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)]
UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) )
__magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) )
__magic_name__ , __magic_name__ : Tuple =0, 0
__magic_name__ : Optional[Any] =n - i
__magic_name__ : Union[str, Any] =memo.get(lowerCamelCase )
if sub_memo is not None:
__magic_name__ : int =sub_memo.get(lowerCamelCase )
if jumps is not None and len(lowerCamelCase ) > 0:
# find and make the largest jump without going over
__magic_name__ : Dict =-1
for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__magic_name__ : Optional[Any] =_k
break
if max_jump >= 0:
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump]
# since the difference between jumps is cached, add c
__magic_name__ : Tuple =diff + c
for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ):
__magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 )
if new_c > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
__magic_name__ : str =[]
else:
__magic_name__ : List[str] ={c: []}
__magic_name__ : List[str] =sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
__magic_name__ : Tuple =sub_memo[c]
# keep jumps sorted by # of terms skipped
__magic_name__ : List[Any] =0
while j < len(lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if i >= n:
return 0, i
if k > len(lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__magic_name__ : Tuple =i
__magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0
for j in range(len(lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__magic_name__ : Optional[Any] =ds_c + ds_b
diff += addend
__magic_name__ : str =0
for j in range(lowerCamelCase ):
__magic_name__ : int =a_i[j] + addend
__magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return diff, i - start_i
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
for j in range(lowerCamelCase , len(lowerCamelCase ) ):
__magic_name__ : Tuple =digits[j] + addend
if s >= 10:
__magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 )
__magic_name__ : int =addend // 10 + quotient
else:
__magic_name__ : Dict =s
__magic_name__ : Any =addend // 10
if addend == 0:
break
while addend > 0:
__magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 )
digits.append(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase = 10**15 ):
__magic_name__ : List[str] =[1]
__magic_name__ : str =1
__magic_name__ : str =0
while True:
__magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__magic_name__ : int =0
for j in range(len(lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 | 1 |
UpperCAmelCase_ : Tuple = 0 # The first color of the flag.
UpperCAmelCase_ : Any = 1 # The second color of the flag.
UpperCAmelCase_ : str = 2 # The third color of the flag.
UpperCAmelCase_ : Tuple = (red, white, blue)
def lowerCAmelCase_ ( lowerCamelCase ):
if not sequence:
return []
if len(lowerCamelCase ) == 1:
return list(lowerCamelCase )
__magic_name__ : int =0
__magic_name__ : str =len(lowerCamelCase ) - 1
__magic_name__ : Optional[Any] =0
while mid <= high:
if sequence[mid] == colors[0]:
__magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid]
high -= 1
else:
__magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values"
raise ValueError(lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip()
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 21 |
from typing import List
from .keymap import KEYMAP, get_character
def lowerCAmelCase_ ( lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] )
handle += [key]
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
def lowerCAmelCase_ ( *lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] )
handle += keys
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
class __A ( UpperCamelCase__ ):
def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case )
if not hasattr(__snake_case , """key_handler""" ):
setattr(__snake_case , """key_handler""" , {} )
setattr(__snake_case , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__magic_name__ : int =getattr(__snake_case , """handle_key""" , [] )
for key in handled_keys:
__magic_name__ : List[str] =value
return new_cls
@staticmethod
def A__ ( cls :Optional[int] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =get_character()
if char != KEYMAP["undefined"]:
__magic_name__ : Optional[int] =ord(__snake_case )
__magic_name__ : int =cls.key_handler.get(__snake_case )
if handler:
__magic_name__ : Dict =char
return handler(cls )
else:
return None
def lowerCAmelCase_ ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 21 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Tuple =MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__magic_name__ : Any =[144, 192, 240]
__magic_name__ : Union[str, Any] =[16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__magic_name__ : Dict =[96, 120, 144]
__magic_name__ : str =[16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__magic_name__ : List[str] =[64, 80, 96]
__magic_name__ : List[str] =[16, 16, 24, 48, 64, 80, 320]
__magic_name__ : Optional[int] =0.0_5
__magic_name__ : int =2.0
if mobilevit_name.startswith("""deeplabv3_""" ):
__magic_name__ : int =512
__magic_name__ : Dict =16
__magic_name__ : Union[str, Any] =21
__magic_name__ : int ="""pascal-voc-id2label.json"""
else:
__magic_name__ : Union[str, Any] =1000
__magic_name__ : List[Any] ="""imagenet-1k-id2label.json"""
__magic_name__ : List[Any] ="""huggingface/label-files"""
__magic_name__ : Dict =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
__magic_name__ : Any ={int(lowerCamelCase ): v for k, v in idalabel.items()}
__magic_name__ : int =idalabel
__magic_name__ : Any ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
for i in range(1 , 6 ):
if F"layer_{i}." in name:
__magic_name__ : Dict =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." )
if "conv_1." in name:
__magic_name__ : List[Any] =name.replace("""conv_1.""" , """conv_stem.""" )
if ".block." in name:
__magic_name__ : int =name.replace(""".block.""" , """.""" )
if "exp_1x1" in name:
__magic_name__ : str =name.replace("""exp_1x1""" , """expand_1x1""" )
if "red_1x1" in name:
__magic_name__ : Dict =name.replace("""red_1x1""" , """reduce_1x1""" )
if ".local_rep.conv_3x3." in name:
__magic_name__ : List[str] =name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" )
if ".local_rep.conv_1x1." in name:
__magic_name__ : Optional[Any] =name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" )
if ".norm." in name:
__magic_name__ : Tuple =name.replace(""".norm.""" , """.normalization.""" )
if ".conv." in name:
__magic_name__ : Any =name.replace(""".conv.""" , """.convolution.""" )
if ".conv_proj." in name:
__magic_name__ : Optional[Any] =name.replace(""".conv_proj.""" , """.conv_projection.""" )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F".{i}.{j}." in name:
__magic_name__ : int =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F".{i}.{j}." in name:
__magic_name__ : Dict =name.replace(F".{i}.{j}." , F".{i}." )
if "expand_1x1" in name:
__magic_name__ : Optional[int] =name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" )
if "conv_3x3" in name:
__magic_name__ : Optional[int] =name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" )
if "reduce_1x1" in name:
__magic_name__ : Any =name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" )
for i in range(2 , 5 ):
if F".global_rep.{i}.weight" in name:
__magic_name__ : Dict =name.replace(F".global_rep.{i}.weight" , """.layernorm.weight""" )
if F".global_rep.{i}.bias" in name:
__magic_name__ : Tuple =name.replace(F".global_rep.{i}.bias" , """.layernorm.bias""" )
if ".global_rep." in name:
__magic_name__ : List[str] =name.replace(""".global_rep.""" , """.transformer.""" )
if ".pre_norm_mha.0." in name:
__magic_name__ : int =name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" )
if ".pre_norm_mha.1.out_proj." in name:
__magic_name__ : Optional[Any] =name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" )
if ".pre_norm_ffn.0." in name:
__magic_name__ : List[str] =name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" )
if ".pre_norm_ffn.1." in name:
__magic_name__ : Any =name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" )
if ".pre_norm_ffn.4." in name:
__magic_name__ : Optional[int] =name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" )
if ".transformer." in name:
__magic_name__ : int =name.replace(""".transformer.""" , """.transformer.layer.""" )
if ".aspp_layer." in name:
__magic_name__ : List[Any] =name.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in name:
__magic_name__ : List[Any] =name.replace(""".aspp_pool.""" , """.""" )
if "seg_head." in name:
__magic_name__ : Tuple =name.replace("""seg_head.""" , """segmentation_head.""" )
if "segmentation_head.classifier.classifier." in name:
__magic_name__ : Dict =name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" )
if "classifier.fc." in name:
__magic_name__ : Tuple =name.replace("""classifier.fc.""" , """classifier.""" )
elif (not base_model) and ("segmentation_head." not in name):
__magic_name__ : Any ="""mobilevit.""" + name
return name
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ):
if base_model:
__magic_name__ : Any =""""""
else:
__magic_name__ : Tuple ="""mobilevit."""
for key in orig_state_dict.copy().keys():
__magic_name__ : Dict =orig_state_dict.pop(lowerCamelCase )
if key[:8] == "encoder.":
__magic_name__ : Optional[int] =key[8:]
if "qkv" in key:
__magic_name__ : Tuple =key.split(""".""" )
__magic_name__ : Dict =int(key_split[0][6:] ) - 1
__magic_name__ : Dict =int(key_split[3] )
__magic_name__ : Optional[int] =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" )
__magic_name__ : List[Any] =layer.transformer.layer[transformer_num].attention.attention.all_head_size
__magic_name__ : Tuple =(
F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."
)
if "weight" in key:
__magic_name__ : Optional[int] =val[:dim, :]
__magic_name__ : Tuple =val[dim : dim * 2, :]
__magic_name__ : List[str] =val[-dim:, :]
else:
__magic_name__ : Tuple =val[:dim]
__magic_name__ : str =val[dim : dim * 2]
__magic_name__ : int =val[-dim:]
else:
__magic_name__ : Optional[int] =val
return orig_state_dict
def lowerCAmelCase_ ( ):
__magic_name__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
__magic_name__ : str =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =get_mobilevit_config(lowerCamelCase )
# load original state_dict
__magic_name__ : List[Any] =torch.load(lowerCamelCase , map_location="""cpu""" )
# load 🤗 model
if mobilevit_name.startswith("""deeplabv3_""" ):
__magic_name__ : Union[str, Any] =MobileViTForSemanticSegmentation(lowerCamelCase ).eval()
else:
__magic_name__ : Tuple =MobileViTForImageClassification(lowerCamelCase ).eval()
__magic_name__ : Dict =convert_state_dict(lowerCamelCase , lowerCamelCase )
model.load_state_dict(lowerCamelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
__magic_name__ : Any =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
__magic_name__ : Optional[int] =image_processor(images=prepare_img() , return_tensors="""pt""" )
__magic_name__ : List[Any] =model(**lowerCamelCase )
__magic_name__ : Union[str, Any] =outputs.logits
if mobilevit_name.startswith("""deeplabv3_""" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__magic_name__ : Any =torch.tensor(
[
[[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]],
[[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]],
[[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__magic_name__ : Dict =torch.tensor(
[
[[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]],
[[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]],
[[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__magic_name__ : Dict =torch.tensor(
[
[[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]],
[[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]],
[[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]],
] )
else:
raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" )
assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__magic_name__ : List[str] =torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] )
elif mobilevit_name == "mobilevit_xs":
__magic_name__ : Dict =torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] )
elif mobilevit_name == "mobilevit_xxs":
__magic_name__ : Optional[Any] =torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] )
else:
raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" )
assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 )
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowerCamelCase )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowerCamelCase )
if push_to_hub:
__magic_name__ : List[Any] ={
"""mobilevit_s""": """mobilevit-small""",
"""mobilevit_xs""": """mobilevit-x-small""",
"""mobilevit_xxs""": """mobilevit-xx-small""",
"""deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""",
"""deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""",
"""deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""",
}
print("""Pushing to the hub...""" )
__magic_name__ : str =model_mapping[mobilevit_name]
image_processor.push_to_hub(lowerCamelCase , organization="""apple""" )
model.push_to_hub(lowerCamelCase , organization="""apple""" )
if __name__ == "__main__":
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCAmelCase_ : int = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 21 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
UpperCAmelCase_ : Dict = 2048
UpperCAmelCase_ : int = 4096
UpperCAmelCase_ : Any = 42
UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false")
UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def lowerCAmelCase_ ( lowerCamelCase ):
def choose_first(lowerCamelCase , lowerCamelCase=False ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if len(lowerCamelCase ) == 1:
__magic_name__ : List[str] =answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__magic_name__ : Tuple ={k: [a[k]] for k in a}
if len(a["""start_token"""] ) > 0:
break
return a
__magic_name__ : str ={"""id""": example["""id"""]}
__magic_name__ : List[Any] =example["""annotations"""]
__magic_name__ : List[str] =annotation["""yes_no_answer"""]
if 0 in yes_no_answer or 1 in yes_no_answer:
__magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""]
__magic_name__ : List[str] =[]
__magic_name__ : Dict =[]
__magic_name__ : str =["""<cls>"""]
else:
__magic_name__ : Tuple =["""short"""]
__magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] )
if len(out["""start_token"""] ) == 0:
# answer will be long if short is not available
__magic_name__ : Tuple =["""long"""]
__magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase )
__magic_name__ : List[Any] =[]
answer.update(lowerCamelCase )
# disregard some samples
if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]:
__magic_name__ : Any =True
else:
__magic_name__ : List[str] =False
__magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""]
if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ):
raise ValueError("""Issue in ID""" , example["""id"""] )
return answer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : Any =example["""document"""]["""tokens"""]
__magic_name__ : str =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__magic_name__ : Dict =["""start_token""", """end_token"""]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__magic_name__ : Tuple =example["""document"""]["""tokens"""]
__magic_name__ : Optional[int] =answer["""start_token"""]
__magic_name__ : List[Any] =answer["""end_token"""]
__magic_name__ : Optional[Any] =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] )
# checking above code
if assertion:
__magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] )
if new != old:
print("""ID:""" , example["""id"""] )
print("""New:""" , lowerCamelCase , end="""\n""" )
print("""Old:""" , lowerCamelCase , end="""\n\n""" )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ):
# overlap will be of doc_stride - q_len
__magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase )
__magic_name__ : Union[str, Any] =out["""answer"""]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids
__magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : List[str] =[]
__magic_name__ : int =[]
__magic_name__ : List[str] =input_ids[:q_len]
__magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Tuple =input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["""category"""][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(lowerCamelCase ),
"end_token": [-100] * len(lowerCamelCase ),
"category": category,
},
}
__magic_name__ : int =out["""context"""].split()
__magic_name__ : Any =splitted_context[answer["""end_token"""]]
__magic_name__ : str =len(
tokenizer(
""" """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids )
__magic_name__ : Optional[int] =len(
tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive
__magic_name__ : Dict =answer["""start_token"""]
__magic_name__ : int =answer["""end_token"""]
if assertion:
__magic_name__ : Any =tokenizer.decode(lowerCamelCase )
if answer["span"] != new:
print("""ISSUE IN TOKENIZATION""" )
print("""OLD:""" , answer["""span"""] )
print("""NEW:""" , lowerCamelCase , end="""\n\n""" )
if len(lowerCamelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__magic_name__ : Any =input_ids[:q_len]
__magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
__magic_name__ : Any =[]
__magic_name__ : List[str] =[]
__magic_name__ : List[str] =[]
__magic_name__ : str =[] # null, yes, no, long, short
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Dict =input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__magic_name__ : List[Any] =start_token - i + q_len
__magic_name__ : Optional[Any] =end_token - i + q_len
answers_category.append(answer["""category"""][0] ) # ["short"] -> "short"
else:
__magic_name__ : Optional[Any] =-100
__magic_name__ : Optional[Any] =-100
answers_category.append("""null""" )
__magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1]
answers_start_token.append(lowerCamelCase )
answers_end_token.append(lowerCamelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("""ISSUE in strided for ID:""" , example["""id"""] )
print("""New:""" , tokenizer.decode(lowerCamelCase ) )
print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ):
__magic_name__ : List[Any] =get_strided_contexts_and_ans(
lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , )
return example
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
with jsonlines.open(lowerCamelCase , """a""" ) as writer:
for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ):
__magic_name__ : int =example["""labels"""]
for ids, start, end, cat in zip(
example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"""input_ids""": ids,
"""start_token""": start,
"""end_token""": end,
"""category""": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions")
UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"]
UpperCAmelCase_ : Optional[int] = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
__magic_name__ : Union[str, Any] =mf_knapsack(i - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
__magic_name__ : Tuple =max(
mf_knapsack(i - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , mf_knapsack(i - 1 , lowerCamelCase , lowerCamelCase , j - wt[i - 1] ) + val[i - 1] , )
__magic_name__ : Any =val
return f[i][j]
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Dict =[[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
__magic_name__ : Optional[Any] =max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
__magic_name__ : str =dp[i - 1][w_]
return dp[n][w_], dp
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if not (isinstance(lowerCamelCase , (list, tuple) ) and isinstance(lowerCamelCase , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
__magic_name__ : str =len(lowerCamelCase )
if num_items != len(lowerCamelCase ):
__magic_name__ : Union[str, Any] =(
"""The number of weights must be the same as the number of values.\n"""
F"But got {num_items} weights and {len(lowerCamelCase )} values"
)
raise ValueError(lowerCamelCase )
for i in range(lowerCamelCase ):
if not isinstance(wt[i] , lowerCamelCase ):
__magic_name__ : List[str] =(
"""All weights must be integers but got weight of """
F"type {type(wt[i] )} at index {i}"
)
raise TypeError(lowerCamelCase )
__magic_name__ , __magic_name__ : List[Any] =knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : set =set()
_construct_solution(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
return optimal_val, example_optional_set
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowerCamelCase , lowerCamelCase , i - 1 , lowerCamelCase , lowerCamelCase )
else:
optimal_set.add(lowerCamelCase )
_construct_solution(lowerCamelCase , lowerCamelCase , i - 1 , j - wt[i - 1] , lowerCamelCase )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = [3, 2, 4, 4]
UpperCAmelCase_ : str = [4, 3, 2, 3]
UpperCAmelCase_ : Any = 4
UpperCAmelCase_ : List[str] = 6
UpperCAmelCase_ : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
UpperCAmelCase_ , UpperCAmelCase_ : Dict = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
UpperCAmelCase_ , UpperCAmelCase_ : Any = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 21 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """xlm-roberta-xl"""
def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
__magic_name__ : List[str] =vocab_size
__magic_name__ : List[str] =hidden_size
__magic_name__ : Union[str, Any] =num_hidden_layers
__magic_name__ : Any =num_attention_heads
__magic_name__ : Any =hidden_act
__magic_name__ : List[str] =intermediate_size
__magic_name__ : Any =hidden_dropout_prob
__magic_name__ : Union[str, Any] =attention_probs_dropout_prob
__magic_name__ : Any =max_position_embeddings
__magic_name__ : Any =type_vocab_size
__magic_name__ : List[str] =initializer_range
__magic_name__ : Optional[int] =layer_norm_eps
__magic_name__ : Dict =position_embedding_type
__magic_name__ : Any =use_cache
__magic_name__ : Dict =classifier_dropout
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
__magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 21 | 1 |
import operator
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None ):
__magic_name__ : Any =operator.lt if reverse else operator.gt
__magic_name__ : Union[str, Any] =solution or []
if not arr:
return solution
__magic_name__ : Optional[Any] =[arr.pop(0 )]
for i, item in enumerate(lowerCamelCase ):
if _operator(lowerCamelCase , sublist[-1] ):
sublist.append(lowerCamelCase )
arr.pop(lowerCamelCase )
# merging sublist into solution list
if not solution:
solution.extend(lowerCamelCase )
else:
while sublist:
__magic_name__ : List[Any] =sublist.pop(0 )
for i, xx in enumerate(lowerCamelCase ):
if not _operator(lowerCamelCase , lowerCamelCase ):
solution.insert(lowerCamelCase , lowerCamelCase )
break
else:
solution.append(lowerCamelCase )
strand_sort(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 21 |
from pathlib import Path
import fire
from tqdm import tqdm
def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ):
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__magic_name__ : Dict =F"{src_lang}-{tgt_lang}"
print(F"Converting {dataset}-{pair}" )
__magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase )
if save_dir is None:
__magic_name__ : Optional[int] =F"{dataset}-{pair}"
__magic_name__ : int =Path(lowerCamelCase )
save_dir.mkdir(exist_ok=lowerCamelCase )
for split in ds.keys():
print(F"Splitting {split} with {ds[split].num_rows} records" )
# to save to val.source, val.target like summary datasets
__magic_name__ : Dict ="""val""" if split == """validation""" else split
__magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" )
__magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" )
__magic_name__ : Optional[Any] =src_path.open("""w+""" )
__magic_name__ : List[Any] =tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__magic_name__ : str =x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(F"Saved {dataset} dataset to {save_dir}" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 21 | 1 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __A ( UpperCamelCase__ ):
UpperCamelCase = ["""image_processor""", """tokenizer"""]
UpperCamelCase = """Pix2StructImageProcessor"""
UpperCamelCase = ("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self :Optional[Any] , __snake_case :int , __snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[int] =False
super().__init__(__snake_case , __snake_case )
def __call__( self :Any , __snake_case :List[Any]=None , __snake_case :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case :bool = True , __snake_case :Union[bool, str, PaddingStrategy] = False , __snake_case :Union[bool, str, TruncationStrategy] = None , __snake_case :Optional[int] = None , __snake_case :Optional[int] = 20_48 , __snake_case :int = 0 , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :bool = False , __snake_case :bool = False , __snake_case :bool = False , __snake_case :bool = False , __snake_case :bool = False , __snake_case :bool = True , __snake_case :Optional[Union[str, TensorType]] = None , **__snake_case :Any , ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None and not self.image_processor.is_vqa:
__magic_name__ : Any =self.tokenizer
__magic_name__ : Dict =self.tokenizer(
text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
__magic_name__ : Dict =self.image_processor(
__snake_case , return_tensors=__snake_case , max_patches=__snake_case , **__snake_case )
else:
# add pixel_values and bbox
__magic_name__ : Optional[int] =self.image_processor(
__snake_case , return_tensors=__snake_case , max_patches=__snake_case , header_text=__snake_case , **__snake_case )
if text is not None and not self.image_processor.is_vqa:
__magic_name__ : int =self.tokenizer(
text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , )
if "attention_mask" in text_encoding:
__magic_name__ : Tuple =text_encoding.pop("""attention_mask""" )
if "input_ids" in text_encoding:
__magic_name__ : List[str] =text_encoding.pop("""input_ids""" )
else:
__magic_name__ : Any =None
if text_encoding is not None:
encoding_image_processor.update(__snake_case )
return encoding_image_processor
def A__ ( self :List[Any] , *__snake_case :Union[str, Any] , **__snake_case :List[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def A__ ( self :Optional[Any] , *__snake_case :Optional[int] , **__snake_case :str ):
'''simple docstring'''
return self.tokenizer.decode(*__snake_case , **__snake_case )
@property
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : int =self.tokenizer.model_input_names
__magic_name__ : Any =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 21 |
from __future__ import annotations
from fractions import Fraction
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =[]
__magic_name__ : List[Any] =11
__magic_name__ : Tuple =int("""1""" + """0""" * digit_len )
for num in range(lowerCamelCase , lowerCamelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCamelCase , lowerCamelCase ):
solutions.append(F"{num}/{den}" )
den += 1
num += 1
__magic_name__ : List[str] =10
return solutions
def lowerCAmelCase_ ( lowerCamelCase = 2 ):
__magic_name__ : str =1.0
for fraction in fraction_list(lowerCamelCase ):
__magic_name__ : int =Fraction(lowerCamelCase )
result *= frac.denominator / frac.numerator
return int(lowerCamelCase )
if __name__ == "__main__":
print(solution())
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( lowerCamelCase ):
# A local function to see if a dot lands in the circle.
def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool:
__magic_name__ : Dict =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__magic_name__ : Union[str, Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCamelCase ) )
# The ratio of the area for circle to square is pi/4.
__magic_name__ : List[Any] =proportion * 4
print(F"The estimated value of pi is {pi_estimate}" )
print(F"The numpy value of pi is {pi}" )
print(F"The total error is {abs(pi - pi_estimate )}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ):
return mean(
function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ):
def identity_function(lowerCamelCase ) -> float:
return x
__magic_name__ : Optional[int] =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : str =(max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {expected_value}" )
print(F"Total error is {abs(estimated_value - expected_value )}" )
print("""******************""" )
def lowerCAmelCase_ ( lowerCamelCase ):
def function_to_integrate(lowerCamelCase ) -> float:
return sqrt(4.0 - x * x )
__magic_name__ : Dict =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {pi}" )
print(F"Total error is {abs(estimated_value - pi )}" )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
UpperCAmelCase_ : Tuple = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __A ( UpperCamelCase__ ):
UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to use SortishSampler or not."""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Tuple =super().to_dict()
for k, v in d.items():
if isinstance(__snake_case , __snake_case ):
__magic_name__ : List[Any] =v.to_dict()
return d
| 21 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __A ( tf.keras.layers.Layer ):
def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ):
'''simple docstring'''
super().__init__()
__magic_name__ : Optional[int] =pad_token_id
__magic_name__ : List[Any] =max_length
__magic_name__ : Dict =vocab
__magic_name__ : int =merges
__magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case )
@classmethod
def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ):
'''simple docstring'''
__magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()]
__magic_name__ : str =tokenizer.get_vocab()
return cls(__snake_case , __snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ):
'''simple docstring'''
__magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case )
return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Optional[Any] , __snake_case :List[Any] ):
'''simple docstring'''
return cls(**__snake_case )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ):
'''simple docstring'''
__magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case )
__magic_name__ : Tuple =tf.ones_like(__snake_case )
if self.pad_token_id is not None:
# pad the tokens up to max length
__magic_name__ : Tuple =max_length if max_length is not None else self.max_length
if max_length is not None:
__magic_name__ , __magic_name__ : Tuple =pad_model_inputs(
__snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 21 | 1 |
class __A :
def __init__( self :Optional[int] , __snake_case :int ):
'''simple docstring'''
__magic_name__ : Optional[Any] =size
__magic_name__ : Union[str, Any] =[0] * size
__magic_name__ : Optional[int] =[0] * size
@staticmethod
def A__ ( __snake_case :int ):
'''simple docstring'''
return index | (index + 1)
@staticmethod
def A__ ( __snake_case :int ):
'''simple docstring'''
return (index & (index + 1)) - 1
def A__ ( self :Optional[Any] , __snake_case :int , __snake_case :int ):
'''simple docstring'''
__magic_name__ : Optional[int] =value
while index < self.size:
__magic_name__ : List[Any] =self.get_prev(__snake_case ) + 1
if current_left_border == index:
__magic_name__ : str =value
else:
__magic_name__ : Tuple =max(__snake_case , __snake_case , __snake_case )
__magic_name__ : Tuple =self.get_next(__snake_case )
def A__ ( self :List[Any] , __snake_case :int , __snake_case :int ):
'''simple docstring'''
right -= 1 # Because of right is exclusive
__magic_name__ : Optional[Any] =0
while left <= right:
__magic_name__ : int =self.get_prev(__snake_case )
if left <= current_left:
__magic_name__ : str =max(__snake_case , self.tree[right] )
__magic_name__ : int =current_left
else:
__magic_name__ : int =max(__snake_case , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
import math
import tensorflow as tf
from packaging import version
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype )
__magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase )
return x * tf.tanh(tf.math.softplus(lowerCamelCase ) )
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ):
__magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase )
return a * tf.math.sigmoid(lowerCamelCase )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase )
UpperCAmelCase_ : List[str] = tf.keras.activations.gelu
UpperCAmelCase_ : Dict = approximate_gelu_wrap
else:
UpperCAmelCase_ : Dict = _gelu
UpperCAmelCase_ : str = _gelu_new
UpperCAmelCase_ : Any = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowerCAmelCase_ ( lowerCamelCase ):
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 21 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : str =[]
__magic_name__ , __magic_name__ : str =input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__magic_name__ : int =result + left + right
return input_list
def lowerCAmelCase_ ( lowerCamelCase ):
if len(lowerCamelCase ) <= 1:
return input_list
__magic_name__ : Any =list(lowerCamelCase )
# iteration for two-way merging
__magic_name__ : Optional[Any] =2
while p <= len(lowerCamelCase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCamelCase ) , lowerCamelCase ):
__magic_name__ : Union[str, Any] =i
__magic_name__ : Union[str, Any] =i + p - 1
__magic_name__ : Dict =(low + high + 1) // 2
__magic_name__ : str =merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
# final merge of last two parts
if p * 2 >= len(lowerCamelCase ):
__magic_name__ : Any =i
__magic_name__ : Any =merge(lowerCamelCase , 0 , lowerCamelCase , len(lowerCamelCase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
UpperCAmelCase_ : Dict = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
UpperCAmelCase_ : Optional[Any] = []
else:
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 21 |
from collections.abc import Sequence
def lowerCAmelCase_ ( lowerCamelCase = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__magic_name__ : str =nums[0]
for i in range(1 , len(lowerCamelCase ) ):
__magic_name__ : Any =nums[i]
__magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip())
UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 21 | 1 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[Any] = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """encodec"""
def __init__( self :str , __snake_case :Any=[1.5, 3.0, 6.0, 12.0, 24.0] , __snake_case :Dict=2_40_00 , __snake_case :Optional[int]=1 , __snake_case :str=False , __snake_case :Optional[int]=None , __snake_case :int=None , __snake_case :Any=1_28 , __snake_case :Dict=32 , __snake_case :Optional[int]=1 , __snake_case :Union[str, Any]=[8, 5, 4, 2] , __snake_case :Optional[int]="weight_norm" , __snake_case :Dict=7 , __snake_case :str=7 , __snake_case :int=3 , __snake_case :Union[str, Any]=2 , __snake_case :Optional[int]=True , __snake_case :Any="reflect" , __snake_case :List[Any]=2 , __snake_case :Any=2 , __snake_case :Tuple=1.0 , __snake_case :int=10_24 , __snake_case :Optional[int]=None , __snake_case :str=True , **__snake_case :Optional[int] , ):
'''simple docstring'''
__magic_name__ : Any =target_bandwidths
__magic_name__ : Optional[Any] =sampling_rate
__magic_name__ : Any =audio_channels
__magic_name__ : List[Any] =normalize
__magic_name__ : List[str] =chunk_length_s
__magic_name__ : Optional[int] =overlap
__magic_name__ : Any =hidden_size
__magic_name__ : List[Any] =num_filters
__magic_name__ : List[str] =num_residual_layers
__magic_name__ : Optional[int] =upsampling_ratios
__magic_name__ : str =norm_type
__magic_name__ : Optional[Any] =kernel_size
__magic_name__ : List[str] =last_kernel_size
__magic_name__ : List[str] =residual_kernel_size
__magic_name__ : str =dilation_growth_rate
__magic_name__ : Optional[Any] =use_causal_conv
__magic_name__ : int =pad_mode
__magic_name__ : Optional[int] =compress
__magic_name__ : Any =num_lstm_layers
__magic_name__ : Optional[Any] =trim_right_ratio
__magic_name__ : Any =codebook_size
__magic_name__ : Tuple =codebook_dim if codebook_dim is not None else hidden_size
__magic_name__ : List[str] =use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**__snake_case )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : Any =np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def A__ ( self :Tuple ):
'''simple docstring'''
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 21 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __A :
UpperCamelCase = 42
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def __call__( self :Union[str, Any] ):
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class __A :
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None
__magic_name__ : Optional[int] =len(self.languages ) if self.languages else None
def __call__( self :List[str] ):
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def A__ ( self :str , __snake_case :str ):
'''simple docstring'''
__magic_name__ : Optional[int] =set(self.languages )
if self.languages and set(__snake_case ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__magic_name__ : Any =[]
for lang, text in translation_dict.items():
if isinstance(__snake_case , __snake_case ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) )
return {"language": languages, "translation": translations}
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 21 | 1 |
import heapq
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
__magic_name__ : Tuple =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0]
chosen_vertices.add(lowerCamelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__magic_name__ : Tuple =elem[1][1].index(lowerCamelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 |
from sklearn.metrics import matthews_corrcoef
import datasets
UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"""
] , )
def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ):
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ),
}
| 21 | 1 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __A ( UpperCamelCase__ ):
@staticmethod
@abstractmethod
def A__ ( __snake_case :ArgumentParser ):
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def A__ ( self :List[str] ):
'''simple docstring'''
raise NotImplementedError()
| 21 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase )
if display:
print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) )
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
if conf_path is None:
__magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml"""
__magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase )
__magic_name__ : Tuple =VQModel(**config.model.params )
if ckpt_path is None:
__magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt"""
__magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase )
if ".ckpt" in ckpt_path:
__magic_name__ : Any =sd["""state_dict"""]
model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
model.to(lowerCamelCase )
del sd
return model
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase )
print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" )
__magic_name__ : List[Any] =model.decode(lowerCamelCase )
return xrec
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 )
if reload:
__magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase )
importlib.reload(lowerCamelCase )
return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls )
def lowerCAmelCase_ ( lowerCamelCase ):
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ):
__magic_name__ : str =instantiate_from_config(lowerCamelCase )
if sd is not None:
model.load_state_dict(lowerCamelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# load the specified checkpoint
if ckpt:
__magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" )
__magic_name__ : Any =pl_sd["""global_step"""]
print(F"loaded model from global step {global_step}." )
else:
__magic_name__ : List[Any] ={"""state_dict""": None}
__magic_name__ : Optional[Any] =None
__magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""]
return model, global_step
| 21 | 1 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
UpperCAmelCase_ : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
UpperCAmelCase_ : int = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
UpperCAmelCase_ : Optional[Any] = BeautifulSoup(res.text, "html.parser")
UpperCAmelCase_ : Optional[Any] = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(F"""https://google.com{link.get("href")}""")
| 21 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self :Dict ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 21 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ : Tuple = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : str = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Dict = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Any = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
UpperCAmelCase_ : Tuple = 0 # The first color of the flag.
UpperCAmelCase_ : Any = 1 # The second color of the flag.
UpperCAmelCase_ : str = 2 # The third color of the flag.
UpperCAmelCase_ : Tuple = (red, white, blue)
def lowerCAmelCase_ ( lowerCamelCase ):
if not sequence:
return []
if len(lowerCamelCase ) == 1:
return list(lowerCamelCase )
__magic_name__ : int =0
__magic_name__ : str =len(lowerCamelCase ) - 1
__magic_name__ : Optional[Any] =0
while mid <= high:
if sequence[mid] == colors[0]:
__magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid]
high -= 1
else:
__magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values"
raise ValueError(lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip()
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase = 200 ):
__magic_name__ : Tuple =[1, 2, 5, 10, 20, 50, 100, 200]
__magic_name__ : Optional[int] =[0] * (pence + 1)
__magic_name__ : int =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowerCamelCase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73682
| 21 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __A ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = 1
@register_to_config
def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ):
'''simple docstring'''
__magic_name__ : Dict =None
__magic_name__ : List[str] =None
__magic_name__ : str =None
def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case )
def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__magic_name__ : int =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__magic_name__ : str =std.flatten()
while len(std.shape ) < len(score.shape ):
__magic_name__ : List[str] =std.unsqueeze(-1 )
__magic_name__ : Union[str, Any] =-score / std
# compute
__magic_name__ : Tuple =-1.0 / len(self.timesteps )
__magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__magic_name__ : Dict =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__magic_name__ : Any =beta_t.unsqueeze(-1 )
__magic_name__ : Dict =-0.5 * beta_t * x
__magic_name__ : Optional[int] =torch.sqrt(__snake_case )
__magic_name__ : int =drift - diffusion**2 * score
__magic_name__ : List[str] =x + drift * dt
# add noise
__magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype )
__magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self :List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 21 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
UpperCAmelCase_ : str = None
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase_ : List[str] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase_ : Dict = {
"facebook/nllb-large-en-ro": 1024,
"facebook/nllb-200-distilled-600M": 1024,
}
# fmt: off
UpperCAmelCase_ : Any = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __A ( UpperCamelCase__ ):
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = ["""input_ids""", """attention_mask"""]
UpperCamelCase = NllbTokenizer
UpperCamelCase = []
UpperCamelCase = []
def __init__( self :Any , __snake_case :Union[str, Any]=None , __snake_case :Optional[int]=None , __snake_case :str="<s>" , __snake_case :Union[str, Any]="</s>" , __snake_case :Optional[int]="</s>" , __snake_case :Optional[Any]="<s>" , __snake_case :List[str]="<unk>" , __snake_case :List[str]="<pad>" , __snake_case :List[Any]="<mask>" , __snake_case :List[Any]=None , __snake_case :Any=None , __snake_case :Optional[Any]=None , __snake_case :Optional[Any]=False , **__snake_case :Optional[Any] , ):
'''simple docstring'''
__magic_name__ : Any =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
__magic_name__ : Any =legacy_behaviour
super().__init__(
vocab_file=__snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , legacy_behaviour=__snake_case , **__snake_case , )
__magic_name__ : Optional[int] =vocab_file
__magic_name__ : List[str] =False if not self.vocab_file else True
__magic_name__ : str =FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
__magic_name__ : Union[str, Any] ={
lang_code: self.convert_tokens_to_ids(__snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__magic_name__ : Optional[Any] =src_lang if src_lang is not None else """eng_Latn"""
__magic_name__ : Union[str, Any] =self.convert_tokens_to_ids(self._src_lang )
__magic_name__ : Any =tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def A__ ( self :int ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def A__ ( self :str , __snake_case :str ):
'''simple docstring'''
__magic_name__ : str =new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def A__ ( self :List[Any] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def A__ ( self :str , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =[self.sep_token_id]
__magic_name__ : List[str] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self :List[Any] , __snake_case :int , __snake_case :str , __snake_case :Optional[str] , __snake_case :Optional[str] , **__snake_case :Any ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__magic_name__ : str =src_lang
__magic_name__ : Any =self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case )
__magic_name__ : Union[str, Any] =self.convert_tokens_to_ids(__snake_case )
__magic_name__ : Tuple =tgt_lang_id
return inputs
def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :str = "eng_Latn" , __snake_case :Optional[List[str]] = None , __snake_case :str = "fra_Latn" , **__snake_case :List[Any] , ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =src_lang
__magic_name__ : List[Any] =tgt_lang
return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case )
def A__ ( self :str ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def A__ ( self :Optional[int] ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def A__ ( self :Tuple , __snake_case :Any ):
'''simple docstring'''
__magic_name__ : Dict =self.convert_tokens_to_ids(__snake_case )
if self.legacy_behaviour:
__magic_name__ : Any =[]
__magic_name__ : str =[self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : Optional[int] =[self.cur_lang_code]
__magic_name__ : Tuple =[self.eos_token_id]
__magic_name__ : int =self.convert_ids_to_tokens(self.prefix_tokens )
__magic_name__ : Dict =self.convert_ids_to_tokens(self.suffix_tokens )
__magic_name__ : Union[str, Any] =processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def A__ ( self :Optional[int] , __snake_case :str ):
'''simple docstring'''
__magic_name__ : Optional[Any] =self.convert_tokens_to_ids(__snake_case )
if self.legacy_behaviour:
__magic_name__ : Any =[]
__magic_name__ : Optional[Any] =[self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : List[Any] =[self.cur_lang_code]
__magic_name__ : Dict =[self.eos_token_id]
__magic_name__ : Dict =self.convert_ids_to_tokens(self.prefix_tokens )
__magic_name__ : List[str] =self.convert_ids_to_tokens(self.suffix_tokens )
__magic_name__ : Optional[Any] =processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def A__ ( self :Union[str, Any] , __snake_case :str , __snake_case :Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__snake_case ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory." )
return
__magic_name__ : str =os.path.join(
__snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ):
copyfile(self.vocab_file , __snake_case )
return (out_vocab_file,)
| 21 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =feature_size
__magic_name__ : Union[str, Any] =sampling_rate
__magic_name__ : List[Any] =padding_value
__magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" )
__magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case )
super().__init__(**__snake_case )
def A__ ( self :Any , __snake_case :Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ):
'''simple docstring'''
if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
__magic_name__ : Union[str, Any] ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f" to this method that includes {self.model_input_names[0]}, but you provided"
f" {list(processed_features.keys() )}" )
__magic_name__ : int =processed_features[self.model_input_names[0]]
__magic_name__ : Union[str, Any] =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__snake_case ) == 0:
if return_attention_mask:
__magic_name__ : List[str] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
__magic_name__ : Optional[int] =required_input[0]
if isinstance(__snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
__magic_name__ : Optional[Any] =0
while len(required_input[index] ) == 0:
index += 1
if index < len(__snake_case ):
__magic_name__ : List[str] =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__snake_case ):
__magic_name__ : int ="""tf"""
elif is_torch_tensor(__snake_case ):
__magic_name__ : str ="""pt"""
elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ):
__magic_name__ : List[Any] ="""np"""
else:
raise ValueError(
f"type of {first_element} unknown: {type(__snake_case )}. "
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
__magic_name__ : List[str] =to_numpy(__snake_case )
else:
__magic_name__ : str =[to_numpy(__snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
__magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case )
__magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]]
__magic_name__ : Dict =len(__snake_case )
if not all(len(__snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
__magic_name__ : Optional[int] =[]
for i in range(__snake_case ):
__magic_name__ : Any ={k: v[i] for k, v in processed_features.items()}
# truncation
__magic_name__ : List[str] =self._truncate(
__snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , )
truncated_inputs.append(__snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
__magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
__magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH
__magic_name__ : str ={}
for i in range(__snake_case ):
# padding
__magic_name__ : List[str] =self._pad(
truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
__magic_name__ : Dict =[]
if value.dtype is np.dtype(np.floataa ):
__magic_name__ : Optional[int] =value.astype(np.floataa )
batch_outputs[key].append(__snake_case )
return BatchFeature(__snake_case , tensor_type=__snake_case )
def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
__magic_name__ : Dict =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
__magic_name__ : Any =len(__snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
__magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
__magic_name__ : List[Any] =max_length - len(__snake_case )
if self.padding_side == "right":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (0, difference) )
__magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
__magic_name__ : str =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (difference, 0) )
__magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
__magic_name__ : List[Any] =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
__magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : Any =len(__snake_case ) > max_length
if needs_to_be_truncated:
__magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
__magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length]
return processed_features
def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ):
'''simple docstring'''
if padding is not False:
if padding is True:
__magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__snake_case , __snake_case ):
__magic_name__ : Optional[int] =PaddingStrategy(__snake_case )
elif isinstance(__snake_case , __snake_case ):
__magic_name__ : Any =padding
else:
__magic_name__ : Any =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 21 | 1 |
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class __A :
def __init__( self :Tuple , __snake_case :int , __snake_case :int=14 , __snake_case :Tuple=7 , __snake_case :Any=True , __snake_case :Dict=True , __snake_case :Any=True , __snake_case :Optional[Any]=True , __snake_case :Optional[Any]=True , __snake_case :Dict=99 , __snake_case :Any=32 , __snake_case :int=5 , __snake_case :Any=4 , __snake_case :str=37 , __snake_case :List[Any]="gelu" , __snake_case :str=0.1 , __snake_case :str=0.1 , __snake_case :str=5_12 , __snake_case :int=16 , __snake_case :Optional[Any]=2 , __snake_case :Dict=0.02 , __snake_case :Tuple=3 , __snake_case :List[str]=4 , __snake_case :Any=None , ):
'''simple docstring'''
__magic_name__ : int =parent
__magic_name__ : str =batch_size
__magic_name__ : str =seq_length
__magic_name__ : Tuple =is_training
__magic_name__ : List[str] =use_token_type_ids
__magic_name__ : Tuple =use_input_mask
__magic_name__ : Any =use_labels
__magic_name__ : str =use_mc_token_ids
__magic_name__ : List[Any] =vocab_size
__magic_name__ : List[str] =hidden_size
__magic_name__ : Tuple =num_hidden_layers
__magic_name__ : Union[str, Any] =num_attention_heads
__magic_name__ : Tuple =intermediate_size
__magic_name__ : Optional[int] =hidden_act
__magic_name__ : Tuple =hidden_dropout_prob
__magic_name__ : str =attention_probs_dropout_prob
__magic_name__ : Dict =max_position_embeddings
__magic_name__ : Dict =type_vocab_size
__magic_name__ : Any =type_sequence_label_size
__magic_name__ : Optional[Any] =initializer_range
__magic_name__ : Optional[Any] =num_labels
__magic_name__ : Any =num_choices
__magic_name__ : List[str] =scope
__magic_name__ : Optional[Any] =self.vocab_size - 1
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Any =None
if self.use_input_mask:
__magic_name__ : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : Any =None
if self.use_token_type_ids:
__magic_name__ : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : Tuple =None
if self.use_mc_token_ids:
__magic_name__ : Tuple =ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
__magic_name__ : Optional[Any] =None
__magic_name__ : str =None
__magic_name__ : List[str] =None
if self.use_labels:
__magic_name__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : List[Any] =ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Optional[int] =self.get_config()
__magic_name__ : List[Any] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def A__ ( self :List[Any] ):
'''simple docstring'''
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def A__ ( self :int , __snake_case :Dict , __snake_case :Optional[Any] , __snake_case :Tuple , __snake_case :Dict , __snake_case :Dict , *__snake_case :str ):
'''simple docstring'''
__magic_name__ : Optional[int] =CTRLModel(config=__snake_case )
model.to(__snake_case )
model.eval()
model(__snake_case , token_type_ids=__snake_case , head_mask=__snake_case )
model(__snake_case , token_type_ids=__snake_case )
__magic_name__ : int =model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def A__ ( self :Dict , __snake_case :Tuple , __snake_case :str , __snake_case :Dict , __snake_case :Tuple , __snake_case :List[Any] , *__snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : str =CTRLLMHeadModel(__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : Any =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : Tuple =self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : Any =config_and_inputs
__magic_name__ : str ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask}
return config, inputs_dict
def A__ ( self :Union[str, Any] , __snake_case :Union[str, Any] , __snake_case :str , __snake_case :Optional[int] , __snake_case :str , *__snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple =self.num_labels
__magic_name__ : str =CTRLForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Any =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
UpperCamelCase = (CTRLLMHeadModel,) if is_torch_available() else ()
UpperCamelCase = (
{
"""feature-extraction""": CTRLModel,
"""text-classification""": CTRLForSequenceClassification,
"""text-generation""": CTRLLMHeadModel,
"""zero-shot""": CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :Any , __snake_case :List[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :List[str] , __snake_case :int ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Any =CTRLModelTester(self )
__magic_name__ : Optional[int] =ConfigTester(self , config_class=__snake_case , n_embd=37 )
def A__ ( self :Any ):
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Any ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__snake_case )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A__ ( self :Tuple ):
'''simple docstring'''
pass
@slow
def A__ ( self :Any ):
'''simple docstring'''
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Tuple =CTRLModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def A__ ( self :List[Any] ):
'''simple docstring'''
pass
@require_torch
class __A ( unittest.TestCase ):
def A__ ( self :Dict ):
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =CTRLLMHeadModel.from_pretrained("""ctrl""" )
model.to(__snake_case )
__magic_name__ : Optional[Any] =torch.tensor(
[[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=__snake_case ) # Legal the president is
__magic_name__ : Optional[int] =[
1_18_59,
0,
16_11,
8,
5,
1_50,
2_64_49,
2,
19,
3_48,
4_69,
3,
25_95,
48,
2_07_40,
24_65_33,
24_65_33,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
__magic_name__ : str =model.generate(__snake_case , do_sample=__snake_case )
self.assertListEqual(output_ids[0].tolist() , __snake_case )
| 21 |
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class __A ( nn.Module ):
def __init__( self :List[Any] ):
'''simple docstring'''
super().__init__()
__magic_name__ : Tuple =nn.Linear(3 , 4 )
__magic_name__ : Union[str, Any] =nn.BatchNormad(4 )
__magic_name__ : List[str] =nn.Linear(4 , 5 )
def A__ ( self :Dict , __snake_case :Tuple ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) )
class __A ( UpperCamelCase__ ):
def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ):
'''simple docstring'''
return (args[0] + 1,) + args[1:], kwargs
class __A ( UpperCamelCase__ ):
def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ):
'''simple docstring'''
return output + 1
class __A ( unittest.TestCase ):
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : Tuple =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
self.assertEqual(test_model._hf_hook , __snake_case )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : List[str] =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
add_hook_to_module(__snake_case , __snake_case , append=__snake_case )
self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
__magic_name__ : Any =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(x + 1 )
__magic_name__ : Optional[Any] =test_model(x + 2 )
__magic_name__ : int =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : int =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : str =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : List[str] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
assert torch.allclose(__snake_case , __snake_case , atol=1E-5 )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
__magic_name__ : Dict =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(__snake_case )
__magic_name__ : Dict =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Optional[int] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
assert torch.allclose(__snake_case , output + 2 , atol=1E-5 )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : Tuple =ModelForTest()
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Dict =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 ) )
self.assertTrue(outputa.requires_grad )
__magic_name__ : Any =True
__magic_name__ : Any =test_model(__snake_case )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[Any] =model(__snake_case )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) )
__magic_name__ : int =torch.randn(2 , 3 ).to(0 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , torch.device(0 ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : Union[str, Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
__magic_name__ : Tuple ={
"""execution_device""": 0 if torch.cuda.is_available() else """cpu""",
"""offload""": True,
"""offload_buffers""": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Tuple =torch.randn(2 , 3 )
__magic_name__ : int =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : str =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Optional[int] =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Dict =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Any =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
| 21 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
UpperCAmelCase_ : str = logging.get_logger(__name__)
UpperCAmelCase_ : Tuple = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
UpperCAmelCase_ : str = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
UpperCAmelCase_ : Union[str, Any] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
class __A ( UpperCamelCase__ ):
UpperCamelCase = """whisper"""
UpperCamelCase = ["""past_key_values"""]
UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self :Any , __snake_case :Any=5_18_65 , __snake_case :Optional[int]=80 , __snake_case :str=6 , __snake_case :List[str]=4 , __snake_case :List[Any]=6 , __snake_case :Any=4 , __snake_case :Union[str, Any]=15_36 , __snake_case :List[Any]=15_36 , __snake_case :str=0.0 , __snake_case :Optional[Any]=0.0 , __snake_case :int=5_02_57 , __snake_case :Optional[int]=True , __snake_case :List[str]=True , __snake_case :str="gelu" , __snake_case :Optional[Any]=2_56 , __snake_case :Union[str, Any]=0.0 , __snake_case :Any=0.0 , __snake_case :Optional[int]=0.0 , __snake_case :str=0.02 , __snake_case :Union[str, Any]=False , __snake_case :int=15_00 , __snake_case :List[Any]=4_48 , __snake_case :Optional[int]=5_02_56 , __snake_case :Tuple=5_02_56 , __snake_case :Any=5_02_56 , __snake_case :Dict=None , __snake_case :int=[2_20, 5_02_56] , __snake_case :List[Any]=False , __snake_case :Optional[Any]=2_56 , __snake_case :Tuple=False , __snake_case :int=0.05 , __snake_case :List[Any]=10 , __snake_case :Optional[int]=2 , __snake_case :Tuple=0.0 , __snake_case :Union[str, Any]=10 , __snake_case :Dict=0 , __snake_case :List[Any]=7 , **__snake_case :List[str] , ):
'''simple docstring'''
__magic_name__ : Any =vocab_size
__magic_name__ : Optional[Any] =num_mel_bins
__magic_name__ : Union[str, Any] =d_model
__magic_name__ : List[Any] =encoder_layers
__magic_name__ : str =encoder_attention_heads
__magic_name__ : List[str] =decoder_layers
__magic_name__ : List[str] =decoder_attention_heads
__magic_name__ : int =decoder_ffn_dim
__magic_name__ : Tuple =encoder_ffn_dim
__magic_name__ : Tuple =dropout
__magic_name__ : List[Any] =attention_dropout
__magic_name__ : Any =activation_dropout
__magic_name__ : List[Any] =activation_function
__magic_name__ : Union[str, Any] =init_std
__magic_name__ : Tuple =encoder_layerdrop
__magic_name__ : Optional[Any] =decoder_layerdrop
__magic_name__ : List[str] =use_cache
__magic_name__ : Any =encoder_layers
__magic_name__ : str =scale_embedding # scale factor will be sqrt(d_model) if True
__magic_name__ : Optional[int] =max_source_positions
__magic_name__ : str =max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__magic_name__ : Any =classifier_proj_size
__magic_name__ : Tuple =use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__magic_name__ : Any =apply_spec_augment
__magic_name__ : Optional[Any] =mask_time_prob
__magic_name__ : str =mask_time_length
__magic_name__ : List[str] =mask_time_min_masks
__magic_name__ : List[str] =mask_feature_prob
__magic_name__ : Dict =mask_feature_length
__magic_name__ : Dict =mask_feature_min_masks
__magic_name__ : Tuple =median_filter_width
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , suppress_tokens=__snake_case , begin_suppress_tokens=__snake_case , **__snake_case , )
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : int =OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
__magic_name__ : int ={0: """batch"""}
else:
__magic_name__ : Union[str, Any] ={0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(__snake_case , direction="""inputs""" )
return common_inputs
def A__ ( self :List[str] , __snake_case :Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional["TensorType"] = None , __snake_case :int = 2_20_50 , __snake_case :float = 5.0 , __snake_case :int = 2_20 , ):
'''simple docstring'''
__magic_name__ : List[Any] =OrderedDict()
__magic_name__ : Optional[int] =OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=__snake_case , framework=__snake_case , sampling_rate=__snake_case , time_duration=__snake_case , frequency=__snake_case , )
__magic_name__ : List[Any] =encoder_inputs["""input_features"""].shape[2]
__magic_name__ : Tuple =encoder_sequence_length // 2 if self.use_past else seq_length
__magic_name__ : Union[str, Any] =super().generate_dummy_inputs(
preprocessor.tokenizer , __snake_case , __snake_case , __snake_case , __snake_case )
__magic_name__ : Optional[Any] =encoder_inputs.pop("""input_features""" )
__magic_name__ : Dict =decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
__magic_name__ : Optional[int] =decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 1E-3
| 21 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCamelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCamelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return 1_00
@property
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : str =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__magic_name__ : Tuple =MultilingualCLIP(__snake_case )
__magic_name__ : Optional[int] =text_encoder.eval()
return text_encoder
@property
def A__ ( self :Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[Any] ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case )
return model
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_text_encoder
__magic_name__ : Optional[Any] =self.dummy_tokenizer
__magic_name__ : Optional[Any] =self.dummy_unet
__magic_name__ : Tuple =self.dummy_movq
__magic_name__ : List[str] =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
__magic_name__ : str ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case )
# create init_image
__magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
__magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa )
__magic_name__ : Any =0
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Dict =torch.manual_seed(__snake_case )
else:
__magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : List[Any] ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple ="""cpu"""
__magic_name__ : List[Any] =self.get_dummy_components()
__magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case )
__magic_name__ : Tuple =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : List[Any] =output.images
__magic_name__ : Any =pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
__magic_name__ : int =image[0, -3:, -3:, -1]
__magic_name__ : str =image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
__magic_name__ : Optional[Any] =np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A__ ( self :Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
__magic_name__ : int =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa )
__magic_name__ : Any =0
__magic_name__ : int ="""a hat"""
__magic_name__ : int =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
__magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
__magic_name__ : int =pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ , __magic_name__ : Dict =pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Optional[Any] =pipeline(
__snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
__magic_name__ : Optional[int] =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 | 1 |
class __A :
def __init__( self :List[str] , __snake_case :str , __snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : int =name
__magic_name__ : Optional[int] =val
def __str__( self :Any ):
'''simple docstring'''
return f"{self.__class__.__name__}({self.name}, {self.val})"
def __lt__( self :List[Any] , __snake_case :Any ):
'''simple docstring'''
return self.val < other.val
class __A :
def __init__( self :List[str] , __snake_case :int ):
'''simple docstring'''
__magic_name__ : Optional[Any] ={}
__magic_name__ : Optional[int] ={}
__magic_name__ : Union[str, Any] =self.build_heap(__snake_case )
def __getitem__( self :Union[str, Any] , __snake_case :int ):
'''simple docstring'''
return self.get_value(__snake_case )
def A__ ( self :Dict , __snake_case :List[str] ):
'''simple docstring'''
return (idx - 1) // 2
def A__ ( self :Any , __snake_case :Dict ):
'''simple docstring'''
return idx * 2 + 1
def A__ ( self :int , __snake_case :Dict ):
'''simple docstring'''
return idx * 2 + 2
def A__ ( self :str , __snake_case :Optional[Any] ):
'''simple docstring'''
return self.heap_dict[key]
def A__ ( self :Any , __snake_case :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : Optional[int] =len(__snake_case ) - 1
__magic_name__ : List[Any] =self.get_parent_idx(__snake_case )
for idx, i in enumerate(__snake_case ):
__magic_name__ : Dict =idx
__magic_name__ : str =i.val
for i in range(__snake_case , -1 , -1 ):
self.sift_down(__snake_case , __snake_case )
return array
def A__ ( self :Dict , __snake_case :Optional[Any] , __snake_case :Optional[Any] ):
'''simple docstring'''
while True:
__magic_name__ : int =self.get_left_child_idx(__snake_case ) # noqa: E741
__magic_name__ : List[str] =self.get_right_child_idx(__snake_case )
__magic_name__ : Tuple =idx
if l < len(__snake_case ) and array[l] < array[idx]:
__magic_name__ : Dict =l
if r < len(__snake_case ) and array[r] < array[smallest]:
__magic_name__ : List[str] =r
if smallest != idx:
__magic_name__ , __magic_name__ : int =array[smallest], array[idx]
(
(
__magic_name__
) , (
__magic_name__
) ,
) : int =(
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
__magic_name__ : Any =smallest
else:
break
def A__ ( self :int , __snake_case :Tuple ):
'''simple docstring'''
__magic_name__ : Optional[int] =self.get_parent_idx(__snake_case )
while p >= 0 and self.heap[p] > self.heap[idx]:
__magic_name__ , __magic_name__ : str =self.heap[idx], self.heap[p]
__magic_name__ , __magic_name__ : Dict =(
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
__magic_name__ : Union[str, Any] =p
__magic_name__ : Tuple =self.get_parent_idx(__snake_case )
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.heap[0]
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[Any] =self.heap[-1], self.heap[0]
__magic_name__ , __magic_name__ : Optional[Any] =(
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
__magic_name__ : Tuple =self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def A__ ( self :List[Any] , __snake_case :Any ):
'''simple docstring'''
self.heap.append(__snake_case )
__magic_name__ : Dict =len(self.heap ) - 1
__magic_name__ : List[Any] =node.val
self.sift_up(len(self.heap ) - 1 )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return len(self.heap ) == 0
def A__ ( self :int , __snake_case :List[Any] , __snake_case :Tuple ):
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
__magic_name__ : Dict =new_value
__magic_name__ : List[str] =new_value
self.sift_up(self.idx_of_element[node] )
UpperCAmelCase_ : List[str] = Node("R", -1)
UpperCAmelCase_ : Optional[Any] = Node("B", 6)
UpperCAmelCase_ : Optional[int] = Node("A", 3)
UpperCAmelCase_ : Optional[Any] = Node("X", 1)
UpperCAmelCase_ : List[Any] = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
UpperCAmelCase_ : Any = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __A :
def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ):
'''simple docstring'''
__magic_name__ : Optional[int] =parent
__magic_name__ : List[Any] =batch_size
__magic_name__ : List[str] =is_training
__magic_name__ : List[str] =use_auxiliary_loss
__magic_name__ : Union[str, Any] =num_queries
__magic_name__ : str =num_channels
__magic_name__ : Union[str, Any] =min_size
__magic_name__ : Union[str, Any] =max_size
__magic_name__ : Optional[int] =num_labels
__magic_name__ : Tuple =hidden_dim
__magic_name__ : Any =hidden_dim
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__snake_case )
__magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case )
__magic_name__ : List[str] =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5
).float()
__magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long()
__magic_name__ : str =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Dict =MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__magic_name__ : str =self.num_queries
__magic_name__ : Dict =self.num_labels
__magic_name__ : int =[1, 1, 1, 1]
__magic_name__ : List[str] =self.num_channels
__magic_name__ : str =64
__magic_name__ : List[str] =1_28
__magic_name__ : Optional[Any] =self.hidden_dim
__magic_name__ : Tuple =self.hidden_dim
__magic_name__ : Optional[int] =self.hidden_dim
return config
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs()
__magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ):
'''simple docstring'''
__magic_name__ : int =output.encoder_hidden_states
__magic_name__ : List[str] =output.pixel_decoder_hidden_states
__magic_name__ : int =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , config.decoder_layers )
def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ):
'''simple docstring'''
with torch.no_grad():
__magic_name__ : List[str] =MaskaFormerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__snake_case , __snake_case )
def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
def comm_check_on_output(__snake_case :List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : List[str] =model(__snake_case )
comm_check_on_output(__snake_case )
__magic_name__ : Any =model(
pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
comm_check_on_output(__snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Any =MaskaFormerModelTester(self )
__magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def A__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def A__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def A__ ( self :int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def A__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple =model_class(__snake_case )
__magic_name__ : Optional[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple =[*signature.parameters.keys()]
__magic_name__ : Optional[Any] =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@slow
def A__ ( self :Tuple ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =(self.model_tester.min_size,) * 2
__magic_name__ : Union[str, Any] ={
"""pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ),
"""class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(),
}
__magic_name__ : Optional[Any] =self.model_tester.get_config()
__magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case )
__magic_name__ : Any =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case )
__magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case )
self.assertTrue(outputs.attentions is not None )
def A__ ( self :int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__magic_name__ : List[Any] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Dict =model_class(__snake_case )
model.to(__snake_case )
model.train()
__magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss
loss.backward()
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : List[str] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Tuple =True
__magic_name__ : Optional[int] =True
__magic_name__ : int =model_class(__snake_case ).to(__snake_case )
model.train()
__magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
__magic_name__ : Optional[int] =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__magic_name__ : Optional[int] =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCAmelCase_ : Dict = 1e-4
def lowerCAmelCase_ ( ):
__magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __A ( unittest.TestCase ):
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case )
__magic_name__ : int =self.default_image_processor
__magic_name__ : List[Any] =prepare_img()
__magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Dict =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : List[str] =model(**__snake_case )
__magic_name__ : Any =torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Dict =torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Any =torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Optional[int] =self.default_image_processor
__magic_name__ : Tuple =prepare_img()
__magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : str =model(**__snake_case )
# masks_queries_logits
__magic_name__ : List[Any] =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__magic_name__ : List[Any] =[
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
__magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
__magic_name__ : Any =outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__magic_name__ : int =torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Any =self.default_image_processor
__magic_name__ : Union[str, Any] =image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
__magic_name__ : str =inputs["""pixel_values"""].to(__snake_case )
__magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]]
__magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]]
with torch.no_grad():
__magic_name__ : Dict =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
| 21 | 1 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ : Tuple =nn.functional.normalize(lowerCamelCase )
__magic_name__ : Optional[int] =nn.functional.normalize(lowerCamelCase )
return torch.mm(lowerCamelCase , normalized_text_embeds.t() )
class __A ( UpperCamelCase__ ):
UpperCamelCase = CLIPConfig
UpperCamelCase = ["""CLIPEncoderLayer"""]
def __init__( self :Any , __snake_case :CLIPConfig ):
'''simple docstring'''
super().__init__(__snake_case )
__magic_name__ : Optional[Any] =CLIPVisionModel(config.vision_config )
__magic_name__ : Any =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__snake_case )
__magic_name__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__snake_case )
__magic_name__ : int =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__snake_case )
__magic_name__ : List[str] =nn.Parameter(torch.ones(17 ) , requires_grad=__snake_case )
__magic_name__ : Tuple =nn.Parameter(torch.ones(3 ) , requires_grad=__snake_case )
@torch.no_grad()
def A__ ( self :Optional[Any] , __snake_case :List[Any] , __snake_case :str ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =self.vision_model(__snake_case )[1] # pooled_output
__magic_name__ : Tuple =self.visual_projection(__snake_case )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__magic_name__ : List[Any] =cosine_distance(__snake_case , self.special_care_embeds ).cpu().float().numpy()
__magic_name__ : int =cosine_distance(__snake_case , self.concept_embeds ).cpu().float().numpy()
__magic_name__ : Dict =[]
__magic_name__ : Any =image_embeds.shape[0]
for i in range(__snake_case ):
__magic_name__ : Optional[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
__magic_name__ : Dict =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
__magic_name__ : Optional[Any] =special_cos_dist[i][concept_idx]
__magic_name__ : Any =self.special_care_embeds_weights[concept_idx].item()
__magic_name__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
__magic_name__ : int =0.01
for concept_idx in range(len(cos_dist[0] ) ):
__magic_name__ : Any =cos_dist[i][concept_idx]
__magic_name__ : Union[str, Any] =self.concept_embeds_weights[concept_idx].item()
__magic_name__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(__snake_case )
result.append(__snake_case )
__magic_name__ : Optional[int] =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def A__ ( self :Tuple , __snake_case :torch.FloatTensor , __snake_case :torch.FloatTensor ):
'''simple docstring'''
__magic_name__ : Dict =self.vision_model(__snake_case )[1] # pooled_output
__magic_name__ : Union[str, Any] =self.visual_projection(__snake_case )
__magic_name__ : Optional[Any] =cosine_distance(__snake_case , self.special_care_embeds )
__magic_name__ : str =cosine_distance(__snake_case , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
__magic_name__ : str =0.0
__magic_name__ : Union[str, Any] =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
__magic_name__ : Tuple =torch.any(special_scores > 0 , dim=1 )
__magic_name__ : List[Any] =special_care * 0.01
__magic_name__ : int =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
__magic_name__ : Optional[int] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
__magic_name__ : int =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 21 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """segformer"""
def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(**__snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , )
__magic_name__ : Dict =num_channels
__magic_name__ : str =num_encoder_blocks
__magic_name__ : List[Any] =depths
__magic_name__ : Optional[Any] =sr_ratios
__magic_name__ : List[str] =hidden_sizes
__magic_name__ : List[str] =patch_sizes
__magic_name__ : Any =strides
__magic_name__ : Optional[Any] =mlp_ratios
__magic_name__ : str =num_attention_heads
__magic_name__ : int =hidden_act
__magic_name__ : List[Any] =hidden_dropout_prob
__magic_name__ : Optional[Any] =attention_probs_dropout_prob
__magic_name__ : Optional[Any] =classifier_dropout_prob
__magic_name__ : List[str] =initializer_range
__magic_name__ : List[str] =drop_path_rate
__magic_name__ : List[Any] =layer_norm_eps
__magic_name__ : List[str] =decoder_hidden_size
__magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case )
__magic_name__ : Dict =semantic_loss_ignore_index
class __A ( UpperCamelCase__ ):
UpperCamelCase = version.parse("""1.11""" )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A__ ( self :Any ):
'''simple docstring'''
return 1E-4
@property
def A__ ( self :int ):
'''simple docstring'''
return 12
| 21 | 1 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class __A :
def __init__( self :List[str] , __snake_case :Optional[int] , __snake_case :str=13 , __snake_case :int=7 , __snake_case :List[str]=True , __snake_case :Tuple=True , __snake_case :List[str]=True , __snake_case :Optional[int]=True , __snake_case :Tuple=99 , __snake_case :Tuple=32 , __snake_case :Optional[int]=2 , __snake_case :str=4 , __snake_case :List[Any]=37 , __snake_case :List[Any]="gelu" , __snake_case :str=0.1 , __snake_case :List[str]=0.1 , __snake_case :Tuple=5_12 , __snake_case :List[Any]=16 , __snake_case :Union[str, Any]=2 , __snake_case :Tuple=0.02 , __snake_case :int=False , __snake_case :Optional[Any]=True , __snake_case :Union[str, Any]="None" , __snake_case :str=3 , __snake_case :Any=4 , __snake_case :Dict=None , ):
'''simple docstring'''
__magic_name__ : Optional[int] =parent
__magic_name__ : int =batch_size
__magic_name__ : str =seq_length
__magic_name__ : Optional[int] =is_training
__magic_name__ : Dict =use_input_mask
__magic_name__ : Any =use_token_type_ids
__magic_name__ : List[str] =use_labels
__magic_name__ : List[str] =vocab_size
__magic_name__ : Union[str, Any] =hidden_size
__magic_name__ : str =num_hidden_layers
__magic_name__ : Union[str, Any] =num_attention_heads
__magic_name__ : int =intermediate_size
__magic_name__ : List[Any] =hidden_act
__magic_name__ : int =hidden_dropout_prob
__magic_name__ : Dict =attention_probs_dropout_prob
__magic_name__ : int =max_position_embeddings
__magic_name__ : str =type_vocab_size
__magic_name__ : List[Any] =type_sequence_label_size
__magic_name__ : Union[str, Any] =initializer_range
__magic_name__ : int =num_labels
__magic_name__ : str =num_choices
__magic_name__ : int =relative_attention
__magic_name__ : int =position_biased_input
__magic_name__ : Union[str, Any] =pos_att_type
__magic_name__ : List[str] =scope
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Any =None
if self.use_input_mask:
__magic_name__ : str =random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : Union[str, Any] =None
if self.use_token_type_ids:
__magic_name__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : str =None
__magic_name__ : Optional[int] =None
__magic_name__ : Tuple =None
if self.use_labels:
__magic_name__ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : str =DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__snake_case , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self :int , __snake_case :Any , __snake_case :Union[str, Any] , __snake_case :List[Any] , __snake_case :Tuple , __snake_case :Union[str, Any] , __snake_case :List[str] , __snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =TFDebertaVaModel(config=__snake_case )
__magic_name__ : Tuple ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__magic_name__ : List[str] =[input_ids, input_mask]
__magic_name__ : List[str] =model(__snake_case )
__magic_name__ : Union[str, Any] =model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self :List[Any] , __snake_case :List[str] , __snake_case :List[str] , __snake_case :Union[str, Any] , __snake_case :List[str] , __snake_case :Optional[Any] , __snake_case :Optional[Any] , __snake_case :Tuple ):
'''simple docstring'''
__magic_name__ : List[str] =TFDebertaVaForMaskedLM(config=__snake_case )
__magic_name__ : Optional[int] ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : int =model(__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self :Any , __snake_case :Tuple , __snake_case :List[str] , __snake_case :int , __snake_case :Any , __snake_case :List[str] , __snake_case :int , __snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =self.num_labels
__magic_name__ : Union[str, Any] =TFDebertaVaForSequenceClassification(config=__snake_case )
__magic_name__ : Tuple ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : int =model(__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self :Dict , __snake_case :List[Any] , __snake_case :Optional[int] , __snake_case :str , __snake_case :Dict , __snake_case :int , __snake_case :str , __snake_case :Any ):
'''simple docstring'''
__magic_name__ : Dict =self.num_labels
__magic_name__ : Optional[Any] =TFDebertaVaForTokenClassification(config=__snake_case )
__magic_name__ : Optional[Any] ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : int =model(__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self :List[str] , __snake_case :str , __snake_case :Dict , __snake_case :int , __snake_case :Dict , __snake_case :Dict , __snake_case :Optional[int] , __snake_case :str ):
'''simple docstring'''
__magic_name__ : List[str] =TFDebertaVaForQuestionAnswering(config=__snake_case )
__magic_name__ : str ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : List[Any] =model(__snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : Optional[int] =self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : Union[str, Any] =config_and_inputs
__magic_name__ : List[Any] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCamelCase = (
{
"""feature-extraction""": TFDebertaVaModel,
"""fill-mask""": TFDebertaVaForMaskedLM,
"""question-answering""": TFDebertaVaForQuestionAnswering,
"""text-classification""": TFDebertaVaForSequenceClassification,
"""token-classification""": TFDebertaVaForTokenClassification,
"""zero-shot""": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : List[str] =TFDebertaVaModelTester(self )
__magic_name__ : Any =ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__snake_case )
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__snake_case )
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__snake_case )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__snake_case )
@slow
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Any =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(__snake_case )
@require_tf
class __A ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def A__ ( self :str ):
'''simple docstring'''
pass
@slow
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : str =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
__magic_name__ : str =tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__magic_name__ : List[str] =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__magic_name__ : Tuple =model(__snake_case , attention_mask=__snake_case )[0]
__magic_name__ : Any =tf.constant(
[[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , __snake_case , atol=1E-4 )
| 21 |
import heapq
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
__magic_name__ : Tuple =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0]
chosen_vertices.add(lowerCamelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__magic_name__ : Tuple =elem[1][1].index(lowerCamelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase = 1000 ):
__magic_name__ : Optional[int] =2**power
__magic_name__ : int =0
while n:
__magic_name__ , __magic_name__ : List[str] =r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 21 |
UpperCAmelCase_ : int = range(2, 20 + 1)
UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)]
UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) )
__magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) )
__magic_name__ , __magic_name__ : Tuple =0, 0
__magic_name__ : Optional[Any] =n - i
__magic_name__ : Union[str, Any] =memo.get(lowerCamelCase )
if sub_memo is not None:
__magic_name__ : int =sub_memo.get(lowerCamelCase )
if jumps is not None and len(lowerCamelCase ) > 0:
# find and make the largest jump without going over
__magic_name__ : Dict =-1
for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__magic_name__ : Optional[Any] =_k
break
if max_jump >= 0:
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump]
# since the difference between jumps is cached, add c
__magic_name__ : Tuple =diff + c
for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ):
__magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 )
if new_c > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
__magic_name__ : str =[]
else:
__magic_name__ : List[str] ={c: []}
__magic_name__ : List[str] =sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
__magic_name__ : Tuple =sub_memo[c]
# keep jumps sorted by # of terms skipped
__magic_name__ : List[Any] =0
while j < len(lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if i >= n:
return 0, i
if k > len(lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__magic_name__ : Tuple =i
__magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0
for j in range(len(lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__magic_name__ : Optional[Any] =ds_c + ds_b
diff += addend
__magic_name__ : str =0
for j in range(lowerCamelCase ):
__magic_name__ : int =a_i[j] + addend
__magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return diff, i - start_i
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
for j in range(lowerCamelCase , len(lowerCamelCase ) ):
__magic_name__ : Tuple =digits[j] + addend
if s >= 10:
__magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 )
__magic_name__ : int =addend // 10 + quotient
else:
__magic_name__ : Dict =s
__magic_name__ : Any =addend // 10
if addend == 0:
break
while addend > 0:
__magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 )
digits.append(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase = 10**15 ):
__magic_name__ : List[str] =[1]
__magic_name__ : str =1
__magic_name__ : str =0
while True:
__magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__magic_name__ : int =0
for j in range(len(lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 | 1 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __A ( UpperCamelCase__ ):
def __init__( self :Dict , __snake_case :NestedDataStructureLike[PathLike] , __snake_case :Optional[NamedSplit] = None , __snake_case :Optional[Features] = None , __snake_case :str = None , __snake_case :bool = False , __snake_case :bool = False , __snake_case :Optional[int] = None , **__snake_case :Optional[Any] , ):
'''simple docstring'''
super().__init__(
__snake_case , split=__snake_case , features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , )
__magic_name__ : str =path_or_paths if isinstance(__snake_case , __snake_case ) else {self.split: path_or_paths}
__magic_name__ : Union[str, Any] =Text(
cache_dir=__snake_case , data_files=__snake_case , features=__snake_case , **__snake_case , )
def A__ ( self :str ):
'''simple docstring'''
if self.streaming:
__magic_name__ : Tuple =self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__magic_name__ : List[Any] =None
__magic_name__ : int =None
__magic_name__ : Optional[Any] =None
__magic_name__ : Optional[int] =None
self.builder.download_and_prepare(
download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , )
__magic_name__ : Dict =self.builder.as_dataset(
split=self.split , verification_mode=__snake_case , in_memory=self.keep_in_memory )
return dataset
| 21 |
from typing import List
from .keymap import KEYMAP, get_character
def lowerCAmelCase_ ( lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] )
handle += [key]
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
def lowerCAmelCase_ ( *lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] )
handle += keys
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
class __A ( UpperCamelCase__ ):
def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case )
if not hasattr(__snake_case , """key_handler""" ):
setattr(__snake_case , """key_handler""" , {} )
setattr(__snake_case , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__magic_name__ : int =getattr(__snake_case , """handle_key""" , [] )
for key in handled_keys:
__magic_name__ : List[str] =value
return new_cls
@staticmethod
def A__ ( cls :Optional[int] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =get_character()
if char != KEYMAP["undefined"]:
__magic_name__ : Optional[int] =ord(__snake_case )
__magic_name__ : int =cls.key_handler.get(__snake_case )
if handler:
__magic_name__ : Dict =char
return handler(cls )
else:
return None
def lowerCAmelCase_ ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 21 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
UpperCamelCase = ["""pixel_values"""]
def __init__( self :Union[str, Any] , __snake_case :bool = True , __snake_case :Dict[str, int] = None , __snake_case :float = None , __snake_case :PILImageResampling = PILImageResampling.BILINEAR , __snake_case :bool = True , __snake_case :Union[int, float] = 1 / 2_55 , __snake_case :bool = True , __snake_case :Optional[Union[float, List[float]]] = None , __snake_case :Optional[Union[float, List[float]]] = None , **__snake_case :str , ):
'''simple docstring'''
super().__init__(**__snake_case )
__magic_name__ : int =size if size is not None else {"""shortest_edge""": 3_84}
__magic_name__ : str =get_size_dict(__snake_case , default_to_square=__snake_case )
__magic_name__ : Optional[int] =do_resize
__magic_name__ : str =size
# Default value set here for backwards compatibility where the value in config is None
__magic_name__ : str =crop_pct if crop_pct is not None else 2_24 / 2_56
__magic_name__ : List[str] =resample
__magic_name__ : Any =do_rescale
__magic_name__ : Optional[int] =rescale_factor
__magic_name__ : Tuple =do_normalize
__magic_name__ : int =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ : Optional[int] =image_std if image_std is not None else IMAGENET_STANDARD_STD
def A__ ( self :Optional[Any] , __snake_case :np.ndarray , __snake_case :Dict[str, int] , __snake_case :float , __snake_case :PILImageResampling = PILImageResampling.BICUBIC , __snake_case :Optional[Union[str, ChannelDimension]] = None , **__snake_case :int , ):
'''simple docstring'''
__magic_name__ : Tuple =get_size_dict(__snake_case , default_to_square=__snake_case )
if "shortest_edge" not in size:
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" )
__magic_name__ : Dict =size["""shortest_edge"""]
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__magic_name__ : Optional[int] =int(shortest_edge / crop_pct )
__magic_name__ : str =get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case )
__magic_name__ : int =resize(image=__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=__snake_case , size=(shortest_edge, shortest_edge) , data_format=__snake_case , **__snake_case )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
__snake_case , size=(shortest_edge, shortest_edge) , resample=__snake_case , data_format=__snake_case , **__snake_case )
def A__ ( self :int , __snake_case :np.ndarray , __snake_case :Union[int, float] , __snake_case :Optional[Union[str, ChannelDimension]] = None , **__snake_case :Any , ):
'''simple docstring'''
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def A__ ( self :List[str] , __snake_case :np.ndarray , __snake_case :Union[float, List[float]] , __snake_case :Union[float, List[float]] , __snake_case :Optional[Union[str, ChannelDimension]] = None , **__snake_case :List[Any] , ):
'''simple docstring'''
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def A__ ( self :List[str] , __snake_case :ImageInput , __snake_case :bool = None , __snake_case :Dict[str, int] = None , __snake_case :float = None , __snake_case :PILImageResampling = None , __snake_case :bool = None , __snake_case :float = None , __snake_case :bool = None , __snake_case :Optional[Union[float, List[float]]] = None , __snake_case :Optional[Union[float, List[float]]] = None , __snake_case :Optional[Union[str, TensorType]] = None , __snake_case :ChannelDimension = ChannelDimension.FIRST , **__snake_case :Union[str, Any] , ):
'''simple docstring'''
__magic_name__ : str =do_resize if do_resize is not None else self.do_resize
__magic_name__ : Optional[int] =crop_pct if crop_pct is not None else self.crop_pct
__magic_name__ : Optional[int] =resample if resample is not None else self.resample
__magic_name__ : Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : Optional[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : Tuple =do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ : Union[str, Any] =image_mean if image_mean is not None else self.image_mean
__magic_name__ : Optional[Any] =image_std if image_std is not None else self.image_std
__magic_name__ : Optional[int] =size if size is not None else self.size
__magic_name__ : int =get_size_dict(__snake_case , default_to_square=__snake_case )
__magic_name__ : Optional[int] =make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError("""crop_pct must be specified if size < 384.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__magic_name__ : Union[str, Any] =[to_numpy_array(__snake_case ) for image in images]
if do_resize:
__magic_name__ : List[str] =[self.resize(image=__snake_case , size=__snake_case , crop_pct=__snake_case , resample=__snake_case ) for image in images]
if do_rescale:
__magic_name__ : List[str] =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images]
if do_normalize:
__magic_name__ : Dict =[self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images]
__magic_name__ : int =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
__magic_name__ : List[str] ={"""pixel_values""": images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
| 21 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
UpperCAmelCase_ : Dict = 2048
UpperCAmelCase_ : int = 4096
UpperCAmelCase_ : Any = 42
UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false")
UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def lowerCAmelCase_ ( lowerCamelCase ):
def choose_first(lowerCamelCase , lowerCamelCase=False ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if len(lowerCamelCase ) == 1:
__magic_name__ : List[str] =answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__magic_name__ : Tuple ={k: [a[k]] for k in a}
if len(a["""start_token"""] ) > 0:
break
return a
__magic_name__ : str ={"""id""": example["""id"""]}
__magic_name__ : List[Any] =example["""annotations"""]
__magic_name__ : List[str] =annotation["""yes_no_answer"""]
if 0 in yes_no_answer or 1 in yes_no_answer:
__magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""]
__magic_name__ : List[str] =[]
__magic_name__ : Dict =[]
__magic_name__ : str =["""<cls>"""]
else:
__magic_name__ : Tuple =["""short"""]
__magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] )
if len(out["""start_token"""] ) == 0:
# answer will be long if short is not available
__magic_name__ : Tuple =["""long"""]
__magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase )
__magic_name__ : List[Any] =[]
answer.update(lowerCamelCase )
# disregard some samples
if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]:
__magic_name__ : Any =True
else:
__magic_name__ : List[str] =False
__magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""]
if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ):
raise ValueError("""Issue in ID""" , example["""id"""] )
return answer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : Any =example["""document"""]["""tokens"""]
__magic_name__ : str =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__magic_name__ : Dict =["""start_token""", """end_token"""]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__magic_name__ : Tuple =example["""document"""]["""tokens"""]
__magic_name__ : Optional[int] =answer["""start_token"""]
__magic_name__ : List[Any] =answer["""end_token"""]
__magic_name__ : Optional[Any] =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] )
# checking above code
if assertion:
__magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] )
if new != old:
print("""ID:""" , example["""id"""] )
print("""New:""" , lowerCamelCase , end="""\n""" )
print("""Old:""" , lowerCamelCase , end="""\n\n""" )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ):
# overlap will be of doc_stride - q_len
__magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase )
__magic_name__ : Union[str, Any] =out["""answer"""]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids
__magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : List[str] =[]
__magic_name__ : int =[]
__magic_name__ : List[str] =input_ids[:q_len]
__magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Tuple =input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["""category"""][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(lowerCamelCase ),
"end_token": [-100] * len(lowerCamelCase ),
"category": category,
},
}
__magic_name__ : int =out["""context"""].split()
__magic_name__ : Any =splitted_context[answer["""end_token"""]]
__magic_name__ : str =len(
tokenizer(
""" """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids )
__magic_name__ : Optional[int] =len(
tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive
__magic_name__ : Dict =answer["""start_token"""]
__magic_name__ : int =answer["""end_token"""]
if assertion:
__magic_name__ : Any =tokenizer.decode(lowerCamelCase )
if answer["span"] != new:
print("""ISSUE IN TOKENIZATION""" )
print("""OLD:""" , answer["""span"""] )
print("""NEW:""" , lowerCamelCase , end="""\n\n""" )
if len(lowerCamelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__magic_name__ : Any =input_ids[:q_len]
__magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
__magic_name__ : Any =[]
__magic_name__ : List[str] =[]
__magic_name__ : List[str] =[]
__magic_name__ : str =[] # null, yes, no, long, short
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Dict =input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__magic_name__ : List[Any] =start_token - i + q_len
__magic_name__ : Optional[Any] =end_token - i + q_len
answers_category.append(answer["""category"""][0] ) # ["short"] -> "short"
else:
__magic_name__ : Optional[Any] =-100
__magic_name__ : Optional[Any] =-100
answers_category.append("""null""" )
__magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1]
answers_start_token.append(lowerCamelCase )
answers_end_token.append(lowerCamelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("""ISSUE in strided for ID:""" , example["""id"""] )
print("""New:""" , tokenizer.decode(lowerCamelCase ) )
print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ):
__magic_name__ : List[Any] =get_strided_contexts_and_ans(
lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , )
return example
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
with jsonlines.open(lowerCamelCase , """a""" ) as writer:
for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ):
__magic_name__ : int =example["""labels"""]
for ids, start, end, cat in zip(
example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"""input_ids""": ids,
"""start_token""": start,
"""end_token""": end,
"""category""": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions")
UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"]
UpperCAmelCase_ : Optional[int] = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 21 | 1 |
import math
UpperCAmelCase_ : List[Any] = 10
UpperCAmelCase_ : Tuple = 7
UpperCAmelCase_ : Any = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase_ ( lowerCamelCase = 20 ):
__magic_name__ : Union[str, Any] =math.comb(lowerCamelCase , lowerCamelCase )
__magic_name__ : Tuple =math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase )
__magic_name__ : Any =NUM_COLOURS * (1 - missing_colour / total)
return F"{result:.9f}"
if __name__ == "__main__":
print(solution(20))
| 21 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """xlm-roberta-xl"""
def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
__magic_name__ : List[str] =vocab_size
__magic_name__ : List[str] =hidden_size
__magic_name__ : Union[str, Any] =num_hidden_layers
__magic_name__ : Any =num_attention_heads
__magic_name__ : Any =hidden_act
__magic_name__ : List[str] =intermediate_size
__magic_name__ : Any =hidden_dropout_prob
__magic_name__ : Union[str, Any] =attention_probs_dropout_prob
__magic_name__ : Any =max_position_embeddings
__magic_name__ : Any =type_vocab_size
__magic_name__ : List[str] =initializer_range
__magic_name__ : Optional[int] =layer_norm_eps
__magic_name__ : Dict =position_embedding_type
__magic_name__ : Any =use_cache
__magic_name__ : Dict =classifier_dropout
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
__magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase ):
if not numbers:
return 0
if not isinstance(lowerCamelCase , (list, tuple) ) or not all(
isinstance(lowerCamelCase , lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
__magic_name__ : List[Any] =numbers[0]
for i in range(1 , len(lowerCamelCase ) ):
# update the maximum and minimum subarray products
__magic_name__ : Dict =numbers[i]
if number < 0:
__magic_name__ , __magic_name__ : str =min_till_now, max_till_now
__magic_name__ : Union[str, Any] =max(lowerCamelCase , max_till_now * number )
__magic_name__ : Optional[Any] =min(lowerCamelCase , min_till_now * number )
# update the maximum product found till now
__magic_name__ : Union[str, Any] =max(lowerCamelCase , lowerCamelCase )
return max_prod
| 21 |
from pathlib import Path
import fire
from tqdm import tqdm
def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ):
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__magic_name__ : Dict =F"{src_lang}-{tgt_lang}"
print(F"Converting {dataset}-{pair}" )
__magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase )
if save_dir is None:
__magic_name__ : Optional[int] =F"{dataset}-{pair}"
__magic_name__ : int =Path(lowerCamelCase )
save_dir.mkdir(exist_ok=lowerCamelCase )
for split in ds.keys():
print(F"Splitting {split} with {ds[split].num_rows} records" )
# to save to val.source, val.target like summary datasets
__magic_name__ : Dict ="""val""" if split == """validation""" else split
__magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" )
__magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" )
__magic_name__ : Optional[Any] =src_path.open("""w+""" )
__magic_name__ : List[Any] =tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__magic_name__ : str =x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(F"Saved {dataset} dataset to {save_dir}" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 21 | 1 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : Dict = TypeVar("DatasetType", Dataset, IterableDataset)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "first_exhausted" , ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("""Unable to interleave an empty list of datasets.""" )
for i, dataset in enumerate(lowerCamelCase ):
if not isinstance(lowerCamelCase , (Dataset, IterableDataset) ):
if isinstance(lowerCamelCase , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
"""is an empty dataset dictionary.""" )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(lowerCamelCase )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase ).__name__}." )
if i == 0:
__magic_name__ , __magic_name__ : List[str] =(
(Dataset, IterableDataset) if isinstance(lowerCamelCase , lowerCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(lowerCamelCase , lowerCamelCase ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
lowerCamelCase , lowerCamelCase , lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , stopping_strategy=lowerCamelCase )
else:
return _interleave_iterable_datasets(
lowerCamelCase , lowerCamelCase , lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , stopping_strategy=lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , ):
if not dsets:
raise ValueError("""Unable to concatenate an empty list of datasets.""" )
for i, dataset in enumerate(lowerCamelCase ):
if not isinstance(lowerCamelCase , (Dataset, IterableDataset) ):
if isinstance(lowerCamelCase , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
"""is an empty dataset dictionary.""" )
raise ValueError(
F"Dataset at position {i} has at least one split: {list(lowerCamelCase )}\n"
F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase ) )}']" )
raise ValueError(
F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase ).__name__}." )
if i == 0:
__magic_name__ , __magic_name__ : List[Any] =(
(Dataset, IterableDataset) if isinstance(lowerCamelCase , lowerCamelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(lowerCamelCase , lowerCamelCase ):
raise ValueError(
F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , axis=lowerCamelCase )
else:
return _concatenate_iterable_datasets(lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , axis=lowerCamelCase )
| 21 |
from __future__ import annotations
from fractions import Fraction
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =[]
__magic_name__ : List[Any] =11
__magic_name__ : Tuple =int("""1""" + """0""" * digit_len )
for num in range(lowerCamelCase , lowerCamelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCamelCase , lowerCamelCase ):
solutions.append(F"{num}/{den}" )
den += 1
num += 1
__magic_name__ : List[str] =10
return solutions
def lowerCAmelCase_ ( lowerCamelCase = 2 ):
__magic_name__ : str =1.0
for fraction in fraction_list(lowerCamelCase ):
__magic_name__ : int =Fraction(lowerCamelCase )
result *= frac.denominator / frac.numerator
return int(lowerCamelCase )
if __name__ == "__main__":
print(solution())
| 21 | 1 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( lowerCamelCase ):
# A local function to see if a dot lands in the circle.
def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool:
__magic_name__ : Dict =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__magic_name__ : Union[str, Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCamelCase ) )
# The ratio of the area for circle to square is pi/4.
__magic_name__ : List[Any] =proportion * 4
print(F"The estimated value of pi is {pi_estimate}" )
print(F"The numpy value of pi is {pi}" )
print(F"The total error is {abs(pi - pi_estimate )}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ):
return mean(
function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ):
def identity_function(lowerCamelCase ) -> float:
return x
__magic_name__ : Optional[int] =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : str =(max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {expected_value}" )
print(F"Total error is {abs(estimated_value - expected_value )}" )
print("""******************""" )
def lowerCAmelCase_ ( lowerCamelCase ):
def function_to_integrate(lowerCamelCase ) -> float:
return sqrt(4.0 - x * x )
__magic_name__ : Dict =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {pi}" )
print(F"Total error is {abs(estimated_value - pi )}" )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( lowerCamelCase ):
# A local function to see if a dot lands in the circle.
def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool:
__magic_name__ : Dict =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__magic_name__ : Union[str, Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCamelCase ) )
# The ratio of the area for circle to square is pi/4.
__magic_name__ : List[Any] =proportion * 4
print(F"The estimated value of pi is {pi_estimate}" )
print(F"The numpy value of pi is {pi}" )
print(F"The total error is {abs(pi - pi_estimate )}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ):
return mean(
function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ):
def identity_function(lowerCamelCase ) -> float:
return x
__magic_name__ : Optional[int] =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : str =(max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {expected_value}" )
print(F"Total error is {abs(estimated_value - expected_value )}" )
print("""******************""" )
def lowerCAmelCase_ ( lowerCamelCase ):
def function_to_integrate(lowerCamelCase ) -> float:
return sqrt(4.0 - x * x )
__magic_name__ : Dict =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {pi}" )
print(F"Total error is {abs(estimated_value - pi )}" )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class __A ( UpperCamelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
UpperCamelCase = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
UpperCamelCase = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
UpperCamelCase = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
UpperCamelCase = "question"
UpperCamelCase = "context"
UpperCamelCase = "answers"
@property
def A__ ( self :int ):
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 21 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __A ( tf.keras.layers.Layer ):
def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ):
'''simple docstring'''
super().__init__()
__magic_name__ : Optional[int] =pad_token_id
__magic_name__ : List[Any] =max_length
__magic_name__ : Dict =vocab
__magic_name__ : int =merges
__magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case )
@classmethod
def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ):
'''simple docstring'''
__magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()]
__magic_name__ : str =tokenizer.get_vocab()
return cls(__snake_case , __snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ):
'''simple docstring'''
__magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case )
return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Optional[Any] , __snake_case :List[Any] ):
'''simple docstring'''
return cls(**__snake_case )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ):
'''simple docstring'''
__magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case )
__magic_name__ : Tuple =tf.ones_like(__snake_case )
if self.pad_token_id is not None:
# pad the tokens up to max length
__magic_name__ : Tuple =max_length if max_length is not None else self.max_length
if max_length is not None:
__magic_name__ , __magic_name__ : Tuple =pad_model_inputs(
__snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 21 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = ShapEPipeline
UpperCamelCase = ["""prompt"""]
UpperCamelCase = ["""prompt"""]
UpperCamelCase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Dict ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Any ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :Optional[int] ):
'''simple docstring'''
return 8
@property
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Any =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Any =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(__snake_case )
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Union[str, Any] ={
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
__magic_name__ : Optional[Any] =PriorTransformer(**__snake_case )
return model
@property
def A__ ( self :int ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[int] ={
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
__magic_name__ : Any =ShapERenderer(**__snake_case )
return model
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_prior
__magic_name__ : str =self.dummy_text_encoder
__magic_name__ : Dict =self.dummy_tokenizer
__magic_name__ : Union[str, Any] =self.dummy_renderer
__magic_name__ : List[str] =HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=__snake_case , clip_sample=__snake_case , clip_sample_range=1.0 , )
__magic_name__ : Union[str, Any] ={
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def A__ ( self :Any , __snake_case :Optional[Any] , __snake_case :Optional[int]=0 ):
'''simple docstring'''
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Union[str, Any] =torch.manual_seed(__snake_case )
else:
__magic_name__ : List[Any] =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : str ={
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : str ="""cpu"""
__magic_name__ : str =self.get_dummy_components()
__magic_name__ : Optional[int] =self.pipeline_class(**__snake_case )
__magic_name__ : Dict =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : str =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : Dict =output.images[0]
__magic_name__ : str =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__magic_name__ : Union[str, Any] =np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self :Optional[int] ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[int] =torch_device == """cpu"""
__magic_name__ : Optional[int] =True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__snake_case , relax_max_difference=__snake_case , )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =self.get_dummy_components()
__magic_name__ : List[Any] =self.pipeline_class(**__snake_case )
__magic_name__ : int =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : List[Any] =1
__magic_name__ : Optional[int] =2
__magic_name__ : Any =self.get_dummy_inputs(__snake_case )
for key in inputs.keys():
if key in self.batch_params:
__magic_name__ : List[str] =batch_size * [inputs[key]]
__magic_name__ : List[str] =pipe(**__snake_case , num_images_per_prompt=__snake_case )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Any =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
__magic_name__ : List[Any] =ShapEPipeline.from_pretrained("""openai/shap-e""" )
__magic_name__ : str =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : int =torch.Generator(device=__snake_case ).manual_seed(0 )
__magic_name__ : List[Any] =pipe(
"""a shark""" , generator=__snake_case , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 |
import math
import tensorflow as tf
from packaging import version
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype )
__magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase )
return x * tf.tanh(tf.math.softplus(lowerCamelCase ) )
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ):
__magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase )
return a * tf.math.sigmoid(lowerCamelCase )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase )
UpperCAmelCase_ : List[str] = tf.keras.activations.gelu
UpperCAmelCase_ : Dict = approximate_gelu_wrap
else:
UpperCAmelCase_ : Dict = _gelu
UpperCAmelCase_ : str = _gelu_new
UpperCAmelCase_ : Any = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowerCAmelCase_ ( lowerCamelCase ):
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 21 | 1 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :int , *__snake_case :int , **__snake_case :Optional[Any] ):
'''simple docstring'''
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , __snake_case , )
super().__init__(*__snake_case , **__snake_case )
| 21 |
from collections.abc import Sequence
def lowerCAmelCase_ ( lowerCamelCase = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__magic_name__ : str =nums[0]
for i in range(1 , len(lowerCamelCase ) ):
__magic_name__ : Any =nums[i]
__magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip())
UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 21 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __A ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = 1
@register_to_config
def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ):
'''simple docstring'''
__magic_name__ : Dict =None
__magic_name__ : List[str] =None
__magic_name__ : str =None
def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case )
def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__magic_name__ : int =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__magic_name__ : str =std.flatten()
while len(std.shape ) < len(score.shape ):
__magic_name__ : List[str] =std.unsqueeze(-1 )
__magic_name__ : Union[str, Any] =-score / std
# compute
__magic_name__ : Tuple =-1.0 / len(self.timesteps )
__magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__magic_name__ : Dict =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__magic_name__ : Any =beta_t.unsqueeze(-1 )
__magic_name__ : Dict =-0.5 * beta_t * x
__magic_name__ : Optional[int] =torch.sqrt(__snake_case )
__magic_name__ : int =drift - diffusion**2 * score
__magic_name__ : List[str] =x + drift * dt
# add noise
__magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype )
__magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self :List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 21 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __A :
UpperCamelCase = 42
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def __call__( self :Union[str, Any] ):
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class __A :
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None
__magic_name__ : Optional[int] =len(self.languages ) if self.languages else None
def __call__( self :List[str] ):
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def A__ ( self :str , __snake_case :str ):
'''simple docstring'''
__magic_name__ : Optional[int] =set(self.languages )
if self.languages and set(__snake_case ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__magic_name__ : Any =[]
for lang, text in translation_dict.items():
if isinstance(__snake_case , __snake_case ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) )
return {"language": languages, "translation": translations}
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 21 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( lowerCamelCase ):
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(lowerCamelCase ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(lowerCamelCase ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
from sklearn.metrics import matthews_corrcoef
import datasets
UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"""
] , )
def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ):
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ),
}
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
if number < 0 or shift_amount < 0:
raise ValueError("""both inputs must be positive integers""" )
__magic_name__ : Tuple =str(bin(lowerCamelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
if number < 0 or shift_amount < 0:
raise ValueError("""both inputs must be positive integers""" )
__magic_name__ : List[Any] =str(bin(lowerCamelCase ) )[2:]
if shift_amount >= len(lowerCamelCase ):
return "0b0"
__magic_name__ : Tuple =binary_number[: len(lowerCamelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
if number >= 0: # Get binary representation of positive number
__magic_name__ : List[str] ="""0""" + str(bin(lowerCamelCase ) ).strip("""-""" )[2:]
else: # Get binary (2's complement) representation of negative number
__magic_name__ : str =len(bin(lowerCamelCase )[3:] ) # Find 2's complement of number
__magic_name__ : List[Any] =bin(abs(lowerCamelCase ) - (1 << binary_number_length) )[3:]
__magic_name__ : Union[str, Any] =(
"""1""" + """0""" * (binary_number_length - len(lowerCamelCase )) + binary_number
)
if shift_amount >= len(lowerCamelCase ):
return "0b" + binary_number[0] * len(lowerCamelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(lowerCamelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase )
if display:
print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) )
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
if conf_path is None:
__magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml"""
__magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase )
__magic_name__ : Tuple =VQModel(**config.model.params )
if ckpt_path is None:
__magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt"""
__magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase )
if ".ckpt" in ckpt_path:
__magic_name__ : Any =sd["""state_dict"""]
model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
model.to(lowerCamelCase )
del sd
return model
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase )
print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" )
__magic_name__ : List[Any] =model.decode(lowerCamelCase )
return xrec
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 )
if reload:
__magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase )
importlib.reload(lowerCamelCase )
return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls )
def lowerCAmelCase_ ( lowerCamelCase ):
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ):
__magic_name__ : str =instantiate_from_config(lowerCamelCase )
if sd is not None:
model.load_state_dict(lowerCamelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# load the specified checkpoint
if ckpt:
__magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" )
__magic_name__ : Any =pl_sd["""global_step"""]
print(F"loaded model from global step {global_step}." )
else:
__magic_name__ : List[Any] ={"""state_dict""": None}
__magic_name__ : Optional[Any] =None
__magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""]
return model, global_step
| 21 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase_ : Union[str, Any] = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[str] = ["ViTFeatureExtractor"]
UpperCAmelCase_ : Any = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[str] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self :Dict ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 21 | 1 |
UpperCAmelCase_ : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1000,
"megajoule": 1000000,
"gigajoule": 1000000000,
"wattsecond": 1.0,
"watthour": 3600,
"kilowatthour": 3600000,
"newtonmeter": 1.0,
"calorie_nutr": 4186.8,
"kilocalorie_nutr": 4186800.00,
"electronvolt": 1.602_176_634e-19,
"britishthermalunit_it": 1055.05585,
"footpound": 1.35_5818,
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__magic_name__ : Any =(
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(lowerCamelCase )}"
)
raise ValueError(lowerCamelCase )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
UpperCAmelCase_ : Tuple = 0 # The first color of the flag.
UpperCAmelCase_ : Any = 1 # The second color of the flag.
UpperCAmelCase_ : str = 2 # The third color of the flag.
UpperCAmelCase_ : Tuple = (red, white, blue)
def lowerCAmelCase_ ( lowerCamelCase ):
if not sequence:
return []
if len(lowerCamelCase ) == 1:
return list(lowerCamelCase )
__magic_name__ : int =0
__magic_name__ : str =len(lowerCamelCase ) - 1
__magic_name__ : Optional[Any] =0
while mid <= high:
if sequence[mid] == colors[0]:
__magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid]
high -= 1
else:
__magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values"
raise ValueError(lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip()
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 21 | 1 |
import argparse
import os
import re
UpperCAmelCase_ : Union[str, Any] = "src/transformers"
# Pattern that looks at the indentation in a line.
UpperCAmelCase_ : str = re.compile(R"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
UpperCAmelCase_ : Dict = re.compile(R"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
UpperCAmelCase_ : List[Any] = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
UpperCAmelCase_ : str = re.compile(R"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
UpperCAmelCase_ : Tuple = re.compile(R"\[([^\]]+)\]")
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =_re_indent.search(lowerCamelCase )
return "" if search is None else search.groups()[0]
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase="" , lowerCamelCase=None , lowerCamelCase=None ):
__magic_name__ : List[str] =0
__magic_name__ : Dict =code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(lowerCamelCase ):
index += 1
__magic_name__ : Optional[Any] =["""\n""".join(lines[:index] )]
else:
__magic_name__ : str =[]
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__magic_name__ : Dict =[lines[index]]
index += 1
while index < len(lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(lowerCamelCase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(lowerCamelCase ) )
if index < len(lowerCamelCase ) - 1:
__magic_name__ : Optional[Any] =[lines[index + 1]]
index += 1
else:
__magic_name__ : Optional[Any] =[]
else:
blocks.append("""\n""".join(lowerCamelCase ) )
__magic_name__ : Optional[int] =[lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCamelCase ) > 0:
blocks.append("""\n""".join(lowerCamelCase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCamelCase ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def lowerCAmelCase_ ( lowerCamelCase ):
def _inner(lowerCamelCase ):
return key(lowerCamelCase ).lower().replace("""_""" , """""" )
return _inner
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None ):
# If no key is provided, we use a noop.
def noop(lowerCamelCase ):
return x
if key is None:
__magic_name__ : Optional[int] =noop
# Constants are all uppercase, they go first.
__magic_name__ : List[Any] =[obj for obj in objects if key(lowerCamelCase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__magic_name__ : int =[obj for obj in objects if key(lowerCamelCase )[0].isupper() and not key(lowerCamelCase ).isupper()]
# Functions begin with a lowercase, they go last.
__magic_name__ : Tuple =[obj for obj in objects if not key(lowerCamelCase )[0].isupper()]
__magic_name__ : int =ignore_underscore(lowerCamelCase )
return sorted(lowerCamelCase , key=lowerCamelCase ) + sorted(lowerCamelCase , key=lowerCamelCase ) + sorted(lowerCamelCase , key=lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase ):
# This inner function sort imports between [ ].
def _replace(lowerCamelCase ):
__magic_name__ : Optional[Any] =match.groups()[0]
if "," not in imports:
return F"[{imports}]"
__magic_name__ : Optional[int] =[part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__magic_name__ : Tuple =keys[:-1]
return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCamelCase )] ) + "]"
__magic_name__ : Any =import_statement.split("""\n""" )
if len(lowerCamelCase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__magic_name__ : Dict =2 if lines[1].strip() == """[""" else 1
__magic_name__ : Optional[int] =[(i, _re_strip_line.search(lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__magic_name__ : Union[str, Any] =sort_objects(lowerCamelCase , key=lambda lowerCamelCase : x[1] )
__magic_name__ : Dict =[lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCamelCase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__magic_name__ : Union[str, Any] =_re_bracket_content.sub(_replace , lines[1] )
else:
__magic_name__ : Optional[int] =[part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__magic_name__ : Tuple =keys[:-1]
__magic_name__ : List[Any] =get_indent(lines[1] ) + """, """.join([F"\"{k}\"" for k in sort_objects(lowerCamelCase )] )
return "\n".join(lowerCamelCase )
else:
# Finally we have to deal with imports fitting on one line
__magic_name__ : Dict =_re_bracket_content.sub(_replace , lowerCamelCase )
return import_statement
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=True ):
with open(lowerCamelCase , encoding="""utf-8""" ) as f:
__magic_name__ : Union[str, Any] =f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__magic_name__ : Dict =split_code_in_indented_blocks(
lowerCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCamelCase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__magic_name__ : Optional[Any] =main_blocks[block_idx]
__magic_name__ : Optional[Any] =block.split("""\n""" )
# Get to the start of the imports.
__magic_name__ : Tuple =0
while line_idx < len(lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__magic_name__ : List[Any] =len(lowerCamelCase )
else:
line_idx += 1
if line_idx >= len(lowerCamelCase ):
continue
# Ignore beginning and last line: they don't contain anything.
__magic_name__ : Dict ="""\n""".join(block_lines[line_idx:-1] )
__magic_name__ : int =get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__magic_name__ : Dict =split_code_in_indented_blocks(lowerCamelCase , indent_level=lowerCamelCase )
# We have two categories of import key: list or _import_structure[key].append/extend
__magic_name__ : str =_re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__magic_name__ : Optional[int] =[(pattern.search(lowerCamelCase ).groups()[0] if pattern.search(lowerCamelCase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__magic_name__ : List[Any] =[(i, key) for i, key in enumerate(lowerCamelCase ) if key is not None]
__magic_name__ : Dict =[x[0] for x in sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__magic_name__ : Any =0
__magic_name__ : List[Any] =[]
for i in range(len(lowerCamelCase ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
__magic_name__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowerCamelCase )
count += 1
# And we put our main block back together with its first and last line.
__magic_name__ : Union[str, Any] ="""\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCamelCase ):
if check_only:
return True
else:
print(F"Overwriting {file}." )
with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write("""\n""".join(lowerCamelCase ) )
def lowerCAmelCase_ ( lowerCamelCase=True ):
__magic_name__ : Union[str, Any] =[]
for root, _, files in os.walk(lowerCamelCase ):
if "__init__.py" in files:
__magic_name__ : Dict =sort_imports(os.path.join(lowerCamelCase , """__init__.py""" ) , check_only=lowerCamelCase )
if result:
__magic_name__ : Any =[os.path.join(lowerCamelCase , """__init__.py""" )]
if len(lowerCamelCase ) > 0:
raise ValueError(F"Would overwrite {len(lowerCamelCase )} files, run `make style`." )
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
UpperCAmelCase_ : int = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 21 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __A ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = 1
@register_to_config
def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ):
'''simple docstring'''
__magic_name__ : Dict =None
__magic_name__ : List[str] =None
__magic_name__ : str =None
def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case )
def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__magic_name__ : int =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__magic_name__ : str =std.flatten()
while len(std.shape ) < len(score.shape ):
__magic_name__ : List[str] =std.unsqueeze(-1 )
__magic_name__ : Union[str, Any] =-score / std
# compute
__magic_name__ : Tuple =-1.0 / len(self.timesteps )
__magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__magic_name__ : Dict =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__magic_name__ : Any =beta_t.unsqueeze(-1 )
__magic_name__ : Dict =-0.5 * beta_t * x
__magic_name__ : Optional[int] =torch.sqrt(__snake_case )
__magic_name__ : int =drift - diffusion**2 * score
__magic_name__ : List[str] =x + drift * dt
# add noise
__magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype )
__magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self :List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 21 | 1 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=0 ):
# Format the message.
if name is None:
__magic_name__ : List[str] =None
else:
__magic_name__ : Optional[Any] =""".""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
__magic_name__ : Optional[int] =fmt.format(lowerCamelCase )
# Print and recurse (if needed).
if isinstance(lowerCamelCase , lowerCamelCase ):
if msg is not None:
print(lowerCamelCase )
for k in val.keys():
recursive_print(lowerCamelCase , val[k] , spaces + 2 )
elif isinstance(lowerCamelCase , torch.Tensor ):
print(lowerCamelCase , """:""" , val.size() )
else:
print(lowerCamelCase , """:""" , lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
__magic_name__ : Union[str, Any] =param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
__magic_name__ : int =(num_heads, hidden_size, num_splits) + input_shape[1:]
__magic_name__ : List[str] =param.view(*lowerCamelCase )
__magic_name__ : List[Any] =param.transpose(0 , 2 )
__magic_name__ : int =param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
__magic_name__ : Any =(num_heads, num_splits, hidden_size) + input_shape[1:]
__magic_name__ : int =param.view(*lowerCamelCase )
__magic_name__ : str =param.transpose(0 , 1 ).contiguous()
__magic_name__ : List[Any] =param.view(*lowerCamelCase )
return param
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# The converted output model.
__magic_name__ : Optional[int] ={}
# old versions did not store training args
__magic_name__ : Any =input_state_dict.get("""args""" , lowerCamelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
__magic_name__ : List[str] =ds_args.padded_vocab_size
__magic_name__ : List[str] =ds_args.max_position_embeddings
__magic_name__ : List[Any] =ds_args.hidden_size
__magic_name__ : Union[str, Any] =ds_args.num_layers
__magic_name__ : Tuple =ds_args.num_attention_heads
__magic_name__ : List[str] =ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
__magic_name__ : Dict =config.n_head
# The hidden_size per head.
__magic_name__ : int =config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
__magic_name__ : Union[str, Any] =input_state_dict["""checkpoint_version"""]
else:
__magic_name__ : Any =0.0
# The model.
__magic_name__ : Dict =input_state_dict["""model"""]
# The language model.
__magic_name__ : Tuple =model["""language_model"""]
# The embeddings.
__magic_name__ : List[str] =lm["""embedding"""]
# The word embeddings.
__magic_name__ : str =embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
__magic_name__ : Dict =word_embeddings[: config.vocab_size, :]
__magic_name__ : Optional[int] =word_embeddings
# The position embeddings.
__magic_name__ : str =embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
__magic_name__ : Union[str, Any] =pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" )
# Store the position embeddings.
__magic_name__ : Optional[int] =pos_embeddings
# The transformer.
__magic_name__ : Dict =lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
__magic_name__ : List[str] =re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
__magic_name__ : List[Any] ={
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
__magic_name__ : List[Any] =layer_re.match(lowerCamelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
__magic_name__ : str =int(m.group(1 ) )
# The name of the operation.
__magic_name__ : Dict =m.group(2 )
# Is it a weight or a bias?
__magic_name__ : Dict =m.group(3 )
# The name of the layer.
__magic_name__ : List[str] =F"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
__magic_name__ : List[Any] ="""ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
__magic_name__ : Optional[int] =val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
__magic_name__ : Optional[Any] =torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , lowerCamelCase , lowerCamelCase )
__magic_name__ : Dict =causal_mask
# Insert a "dummy" tensor for masked_bias.
__magic_name__ : Any =torch.tensor(-1E4 , dtype=torch.floataa )
__magic_name__ : Dict =masked_bias
__magic_name__ : List[str] =fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
__magic_name__ : Optional[Any] =out_val.transpose(0 , 1 ).contiguous()
# Store.
__magic_name__ : Any =out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
__magic_name__ : Dict =fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase )
# Store. No change of shape.
__magic_name__ : Union[str, Any] =out_val
# Transpose the weights.
elif weight_or_bias == "weight":
__magic_name__ : Tuple =megatron_to_transformers[op_name]
__magic_name__ : List[str] =val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
__magic_name__ : Optional[int] =megatron_to_transformers[op_name]
__magic_name__ : Dict =val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
__magic_name__ : Any =transformer["""final_layernorm.weight"""]
__magic_name__ : Tuple =transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
__magic_name__ : int =word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
__magic_name__ : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=lowerCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=lowerCamelCase , help="""An optional config json file describing the pre-trained model.""" , )
__magic_name__ : Any =parser.parse_args()
# Extract the basename.
__magic_name__ : Tuple =os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
__magic_name__ : Optional[Any] =torch.load(lowerCamelCase , map_location="""cpu""" )
else:
__magic_name__ : Dict =torch.load(args.path_to_checkpoint , map_location="""cpu""" )
__magic_name__ : Optional[Any] =input_state_dict.get("""args""" , lowerCamelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
__magic_name__ : Optional[Any] ="""gelu_fast"""
elif ds_args.openai_gelu:
__magic_name__ : Optional[Any] ="""gelu_new"""
else:
__magic_name__ : List[Any] ="""gelu"""
else:
# in the very early days this used to be "gelu_new"
__magic_name__ : Dict ="""gelu_new"""
# Spell out all parameters in case the defaults change.
__magic_name__ : Any =GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type="""cls_index""" , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
__magic_name__ : Optional[int] =GPTaConfig.from_json_file(args.config_file )
__magic_name__ : Tuple =["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
__magic_name__ : int =convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(lowerCamelCase , lowerCamelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
__magic_name__ : Union[str, Any] =ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
__magic_name__ : List[Any] ="""gpt2"""
elif tokenizer_type == "PretrainedFromHF":
__magic_name__ : Optional[Any] =ds_args.tokenizer_name_or_path
else:
raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" )
else:
__magic_name__ : List[Any] ="""gpt2"""
__magic_name__ : Dict =AutoTokenizer.from_pretrained(lowerCamelCase )
__magic_name__ : Tuple =type(lowerCamelCase ).__name__
__magic_name__ : List[Any] =tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(lowerCamelCase )
# Save tokenizer based on args
print(F"Adding {tokenizer_class} tokenizer files" )
tokenizer.save_pretrained(lowerCamelCase )
# Store the state_dict to file.
__magic_name__ : Optional[int] =os.path.join(lowerCamelCase , """pytorch_model.bin""" )
print(F"Saving checkpoint to \"{output_checkpoint_file}\"" )
torch.save(lowerCamelCase , lowerCamelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 21 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =feature_size
__magic_name__ : Union[str, Any] =sampling_rate
__magic_name__ : List[Any] =padding_value
__magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" )
__magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case )
super().__init__(**__snake_case )
def A__ ( self :Any , __snake_case :Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ):
'''simple docstring'''
if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
__magic_name__ : Union[str, Any] ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f" to this method that includes {self.model_input_names[0]}, but you provided"
f" {list(processed_features.keys() )}" )
__magic_name__ : int =processed_features[self.model_input_names[0]]
__magic_name__ : Union[str, Any] =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__snake_case ) == 0:
if return_attention_mask:
__magic_name__ : List[str] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
__magic_name__ : Optional[int] =required_input[0]
if isinstance(__snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
__magic_name__ : Optional[Any] =0
while len(required_input[index] ) == 0:
index += 1
if index < len(__snake_case ):
__magic_name__ : List[str] =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__snake_case ):
__magic_name__ : int ="""tf"""
elif is_torch_tensor(__snake_case ):
__magic_name__ : str ="""pt"""
elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ):
__magic_name__ : List[Any] ="""np"""
else:
raise ValueError(
f"type of {first_element} unknown: {type(__snake_case )}. "
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
__magic_name__ : List[str] =to_numpy(__snake_case )
else:
__magic_name__ : str =[to_numpy(__snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
__magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case )
__magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]]
__magic_name__ : Dict =len(__snake_case )
if not all(len(__snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
__magic_name__ : Optional[int] =[]
for i in range(__snake_case ):
__magic_name__ : Any ={k: v[i] for k, v in processed_features.items()}
# truncation
__magic_name__ : List[str] =self._truncate(
__snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , )
truncated_inputs.append(__snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
__magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
__magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH
__magic_name__ : str ={}
for i in range(__snake_case ):
# padding
__magic_name__ : List[str] =self._pad(
truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
__magic_name__ : Dict =[]
if value.dtype is np.dtype(np.floataa ):
__magic_name__ : Optional[int] =value.astype(np.floataa )
batch_outputs[key].append(__snake_case )
return BatchFeature(__snake_case , tensor_type=__snake_case )
def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
__magic_name__ : Dict =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
__magic_name__ : Any =len(__snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
__magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
__magic_name__ : List[Any] =max_length - len(__snake_case )
if self.padding_side == "right":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (0, difference) )
__magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
__magic_name__ : str =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (difference, 0) )
__magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
__magic_name__ : List[Any] =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
__magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : Any =len(__snake_case ) > max_length
if needs_to_be_truncated:
__magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
__magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length]
return processed_features
def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ):
'''simple docstring'''
if padding is not False:
if padding is True:
__magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__snake_case , __snake_case ):
__magic_name__ : Optional[int] =PaddingStrategy(__snake_case )
elif isinstance(__snake_case , __snake_case ):
__magic_name__ : Any =padding
else:
__magic_name__ : Any =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 21 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ : List[str] =int(lowerCamelCase )
assert noofclusters < len(lowerCamelCase )
# Find out the dimensionality
__magic_name__ : Union[str, Any] =len(vectors[0] )
# Will help select random centroids from among the available vectors
__magic_name__ : List[Any] =list(range(len(lowerCamelCase ) ) )
shuffle(lowerCamelCase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
__magic_name__ : Any =tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
__magic_name__ : Any =tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
__magic_name__ : Dict =[
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowerCamelCase )
]
##These nodes will assign the centroid Variables the appropriate
##values
__magic_name__ : List[Any] =tf.placeholder("""float64""" , [dim] )
__magic_name__ : Optional[Any] =[]
for centroid in centroids:
cent_assigns.append(tf.assign(lowerCamelCase , lowerCamelCase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
__magic_name__ : Union[str, Any] =[tf.Variable(0 ) for i in range(len(lowerCamelCase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
__magic_name__ : Optional[Any] =tf.placeholder("""int32""" )
__magic_name__ : List[str] =[]
for assignment in assignments:
cluster_assigns.append(tf.assign(lowerCamelCase , lowerCamelCase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
__magic_name__ : List[str] =tf.placeholder("""float""" , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
__magic_name__ : List[str] =tf.reduce_mean(lowerCamelCase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
__magic_name__ : Union[str, Any] =tf.placeholder("""float""" , [dim] )
__magic_name__ : Any =tf.placeholder("""float""" , [dim] )
__magic_name__ : Any =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCamelCase , lowerCamelCase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
__magic_name__ : Any =tf.placeholder("""float""" , [noofclusters] )
__magic_name__ : Tuple =tf.argmin(lowerCamelCase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
__magic_name__ : str =tf.initialize_all_variables()
# Initialize all variables
sess.run(lowerCamelCase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
__magic_name__ : List[str] =100
for _ in range(lowerCamelCase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowerCamelCase ) ):
__magic_name__ : List[str] =vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
__magic_name__ : Optional[Any] =[
sess.run(lowerCamelCase , feed_dict={va: vect, va: sess.run(lowerCamelCase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
__magic_name__ : Tuple =sess.run(
lowerCamelCase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowerCamelCase ):
# Collect all the vectors assigned to this cluster
__magic_name__ : List[str] =[
vectors[i]
for i in range(len(lowerCamelCase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
__magic_name__ : Tuple =sess.run(
lowerCamelCase , feed_dict={mean_input: array(lowerCamelCase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
__magic_name__ : List[Any] =sess.run(lowerCamelCase )
__magic_name__ : int =sess.run(lowerCamelCase )
return centroids, assignments
| 21 |
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class __A ( nn.Module ):
def __init__( self :List[Any] ):
'''simple docstring'''
super().__init__()
__magic_name__ : Tuple =nn.Linear(3 , 4 )
__magic_name__ : Union[str, Any] =nn.BatchNormad(4 )
__magic_name__ : List[str] =nn.Linear(4 , 5 )
def A__ ( self :Dict , __snake_case :Tuple ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) )
class __A ( UpperCamelCase__ ):
def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ):
'''simple docstring'''
return (args[0] + 1,) + args[1:], kwargs
class __A ( UpperCamelCase__ ):
def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ):
'''simple docstring'''
return output + 1
class __A ( unittest.TestCase ):
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : Tuple =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
self.assertEqual(test_model._hf_hook , __snake_case )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : List[str] =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
add_hook_to_module(__snake_case , __snake_case , append=__snake_case )
self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
__magic_name__ : Any =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(x + 1 )
__magic_name__ : Optional[Any] =test_model(x + 2 )
__magic_name__ : int =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : int =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : str =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : List[str] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
assert torch.allclose(__snake_case , __snake_case , atol=1E-5 )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
__magic_name__ : Dict =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(__snake_case )
__magic_name__ : Dict =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Optional[int] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
assert torch.allclose(__snake_case , output + 2 , atol=1E-5 )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : Tuple =ModelForTest()
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Dict =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 ) )
self.assertTrue(outputa.requires_grad )
__magic_name__ : Any =True
__magic_name__ : Any =test_model(__snake_case )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[Any] =model(__snake_case )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) )
__magic_name__ : int =torch.randn(2 , 3 ).to(0 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , torch.device(0 ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : Union[str, Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
__magic_name__ : Tuple ={
"""execution_device""": 0 if torch.cuda.is_available() else """cpu""",
"""offload""": True,
"""offload_buffers""": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Tuple =torch.randn(2 , 3 )
__magic_name__ : int =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : str =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Optional[int] =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Dict =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Any =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
| 21 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : int =0.0_0
__magic_name__ : Tuple =0
for resistor in resistors:
if resistor <= 0:
__magic_name__ : Optional[int] =F"Resistor at index {index} has a negative or zero value!"
raise ValueError(lowerCamelCase )
first_sum += 1 / float(lowerCamelCase )
index += 1
return 1 / first_sum
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Optional[int] =0.0_0
__magic_name__ : Optional[Any] =0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
__magic_name__ : Optional[int] =F"Resistor at index {index} has a negative value!"
raise ValueError(lowerCamelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCamelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCamelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return 1_00
@property
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : str =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__magic_name__ : Tuple =MultilingualCLIP(__snake_case )
__magic_name__ : Optional[int] =text_encoder.eval()
return text_encoder
@property
def A__ ( self :Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[Any] ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case )
return model
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_text_encoder
__magic_name__ : Optional[Any] =self.dummy_tokenizer
__magic_name__ : Optional[Any] =self.dummy_unet
__magic_name__ : Tuple =self.dummy_movq
__magic_name__ : List[str] =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
__magic_name__ : str ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case )
# create init_image
__magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
__magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa )
__magic_name__ : Any =0
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Dict =torch.manual_seed(__snake_case )
else:
__magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : List[Any] ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple ="""cpu"""
__magic_name__ : List[Any] =self.get_dummy_components()
__magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case )
__magic_name__ : Tuple =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : List[Any] =output.images
__magic_name__ : Any =pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
__magic_name__ : int =image[0, -3:, -3:, -1]
__magic_name__ : str =image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
__magic_name__ : Optional[Any] =np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A__ ( self :Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
__magic_name__ : int =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa )
__magic_name__ : Any =0
__magic_name__ : int ="""a hat"""
__magic_name__ : int =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
__magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
__magic_name__ : int =pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ , __magic_name__ : Dict =pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Optional[Any] =pipeline(
__snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
__magic_name__ : Optional[int] =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =(1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowerCAmelCase_ ( lowerCamelCase = 5000 ):
__magic_name__ : List[str] =[(i * (3 * i - 1)) // 2 for i in range(1 , lowerCamelCase )]
for i, pentagonal_i in enumerate(lowerCamelCase ):
for j in range(lowerCamelCase , len(lowerCamelCase ) ):
__magic_name__ : Any =pentagonal_nums[j]
__magic_name__ : Tuple =pentagonal_i + pentagonal_j
__magic_name__ : Tuple =pentagonal_j - pentagonal_i
if is_pentagonal(lowerCamelCase ) and is_pentagonal(lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __A :
def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ):
'''simple docstring'''
__magic_name__ : Optional[int] =parent
__magic_name__ : List[Any] =batch_size
__magic_name__ : List[str] =is_training
__magic_name__ : List[str] =use_auxiliary_loss
__magic_name__ : Union[str, Any] =num_queries
__magic_name__ : str =num_channels
__magic_name__ : Union[str, Any] =min_size
__magic_name__ : Union[str, Any] =max_size
__magic_name__ : Optional[int] =num_labels
__magic_name__ : Tuple =hidden_dim
__magic_name__ : Any =hidden_dim
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__snake_case )
__magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case )
__magic_name__ : List[str] =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5
).float()
__magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long()
__magic_name__ : str =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Dict =MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__magic_name__ : str =self.num_queries
__magic_name__ : Dict =self.num_labels
__magic_name__ : int =[1, 1, 1, 1]
__magic_name__ : List[str] =self.num_channels
__magic_name__ : str =64
__magic_name__ : List[str] =1_28
__magic_name__ : Optional[Any] =self.hidden_dim
__magic_name__ : Tuple =self.hidden_dim
__magic_name__ : Optional[int] =self.hidden_dim
return config
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs()
__magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ):
'''simple docstring'''
__magic_name__ : int =output.encoder_hidden_states
__magic_name__ : List[str] =output.pixel_decoder_hidden_states
__magic_name__ : int =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , config.decoder_layers )
def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ):
'''simple docstring'''
with torch.no_grad():
__magic_name__ : List[str] =MaskaFormerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__snake_case , __snake_case )
def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
def comm_check_on_output(__snake_case :List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : List[str] =model(__snake_case )
comm_check_on_output(__snake_case )
__magic_name__ : Any =model(
pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
comm_check_on_output(__snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Any =MaskaFormerModelTester(self )
__magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def A__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def A__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def A__ ( self :int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def A__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple =model_class(__snake_case )
__magic_name__ : Optional[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple =[*signature.parameters.keys()]
__magic_name__ : Optional[Any] =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@slow
def A__ ( self :Tuple ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =(self.model_tester.min_size,) * 2
__magic_name__ : Union[str, Any] ={
"""pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ),
"""class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(),
}
__magic_name__ : Optional[Any] =self.model_tester.get_config()
__magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case )
__magic_name__ : Any =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case )
__magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case )
self.assertTrue(outputs.attentions is not None )
def A__ ( self :int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__magic_name__ : List[Any] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Dict =model_class(__snake_case )
model.to(__snake_case )
model.train()
__magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss
loss.backward()
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : List[str] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Tuple =True
__magic_name__ : Optional[int] =True
__magic_name__ : int =model_class(__snake_case ).to(__snake_case )
model.train()
__magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
__magic_name__ : Optional[int] =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__magic_name__ : Optional[int] =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCAmelCase_ : Dict = 1e-4
def lowerCAmelCase_ ( ):
__magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __A ( unittest.TestCase ):
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case )
__magic_name__ : int =self.default_image_processor
__magic_name__ : List[Any] =prepare_img()
__magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Dict =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : List[str] =model(**__snake_case )
__magic_name__ : Any =torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Dict =torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Any =torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Optional[int] =self.default_image_processor
__magic_name__ : Tuple =prepare_img()
__magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : str =model(**__snake_case )
# masks_queries_logits
__magic_name__ : List[Any] =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__magic_name__ : List[Any] =[
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
__magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
__magic_name__ : Any =outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__magic_name__ : int =torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Any =self.default_image_processor
__magic_name__ : Union[str, Any] =image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
__magic_name__ : str =inputs["""pixel_values"""].to(__snake_case )
__magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]]
__magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]]
with torch.no_grad():
__magic_name__ : Dict =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
| 21 | 1 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self :Dict ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 21 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """segformer"""
def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(**__snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , )
__magic_name__ : Dict =num_channels
__magic_name__ : str =num_encoder_blocks
__magic_name__ : List[Any] =depths
__magic_name__ : Optional[Any] =sr_ratios
__magic_name__ : List[str] =hidden_sizes
__magic_name__ : List[str] =patch_sizes
__magic_name__ : Any =strides
__magic_name__ : Optional[Any] =mlp_ratios
__magic_name__ : str =num_attention_heads
__magic_name__ : int =hidden_act
__magic_name__ : List[Any] =hidden_dropout_prob
__magic_name__ : Optional[Any] =attention_probs_dropout_prob
__magic_name__ : Optional[Any] =classifier_dropout_prob
__magic_name__ : List[str] =initializer_range
__magic_name__ : List[str] =drop_path_rate
__magic_name__ : List[Any] =layer_norm_eps
__magic_name__ : List[str] =decoder_hidden_size
__magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case )
__magic_name__ : Dict =semantic_loss_ignore_index
class __A ( UpperCamelCase__ ):
UpperCamelCase = version.parse("""1.11""" )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A__ ( self :Any ):
'''simple docstring'''
return 1E-4
@property
def A__ ( self :int ):
'''simple docstring'''
return 12
| 21 | 1 |
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ):
__magic_name__ : int =AutoConfig.from_pretrained(lowerCamelCase , **lowerCamelCase )
__magic_name__ : List[str] =AutoModelForSeqaSeqLM.from_config(lowerCamelCase )
model.save_pretrained(lowerCamelCase )
AutoTokenizer.from_pretrained(lowerCamelCase ).save_pretrained(lowerCamelCase )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 21 |
import heapq
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
__magic_name__ : Tuple =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0]
chosen_vertices.add(lowerCamelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__magic_name__ : Tuple =elem[1][1].index(lowerCamelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
__magic_name__ : str =str(bin(lowerCamelCase ) )[2:] # remove the leading "0b"
__magic_name__ : str =str(bin(lowerCamelCase ) )[2:] # remove the leading "0b"
__magic_name__ : Optional[int] =max(len(lowerCamelCase ) , len(lowerCamelCase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
UpperCAmelCase_ : int = range(2, 20 + 1)
UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)]
UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) )
__magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) )
__magic_name__ , __magic_name__ : Tuple =0, 0
__magic_name__ : Optional[Any] =n - i
__magic_name__ : Union[str, Any] =memo.get(lowerCamelCase )
if sub_memo is not None:
__magic_name__ : int =sub_memo.get(lowerCamelCase )
if jumps is not None and len(lowerCamelCase ) > 0:
# find and make the largest jump without going over
__magic_name__ : Dict =-1
for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__magic_name__ : Optional[Any] =_k
break
if max_jump >= 0:
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump]
# since the difference between jumps is cached, add c
__magic_name__ : Tuple =diff + c
for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ):
__magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 )
if new_c > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
__magic_name__ : str =[]
else:
__magic_name__ : List[str] ={c: []}
__magic_name__ : List[str] =sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
__magic_name__ : Tuple =sub_memo[c]
# keep jumps sorted by # of terms skipped
__magic_name__ : List[Any] =0
while j < len(lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if i >= n:
return 0, i
if k > len(lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__magic_name__ : Tuple =i
__magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0
for j in range(len(lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__magic_name__ : Optional[Any] =ds_c + ds_b
diff += addend
__magic_name__ : str =0
for j in range(lowerCamelCase ):
__magic_name__ : int =a_i[j] + addend
__magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return diff, i - start_i
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
for j in range(lowerCamelCase , len(lowerCamelCase ) ):
__magic_name__ : Tuple =digits[j] + addend
if s >= 10:
__magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 )
__magic_name__ : int =addend // 10 + quotient
else:
__magic_name__ : Dict =s
__magic_name__ : Any =addend // 10
if addend == 0:
break
while addend > 0:
__magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 )
digits.append(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase = 10**15 ):
__magic_name__ : List[str] =[1]
__magic_name__ : str =1
__magic_name__ : str =0
while True:
__magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__magic_name__ : int =0
for j in range(len(lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 | 1 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
UpperCAmelCase_ : Tuple = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False)
parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not")
parser.add_argument("--steps", default=None, type=int, help="Num inference steps")
UpperCAmelCase_ : int = parser.parse_args()
UpperCAmelCase_ : Union[str, Any] = "cpu"
UpperCAmelCase_ : int = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"
UpperCAmelCase_ : Optional[int] = "path-to-your-trained-model"
UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
UpperCAmelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
UpperCAmelCase_ : Union[str, Any] = pipe.to(device)
# to channels last
UpperCAmelCase_ : List[str] = pipe.unet.to(memory_format=torch.channels_last)
UpperCAmelCase_ : List[Any] = pipe.vae.to(memory_format=torch.channels_last)
UpperCAmelCase_ : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
UpperCAmelCase_ : str = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
UpperCAmelCase_ : int = torch.randn(2, 4, 64, 64)
UpperCAmelCase_ : str = torch.rand(1) * 999
UpperCAmelCase_ : Optional[Any] = torch.randn(2, 77, 768)
UpperCAmelCase_ : Union[str, Any] = (sample, timestep, encoder_hidden_status)
try:
UpperCAmelCase_ : Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
UpperCAmelCase_ : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
UpperCAmelCase_ : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
UpperCAmelCase_ : Tuple = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
UpperCAmelCase_ : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
UpperCAmelCase_ : List[str] = 666
UpperCAmelCase_ : List[str] = torch.Generator(device).manual_seed(seed)
UpperCAmelCase_ : List[str] = {"generator": generator}
if args.steps is not None:
UpperCAmelCase_ : Any = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
UpperCAmelCase_ : List[Any] = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("generated.png")
| 21 |
from typing import List
from .keymap import KEYMAP, get_character
def lowerCAmelCase_ ( lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] )
handle += [key]
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
def lowerCAmelCase_ ( *lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] )
handle += keys
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
class __A ( UpperCamelCase__ ):
def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case )
if not hasattr(__snake_case , """key_handler""" ):
setattr(__snake_case , """key_handler""" , {} )
setattr(__snake_case , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__magic_name__ : int =getattr(__snake_case , """handle_key""" , [] )
for key in handled_keys:
__magic_name__ : List[str] =value
return new_cls
@staticmethod
def A__ ( cls :Optional[int] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =get_character()
if char != KEYMAP["undefined"]:
__magic_name__ : Optional[int] =ord(__snake_case )
__magic_name__ : int =cls.key_handler.get(__snake_case )
if handler:
__magic_name__ : Dict =char
return handler(cls )
else:
return None
def lowerCAmelCase_ ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 21 | 1 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase )
if display:
print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) )
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
if conf_path is None:
__magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml"""
__magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase )
__magic_name__ : Tuple =VQModel(**config.model.params )
if ckpt_path is None:
__magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt"""
__magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase )
if ".ckpt" in ckpt_path:
__magic_name__ : Any =sd["""state_dict"""]
model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
model.to(lowerCamelCase )
del sd
return model
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase )
print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" )
__magic_name__ : List[Any] =model.decode(lowerCamelCase )
return xrec
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 )
if reload:
__magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase )
importlib.reload(lowerCamelCase )
return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls )
def lowerCAmelCase_ ( lowerCamelCase ):
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ):
__magic_name__ : str =instantiate_from_config(lowerCamelCase )
if sd is not None:
model.load_state_dict(lowerCamelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# load the specified checkpoint
if ckpt:
__magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" )
__magic_name__ : Any =pl_sd["""global_step"""]
print(F"loaded model from global step {global_step}." )
else:
__magic_name__ : List[Any] ={"""state_dict""": None}
__magic_name__ : Optional[Any] =None
__magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""]
return model, global_step
| 21 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
UpperCAmelCase_ : Dict = 2048
UpperCAmelCase_ : int = 4096
UpperCAmelCase_ : Any = 42
UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false")
UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def lowerCAmelCase_ ( lowerCamelCase ):
def choose_first(lowerCamelCase , lowerCamelCase=False ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if len(lowerCamelCase ) == 1:
__magic_name__ : List[str] =answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__magic_name__ : Tuple ={k: [a[k]] for k in a}
if len(a["""start_token"""] ) > 0:
break
return a
__magic_name__ : str ={"""id""": example["""id"""]}
__magic_name__ : List[Any] =example["""annotations"""]
__magic_name__ : List[str] =annotation["""yes_no_answer"""]
if 0 in yes_no_answer or 1 in yes_no_answer:
__magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""]
__magic_name__ : List[str] =[]
__magic_name__ : Dict =[]
__magic_name__ : str =["""<cls>"""]
else:
__magic_name__ : Tuple =["""short"""]
__magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] )
if len(out["""start_token"""] ) == 0:
# answer will be long if short is not available
__magic_name__ : Tuple =["""long"""]
__magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase )
__magic_name__ : List[Any] =[]
answer.update(lowerCamelCase )
# disregard some samples
if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]:
__magic_name__ : Any =True
else:
__magic_name__ : List[str] =False
__magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""]
if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ):
raise ValueError("""Issue in ID""" , example["""id"""] )
return answer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : Any =example["""document"""]["""tokens"""]
__magic_name__ : str =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__magic_name__ : Dict =["""start_token""", """end_token"""]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__magic_name__ : Tuple =example["""document"""]["""tokens"""]
__magic_name__ : Optional[int] =answer["""start_token"""]
__magic_name__ : List[Any] =answer["""end_token"""]
__magic_name__ : Optional[Any] =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] )
# checking above code
if assertion:
__magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] )
if new != old:
print("""ID:""" , example["""id"""] )
print("""New:""" , lowerCamelCase , end="""\n""" )
print("""Old:""" , lowerCamelCase , end="""\n\n""" )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ):
# overlap will be of doc_stride - q_len
__magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase )
__magic_name__ : Union[str, Any] =out["""answer"""]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids
__magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : List[str] =[]
__magic_name__ : int =[]
__magic_name__ : List[str] =input_ids[:q_len]
__magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Tuple =input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["""category"""][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(lowerCamelCase ),
"end_token": [-100] * len(lowerCamelCase ),
"category": category,
},
}
__magic_name__ : int =out["""context"""].split()
__magic_name__ : Any =splitted_context[answer["""end_token"""]]
__magic_name__ : str =len(
tokenizer(
""" """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids )
__magic_name__ : Optional[int] =len(
tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive
__magic_name__ : Dict =answer["""start_token"""]
__magic_name__ : int =answer["""end_token"""]
if assertion:
__magic_name__ : Any =tokenizer.decode(lowerCamelCase )
if answer["span"] != new:
print("""ISSUE IN TOKENIZATION""" )
print("""OLD:""" , answer["""span"""] )
print("""NEW:""" , lowerCamelCase , end="""\n\n""" )
if len(lowerCamelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__magic_name__ : Any =input_ids[:q_len]
__magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
__magic_name__ : Any =[]
__magic_name__ : List[str] =[]
__magic_name__ : List[str] =[]
__magic_name__ : str =[] # null, yes, no, long, short
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Dict =input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__magic_name__ : List[Any] =start_token - i + q_len
__magic_name__ : Optional[Any] =end_token - i + q_len
answers_category.append(answer["""category"""][0] ) # ["short"] -> "short"
else:
__magic_name__ : Optional[Any] =-100
__magic_name__ : Optional[Any] =-100
answers_category.append("""null""" )
__magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1]
answers_start_token.append(lowerCamelCase )
answers_end_token.append(lowerCamelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("""ISSUE in strided for ID:""" , example["""id"""] )
print("""New:""" , tokenizer.decode(lowerCamelCase ) )
print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ):
__magic_name__ : List[Any] =get_strided_contexts_and_ans(
lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , )
return example
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
with jsonlines.open(lowerCamelCase , """a""" ) as writer:
for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ):
__magic_name__ : int =example["""labels"""]
for ids, start, end, cat in zip(
example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"""input_ids""": ids,
"""start_token""": start,
"""end_token""": end,
"""category""": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions")
UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"]
UpperCAmelCase_ : Optional[int] = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 21 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ : Optional[Any] = {
"configuration_table_transformer": [
"TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TableTransformerConfig",
"TableTransformerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[int] = [
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TableTransformerForObjectDetection",
"TableTransformerModel",
"TableTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """xlm-roberta-xl"""
def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
__magic_name__ : List[str] =vocab_size
__magic_name__ : List[str] =hidden_size
__magic_name__ : Union[str, Any] =num_hidden_layers
__magic_name__ : Any =num_attention_heads
__magic_name__ : Any =hidden_act
__magic_name__ : List[str] =intermediate_size
__magic_name__ : Any =hidden_dropout_prob
__magic_name__ : Union[str, Any] =attention_probs_dropout_prob
__magic_name__ : Any =max_position_embeddings
__magic_name__ : Any =type_vocab_size
__magic_name__ : List[str] =initializer_range
__magic_name__ : Optional[int] =layer_norm_eps
__magic_name__ : Dict =position_embedding_type
__magic_name__ : Any =use_cache
__magic_name__ : Dict =classifier_dropout
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
__magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 21 | 1 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __A ( UpperCamelCase__ ):
UpperCamelCase = (DDPMParallelScheduler,)
def A__ ( self :Any , **__snake_case :Tuple ):
'''simple docstring'''
__magic_name__ : Optional[int] ={
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**__snake_case )
return config
def A__ ( self :Optional[int] ):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__snake_case )
def A__ ( self :Optional[int] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case )
def A__ ( self :Optional[int] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__snake_case )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=__snake_case )
def A__ ( self :Optional[int] ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
self.check_over_configs(thresholding=__snake_case )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , )
def A__ ( self :List[str] ):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=__snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : List[Any] =self.scheduler_classes[0]
__magic_name__ : Any =self.get_scheduler_config()
__magic_name__ : str =scheduler_class(**__snake_case )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : str =self.scheduler_classes[0]
__magic_name__ : Optional[int] =self.get_scheduler_config()
__magic_name__ : int =scheduler_class(**__snake_case )
__magic_name__ : Union[str, Any] =len(__snake_case )
__magic_name__ : str =self.dummy_model()
__magic_name__ : Optional[Any] =self.dummy_sample_deter
__magic_name__ : Any =self.dummy_sample_deter + 0.1
__magic_name__ : Union[str, Any] =self.dummy_sample_deter - 0.1
__magic_name__ : str =samplea.shape[0]
__magic_name__ : Any =torch.stack([samplea, samplea, samplea] , dim=0 )
__magic_name__ : Optional[int] =torch.arange(__snake_case )[0:3, None].repeat(1 , __snake_case )
__magic_name__ : int =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__magic_name__ : Optional[int] =scheduler.batch_step_no_noise(__snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
__magic_name__ : Tuple =torch.sum(torch.abs(__snake_case ) )
__magic_name__ : Union[str, Any] =torch.mean(torch.abs(__snake_case ) )
assert abs(result_sum.item() - 1153.1833 ) < 1E-2
assert abs(result_mean.item() - 0.5005 ) < 1E-3
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : Any =self.scheduler_classes[0]
__magic_name__ : List[Any] =self.get_scheduler_config()
__magic_name__ : Union[str, Any] =scheduler_class(**__snake_case )
__magic_name__ : List[Any] =len(__snake_case )
__magic_name__ : int =self.dummy_model()
__magic_name__ : Tuple =self.dummy_sample_deter
__magic_name__ : Optional[Any] =torch.manual_seed(0 )
for t in reversed(range(__snake_case ) ):
# 1. predict noise residual
__magic_name__ : Optional[Any] =model(__snake_case , __snake_case )
# 2. predict previous mean of sample x_t-1
__magic_name__ : Dict =scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample
__magic_name__ : Optional[Any] =pred_prev_sample
__magic_name__ : str =torch.sum(torch.abs(__snake_case ) )
__magic_name__ : List[Any] =torch.mean(torch.abs(__snake_case ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =self.scheduler_classes[0]
__magic_name__ : Any =self.get_scheduler_config(prediction_type="""v_prediction""" )
__magic_name__ : int =scheduler_class(**__snake_case )
__magic_name__ : Optional[Any] =len(__snake_case )
__magic_name__ : str =self.dummy_model()
__magic_name__ : str =self.dummy_sample_deter
__magic_name__ : List[str] =torch.manual_seed(0 )
for t in reversed(range(__snake_case ) ):
# 1. predict noise residual
__magic_name__ : Optional[int] =model(__snake_case , __snake_case )
# 2. predict previous mean of sample x_t-1
__magic_name__ : str =scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample
__magic_name__ : List[Any] =pred_prev_sample
__magic_name__ : Optional[int] =torch.sum(torch.abs(__snake_case ) )
__magic_name__ : List[Any] =torch.mean(torch.abs(__snake_case ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Tuple =self.scheduler_classes[0]
__magic_name__ : str =self.get_scheduler_config()
__magic_name__ : Optional[int] =scheduler_class(**__snake_case )
__magic_name__ : Dict =[1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=__snake_case )
__magic_name__ : int =scheduler.timesteps
for i, timestep in enumerate(__snake_case ):
if i == len(__snake_case ) - 1:
__magic_name__ : Any =-1
else:
__magic_name__ : List[str] =timesteps[i + 1]
__magic_name__ : Tuple =scheduler.previous_timestep(__snake_case )
__magic_name__ : Any =prev_t.item()
self.assertEqual(__snake_case , __snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : List[Any] =self.scheduler_classes[0]
__magic_name__ : List[Any] =self.get_scheduler_config()
__magic_name__ : Union[str, Any] =scheduler_class(**__snake_case )
__magic_name__ : Tuple =[1_00, 87, 50, 51, 0]
with self.assertRaises(__snake_case , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =self.scheduler_classes[0]
__magic_name__ : Dict =self.get_scheduler_config()
__magic_name__ : Optional[int] =scheduler_class(**__snake_case )
__magic_name__ : int =[1_00, 87, 50, 1, 0]
__magic_name__ : Optional[Any] =len(__snake_case )
with self.assertRaises(__snake_case , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =self.scheduler_classes[0]
__magic_name__ : Dict =self.get_scheduler_config()
__magic_name__ : Union[str, Any] =scheduler_class(**__snake_case )
__magic_name__ : Union[str, Any] =[scheduler.config.num_train_timesteps]
with self.assertRaises(
__snake_case , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=__snake_case )
| 21 |
from pathlib import Path
import fire
from tqdm import tqdm
def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ):
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__magic_name__ : Dict =F"{src_lang}-{tgt_lang}"
print(F"Converting {dataset}-{pair}" )
__magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase )
if save_dir is None:
__magic_name__ : Optional[int] =F"{dataset}-{pair}"
__magic_name__ : int =Path(lowerCamelCase )
save_dir.mkdir(exist_ok=lowerCamelCase )
for split in ds.keys():
print(F"Splitting {split} with {ds[split].num_rows} records" )
# to save to val.source, val.target like summary datasets
__magic_name__ : Dict ="""val""" if split == """validation""" else split
__magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" )
__magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" )
__magic_name__ : Optional[Any] =src_path.open("""w+""" )
__magic_name__ : List[Any] =tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__magic_name__ : str =x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(F"Saved {dataset} dataset to {save_dir}" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 21 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCamelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCamelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return 1_00
@property
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : str =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__magic_name__ : Tuple =MultilingualCLIP(__snake_case )
__magic_name__ : Optional[int] =text_encoder.eval()
return text_encoder
@property
def A__ ( self :Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[Any] ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case )
return model
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_text_encoder
__magic_name__ : Optional[Any] =self.dummy_tokenizer
__magic_name__ : Optional[Any] =self.dummy_unet
__magic_name__ : Tuple =self.dummy_movq
__magic_name__ : List[str] =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
__magic_name__ : str ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case )
# create init_image
__magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
__magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa )
__magic_name__ : Any =0
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Dict =torch.manual_seed(__snake_case )
else:
__magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : List[Any] ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple ="""cpu"""
__magic_name__ : List[Any] =self.get_dummy_components()
__magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case )
__magic_name__ : Tuple =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : List[Any] =output.images
__magic_name__ : Any =pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
__magic_name__ : int =image[0, -3:, -3:, -1]
__magic_name__ : str =image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
__magic_name__ : Optional[Any] =np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A__ ( self :Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
__magic_name__ : int =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa )
__magic_name__ : Any =0
__magic_name__ : int ="""a hat"""
__magic_name__ : int =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
__magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
__magic_name__ : int =pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ , __magic_name__ : Dict =pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Optional[Any] =pipeline(
__snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
__magic_name__ : Optional[int] =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 |
from __future__ import annotations
from fractions import Fraction
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =[]
__magic_name__ : List[Any] =11
__magic_name__ : Tuple =int("""1""" + """0""" * digit_len )
for num in range(lowerCamelCase , lowerCamelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCamelCase , lowerCamelCase ):
solutions.append(F"{num}/{den}" )
den += 1
num += 1
__magic_name__ : List[str] =10
return solutions
def lowerCAmelCase_ ( lowerCamelCase = 2 ):
__magic_name__ : str =1.0
for fraction in fraction_list(lowerCamelCase ):
__magic_name__ : int =Fraction(lowerCamelCase )
result *= frac.denominator / frac.numerator
return int(lowerCamelCase )
if __name__ == "__main__":
print(solution())
| 21 | 1 |
def lowerCAmelCase_ ( lowerCamelCase = 1000 ):
__magic_name__ : Optional[int] =-1
__magic_name__ : Tuple =0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
__magic_name__ : str =(n * n - 2 * a * n) // (2 * n - 2 * a)
__magic_name__ : Tuple =n - a - b
if c * c == (a * a + b * b):
__magic_name__ : Any =a * b * c
if candidate >= product:
__magic_name__ : Optional[int] =candidate
return product
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( lowerCamelCase ):
# A local function to see if a dot lands in the circle.
def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool:
__magic_name__ : Dict =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__magic_name__ : Union[str, Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCamelCase ) )
# The ratio of the area for circle to square is pi/4.
__magic_name__ : List[Any] =proportion * 4
print(F"The estimated value of pi is {pi_estimate}" )
print(F"The numpy value of pi is {pi}" )
print(F"The total error is {abs(pi - pi_estimate )}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ):
return mean(
function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ):
def identity_function(lowerCamelCase ) -> float:
return x
__magic_name__ : Optional[int] =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : str =(max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {expected_value}" )
print(F"Total error is {abs(estimated_value - expected_value )}" )
print("""******************""" )
def lowerCAmelCase_ ( lowerCamelCase ):
def function_to_integrate(lowerCamelCase ) -> float:
return sqrt(4.0 - x * x )
__magic_name__ : Dict =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {pi}" )
print(F"Total error is {abs(estimated_value - pi )}" )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
from __future__ import annotations
import numpy as np
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ , __magic_name__ :Optional[int] = np.shape(snake_case )
if rows != columns:
__magic_name__ :Dict = (
'''\'table\' has to be of square shaped array but got a '''
f'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(snake_case )
__magic_name__ :List[str] = np.zeros((rows, columns) )
__magic_name__ :Union[str, Any] = np.zeros((rows, columns) )
for i in range(snake_case ):
for j in range(snake_case ):
__magic_name__ :List[str] = sum(lower[i][k] * upper[k][j] for k in range(snake_case ) )
if upper[j][j] == 0:
raise ArithmeticError('''No LU decomposition exists''' )
__magic_name__ :str = (table[i][j] - total) / upper[j][j]
__magic_name__ :int = 1
for j in range(snake_case, snake_case ):
__magic_name__ :Any = sum(lower[i][k] * upper[k][j] for k in range(snake_case ) )
__magic_name__ :Dict = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __A ( tf.keras.layers.Layer ):
def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ):
'''simple docstring'''
super().__init__()
__magic_name__ : Optional[int] =pad_token_id
__magic_name__ : List[Any] =max_length
__magic_name__ : Dict =vocab
__magic_name__ : int =merges
__magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case )
@classmethod
def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ):
'''simple docstring'''
__magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()]
__magic_name__ : str =tokenizer.get_vocab()
return cls(__snake_case , __snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ):
'''simple docstring'''
__magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case )
return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Optional[Any] , __snake_case :List[Any] ):
'''simple docstring'''
return cls(**__snake_case )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ):
'''simple docstring'''
__magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case )
__magic_name__ : Tuple =tf.ones_like(__snake_case )
if self.pad_token_id is not None:
# pad the tokens up to max length
__magic_name__ : Tuple =max_length if max_length is not None else self.max_length
if max_length is not None:
__magic_name__ , __magic_name__ : Tuple =pad_model_inputs(
__snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 21 | 0 |
def _A ( ) -> list[list[int]]:
"""simple docstring"""
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
__snake_case = generate_large_matrix()
__snake_case = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def _A ( _lowercase ) -> None:
"""simple docstring"""
assert all(row == sorted(_lowercase , reverse=_lowercase ) for row in grid )
assert all(list(_lowercase ) == sorted(_lowercase , reverse=_lowercase ) for col in zip(*_lowercase ) )
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCamelCase = (left + right) // 2
__UpperCamelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCamelCase = mid + 1
else:
__UpperCamelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(_lowercase )
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = len(grid[0] )
for i in range(len(_lowercase ) ):
__UpperCamelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(_lowercase ) * len(grid[0] )) - total
def _A ( _lowercase ) -> int:
"""simple docstring"""
return len([number for row in grid for number in row if number < 0] )
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
for row in grid:
for i, number in enumerate(_lowercase ):
if number < 0:
total += len(_lowercase ) - i
break
return total
def _A ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('Running benchmarks' )
__UpperCamelCase = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCamelCase = timeit(f'''{func}(grid=grid)''' , setup=_lowercase , number=5_00 )
print(f'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 1 |
import math
import tensorflow as tf
from packaging import version
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype )
__magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase )
return x * tf.tanh(tf.math.softplus(lowerCamelCase ) )
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ):
__magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase )
return a * tf.math.sigmoid(lowerCamelCase )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase )
UpperCAmelCase_ : List[str] = tf.keras.activations.gelu
UpperCAmelCase_ : Dict = approximate_gelu_wrap
else:
UpperCAmelCase_ : Dict = _gelu
UpperCAmelCase_ : str = _gelu_new
UpperCAmelCase_ : Any = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowerCAmelCase_ ( lowerCamelCase ):
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 21 | 0 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Any:
_A = filter(lambda _snake_case : p.requires_grad , model.parameters() )
_A = sum([np.prod(p.size() ) for p in model_parameters] )
return params
UpperCAmelCase_ = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Any:
if metric == "rouge2":
_A = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
_A = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
_A = '''{val_avg_em:.4f}-{step_count}'''
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
''' function.''' )
_A = ModelCheckpoint(
dirpath=_snake_case , filename=_snake_case , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :Any ) -> Union[str, Any]:
return EarlyStopping(
monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_snake_case , verbose=_snake_case , )
class lowerCamelCase__ ( pl.Callback):
"""simple docstring"""
def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ) -> Dict:
_A = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__lowerCAmelCase )
@rank_zero_only
def snake_case_ ( self : Any , __lowerCAmelCase : pl.Trainer , __lowerCAmelCase : pl.LightningModule , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any]=True ) -> None:
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
_A = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A = od / '''test_results.txt'''
_A = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=__lowerCAmelCase )
generations_file.parent.mkdir(exist_ok=__lowerCAmelCase )
with open(__lowerCAmelCase , '''a+''' ) as writer:
for key in sorted(__lowerCAmelCase ):
if key in ["log", "progress_bar", "preds"]:
continue
_A = metrics[key]
if isinstance(__lowerCAmelCase , torch.Tensor ):
_A = val.item()
_A = f'''{key}: {val:.6f}\n'''
writer.write(__lowerCAmelCase )
if not save_generations:
return
if "preds" in metrics:
_A = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(__lowerCAmelCase )
@rank_zero_only
def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> List[str]:
try:
_A = pl_module.model.model.num_parameters()
except AttributeError:
_A = pl_module.model.num_parameters()
_A = count_trainable_parameters(__lowerCAmelCase )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} )
@rank_zero_only
def snake_case_ ( self : Any , __lowerCAmelCase : pl.Trainer , __lowerCAmelCase : pl.LightningModule ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__lowerCAmelCase , __lowerCAmelCase , '''test''' )
@rank_zero_only
def snake_case_ ( self : List[Any] , __lowerCAmelCase : pl.Trainer , __lowerCAmelCase : List[str] ) -> Dict:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 2 |
from collections.abc import Sequence
def lowerCAmelCase_ ( lowerCamelCase = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__magic_name__ : str =nums[0]
for i in range(1 , len(lowerCamelCase ) ):
__magic_name__ : Any =nums[i]
__magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip())
UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 21 | 0 |
'''simple docstring'''
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def A_( A : str , A : List[Any] , A : Optional[Any]):
UpperCamelCase = AutoConfig.from_pretrained(A)
UpperCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=A)
UpperCamelCase = checkpoints.load_tax_checkpoint(A)
UpperCamelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
UpperCamelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
UpperCamelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].')
# Encoder
for layer_index in range(config.num_layers):
UpperCamelCase = f'''layers_{str(A)}'''
# Self-Attention
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
UpperCamelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
UpperCamelCase = flax_model.params['encoder']['block'][str(A)]['layer']
UpperCamelCase = tax_attention_key
UpperCamelCase = tax_attention_out
UpperCamelCase = tax_attention_query
UpperCamelCase = tax_attention_value
UpperCamelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_global_layer_norm
if split_mlp_wi:
UpperCamelCase = tax_mlp_wi_a
UpperCamelCase = tax_mlp_wi_a
else:
UpperCamelCase = tax_mlp_wi
UpperCamelCase = tax_mlp_wo
UpperCamelCase = tax_mlp_layer_norm
UpperCamelCase = flax_model_encoder_layer_block
# Only for layer 0:
UpperCamelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
UpperCamelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
UpperCamelCase = tax_encoder_global_rel_embedding
# Assigning
UpperCamelCase = tax_model['target']['encoder']['encoder_norm']['scale']
UpperCamelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
UpperCamelCase = f'''layers_{str(A)}'''
# Self-Attention
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
UpperCamelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
UpperCamelCase = tax_enc_dec_attention_module['key']['kernel']
UpperCamelCase = tax_enc_dec_attention_module['out']['kernel']
UpperCamelCase = tax_enc_dec_attention_module['query']['kernel']
UpperCamelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
UpperCamelCase = flax_model.params['decoder']['block'][str(A)]['layer']
UpperCamelCase = tax_attention_key
UpperCamelCase = tax_attention_out
UpperCamelCase = tax_attention_query
UpperCamelCase = tax_attention_value
UpperCamelCase = tax_pre_attention_layer_norm
UpperCamelCase = tax_enc_dec_attention_key
UpperCamelCase = tax_enc_dec_attention_out
UpperCamelCase = tax_enc_dec_attention_query
UpperCamelCase = tax_enc_dec_attention_value
UpperCamelCase = tax_cross_layer_norm
if split_mlp_wi:
UpperCamelCase = tax_mlp_wi_a
UpperCamelCase = tax_mlp_wi_a
else:
UpperCamelCase = tax_mlp_wi
UpperCamelCase = tax_mlp_wo
UpperCamelCase = txa_mlp_layer_norm
UpperCamelCase = flax_model_decoder_layer_block
# Decoder Normalization
UpperCamelCase = tax_model['target']['decoder']['decoder_norm']['scale']
UpperCamelCase = txa_decoder_norm
# Only for layer 0:
UpperCamelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
UpperCamelCase = tax_decoder_rel_embedding
# Token Embeddings
UpperCamelCase = tax_model['target']['token_embedder']['embedding']
UpperCamelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
UpperCamelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(A)
print('T5X Model was sucessfully converted!')
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
lowerCAmelCase : int = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 3 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __A :
UpperCamelCase = 42
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def __call__( self :Union[str, Any] ):
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class __A :
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None
__magic_name__ : Optional[int] =len(self.languages ) if self.languages else None
def __call__( self :List[str] ):
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def A__ ( self :str , __snake_case :str ):
'''simple docstring'''
__magic_name__ : Optional[int] =set(self.languages )
if self.languages and set(__snake_case ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__magic_name__ : Any =[]
for lang, text in translation_dict.items():
if isinstance(__snake_case , __snake_case ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) )
return {"language": languages, "translation": translations}
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 21 | 0 |
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : List[str] = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
__UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCAmelCase = model_type_to_module_name(_UpperCAmelCase )
lowerCAmelCase = importlib.import_module(F'.{module_name}' , 'transformers.models' )
try:
return getattr(_UpperCAmelCase , _UpperCAmelCase )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCAmelCase = importlib.import_module('transformers' )
if hasattr(_UpperCAmelCase , _UpperCAmelCase ):
return getattr(_UpperCAmelCase , _UpperCAmelCase )
return None
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : List[Any] , ):
lowerCAmelCase = get_file_from_repo(
_UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(_UpperCAmelCase , encoding='utf-8' ) as reader:
return json.load(_UpperCAmelCase )
class a :
def __init__( self ):
"""simple docstring"""
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(_snake_case )
def UpperCamelCase__ ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = kwargs.pop('config' , _snake_case )
lowerCAmelCase = kwargs.pop('trust_remote_code' , _snake_case )
lowerCAmelCase = True
lowerCAmelCase ,lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(_snake_case , **_snake_case )
lowerCAmelCase = config_dict.get('image_processor_type' , _snake_case )
lowerCAmelCase = None
if "AutoImageProcessor" in config_dict.get('auto_map' , {} ):
lowerCAmelCase = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
lowerCAmelCase = config_dict.pop('feature_extractor_type' , _snake_case )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
lowerCAmelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ):
lowerCAmelCase = config_dict['auto_map']['AutoFeatureExtractor']
lowerCAmelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(_snake_case , _snake_case ):
lowerCAmelCase = AutoConfig.from_pretrained(_snake_case , **_snake_case )
# It could be in `config.image_processor_type``
lowerCAmelCase = getattr(_snake_case , 'image_processor_type' , _snake_case )
if hasattr(_snake_case , 'auto_map' ) and "AutoImageProcessor" in config.auto_map:
lowerCAmelCase = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
lowerCAmelCase = image_processor_class_from_name(_snake_case )
lowerCAmelCase = image_processor_auto_map is not None
lowerCAmelCase = image_processor_class is not None or type(_snake_case ) in IMAGE_PROCESSOR_MAPPING
lowerCAmelCase = resolve_trust_remote_code(
_snake_case , _snake_case , _snake_case , _snake_case )
if has_remote_code and trust_remote_code:
lowerCAmelCase = get_class_from_dynamic_module(
_snake_case , _snake_case , **_snake_case )
lowerCAmelCase = kwargs.pop('code_revision' , _snake_case )
if os.path.isdir(_snake_case ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(_snake_case , **_snake_case )
elif image_processor_class is not None:
return image_processor_class.from_dict(_snake_case , **_snake_case )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(_snake_case ) in IMAGE_PROCESSOR_MAPPING:
lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(_snake_case )]
return image_processor_class.from_dict(_snake_case , **_snake_case )
raise ValueError(
F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '
F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def UpperCamelCase__ ( _snake_case , _snake_case ):
"""simple docstring"""
IMAGE_PROCESSOR_MAPPING.register(_snake_case , _snake_case )
| 4 |
from sklearn.metrics import matthews_corrcoef
import datasets
UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"""
] , )
def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ):
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ),
}
| 21 | 0 |
'''simple docstring'''
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class UpperCAmelCase_ ( unittest.TestCase , _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = load_tool("""text-to-speech""" )
self.tool.setup()
def _lowercase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCAmelCase = self.tool("""hey""" )
_lowerCAmelCase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
def _lowercase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCAmelCase = self.tool("""hey""" )
_lowerCAmelCase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
| 5 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase )
if display:
print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) )
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
if conf_path is None:
__magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml"""
__magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase )
__magic_name__ : Tuple =VQModel(**config.model.params )
if ckpt_path is None:
__magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt"""
__magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase )
if ".ckpt" in ckpt_path:
__magic_name__ : Any =sd["""state_dict"""]
model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
model.to(lowerCamelCase )
del sd
return model
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase )
print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" )
__magic_name__ : List[Any] =model.decode(lowerCamelCase )
return xrec
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 )
if reload:
__magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase )
importlib.reload(lowerCamelCase )
return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls )
def lowerCAmelCase_ ( lowerCamelCase ):
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ):
__magic_name__ : str =instantiate_from_config(lowerCamelCase )
if sd is not None:
model.load_state_dict(lowerCamelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# load the specified checkpoint
if ckpt:
__magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" )
__magic_name__ : Any =pl_sd["""global_step"""]
print(F"loaded model from global step {global_step}." )
else:
__magic_name__ : List[Any] ={"""state_dict""": None}
__magic_name__ : Optional[Any] =None
__magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""]
return model, global_step
| 21 | 0 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: tuple[int, int] , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = position
SCREAMING_SNAKE_CASE__ = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
SCREAMING_SNAKE_CASE__ = []
for position in positions:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(UpperCamelCase__ )
return permissible_positions
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ):
return not any(elem == 0 for row in board for elem in row )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] , UpperCamelCase__: tuple[int, int] , UpperCamelCase__: int ):
if is_complete(UpperCamelCase__ ):
return True
for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = position
if board[y][x] == 0:
SCREAMING_SNAKE_CASE__ = curr + 1
if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ):
return True
SCREAMING_SNAKE_CASE__ = 0
return False
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )]
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = 1
if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ):
return board
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = f'''Open Kight Tour cannot be performed on a board of size {n}'''
raise ValueError(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self :Dict ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 21 | 0 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : list[float] , _snake_case : list[float] ) -> float:
'''simple docstring'''
_A = sorted(numsa + numsa )
_A , _A = divmod(len(_snake_case ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
a = [float(x) for x in input('''Enter the elements of first array: ''').split()]
a = [float(x) for x in input('''Enter the elements of second array: ''').split()]
print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 7 |
UpperCAmelCase_ : Tuple = 0 # The first color of the flag.
UpperCAmelCase_ : Any = 1 # The second color of the flag.
UpperCAmelCase_ : str = 2 # The third color of the flag.
UpperCAmelCase_ : Tuple = (red, white, blue)
def lowerCAmelCase_ ( lowerCamelCase ):
if not sequence:
return []
if len(lowerCamelCase ) == 1:
return list(lowerCamelCase )
__magic_name__ : int =0
__magic_name__ : str =len(lowerCamelCase ) - 1
__magic_name__ : Optional[Any] =0
while mid <= high:
if sequence[mid] == colors[0]:
__magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid]
high -= 1
else:
__magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values"
raise ValueError(lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip()
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 21 | 0 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = ['''image_processor''', '''tokenizer''']
lowerCAmelCase = '''CLIPImageProcessor'''
lowerCAmelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase):
'''simple docstring'''
__A : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__A : Optional[Any] = kwargs.pop('feature_extractor')
__A : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.')
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.')
super().__init__(_UpperCAmelCase , _UpperCAmelCase)
def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase):
'''simple docstring'''
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.')
if text is not None:
__A : int = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase)
if images is not None:
__A : Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase)
if text is not None and images is not None:
__A : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase) , tensor_type=_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase):
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase):
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase)
@property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Dict = self.tokenizer.model_input_names
__A : Tuple = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor | 8 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __A ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = 1
@register_to_config
def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ):
'''simple docstring'''
__magic_name__ : Dict =None
__magic_name__ : List[str] =None
__magic_name__ : str =None
def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case )
def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__magic_name__ : int =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__magic_name__ : str =std.flatten()
while len(std.shape ) < len(score.shape ):
__magic_name__ : List[str] =std.unsqueeze(-1 )
__magic_name__ : Union[str, Any] =-score / std
# compute
__magic_name__ : Tuple =-1.0 / len(self.timesteps )
__magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__magic_name__ : Dict =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__magic_name__ : Any =beta_t.unsqueeze(-1 )
__magic_name__ : Dict =-0.5 * beta_t * x
__magic_name__ : Optional[int] =torch.sqrt(__snake_case )
__magic_name__ : int =drift - diffusion**2 * score
__magic_name__ : List[str] =x + drift * dt
# add noise
__magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype )
__magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self :List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 21 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 9 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =feature_size
__magic_name__ : Union[str, Any] =sampling_rate
__magic_name__ : List[Any] =padding_value
__magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" )
__magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case )
super().__init__(**__snake_case )
def A__ ( self :Any , __snake_case :Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ):
'''simple docstring'''
if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
__magic_name__ : Union[str, Any] ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f" to this method that includes {self.model_input_names[0]}, but you provided"
f" {list(processed_features.keys() )}" )
__magic_name__ : int =processed_features[self.model_input_names[0]]
__magic_name__ : Union[str, Any] =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__snake_case ) == 0:
if return_attention_mask:
__magic_name__ : List[str] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
__magic_name__ : Optional[int] =required_input[0]
if isinstance(__snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
__magic_name__ : Optional[Any] =0
while len(required_input[index] ) == 0:
index += 1
if index < len(__snake_case ):
__magic_name__ : List[str] =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__snake_case ):
__magic_name__ : int ="""tf"""
elif is_torch_tensor(__snake_case ):
__magic_name__ : str ="""pt"""
elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ):
__magic_name__ : List[Any] ="""np"""
else:
raise ValueError(
f"type of {first_element} unknown: {type(__snake_case )}. "
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
__magic_name__ : List[str] =to_numpy(__snake_case )
else:
__magic_name__ : str =[to_numpy(__snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
__magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case )
__magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]]
__magic_name__ : Dict =len(__snake_case )
if not all(len(__snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
__magic_name__ : Optional[int] =[]
for i in range(__snake_case ):
__magic_name__ : Any ={k: v[i] for k, v in processed_features.items()}
# truncation
__magic_name__ : List[str] =self._truncate(
__snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , )
truncated_inputs.append(__snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
__magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
__magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH
__magic_name__ : str ={}
for i in range(__snake_case ):
# padding
__magic_name__ : List[str] =self._pad(
truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
__magic_name__ : Dict =[]
if value.dtype is np.dtype(np.floataa ):
__magic_name__ : Optional[int] =value.astype(np.floataa )
batch_outputs[key].append(__snake_case )
return BatchFeature(__snake_case , tensor_type=__snake_case )
def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
__magic_name__ : Dict =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
__magic_name__ : Any =len(__snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
__magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
__magic_name__ : List[Any] =max_length - len(__snake_case )
if self.padding_side == "right":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (0, difference) )
__magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
__magic_name__ : str =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (difference, 0) )
__magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
__magic_name__ : List[Any] =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
__magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : Any =len(__snake_case ) > max_length
if needs_to_be_truncated:
__magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
__magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length]
return processed_features
def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ):
'''simple docstring'''
if padding is not False:
if padding is True:
__magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__snake_case , __snake_case ):
__magic_name__ : Optional[int] =PaddingStrategy(__snake_case )
elif isinstance(__snake_case , __snake_case ):
__magic_name__ : Any =padding
else:
__magic_name__ : Any =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 21 | 0 |
from __future__ import annotations
import math
def _snake_case ( __snake_case ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
_lowerCAmelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def _snake_case ( __snake_case ):
if not isinstance(__snake_case , __snake_case ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
_UpperCamelCase = []
for num in range(len(__snake_case ) ):
_UpperCamelCase = 0
while 2 * i * i <= odd_composites[num]:
_UpperCamelCase = odd_composites[num] - 2 * i * i
if is_prime(__snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__snake_case ) == n:
return list_nums
return []
def _snake_case ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f'{solution() = }')
| 10 |
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class __A ( nn.Module ):
def __init__( self :List[Any] ):
'''simple docstring'''
super().__init__()
__magic_name__ : Tuple =nn.Linear(3 , 4 )
__magic_name__ : Union[str, Any] =nn.BatchNormad(4 )
__magic_name__ : List[str] =nn.Linear(4 , 5 )
def A__ ( self :Dict , __snake_case :Tuple ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) )
class __A ( UpperCamelCase__ ):
def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ):
'''simple docstring'''
return (args[0] + 1,) + args[1:], kwargs
class __A ( UpperCamelCase__ ):
def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ):
'''simple docstring'''
return output + 1
class __A ( unittest.TestCase ):
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : Tuple =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
self.assertEqual(test_model._hf_hook , __snake_case )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : List[str] =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
add_hook_to_module(__snake_case , __snake_case , append=__snake_case )
self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
__magic_name__ : Any =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(x + 1 )
__magic_name__ : Optional[Any] =test_model(x + 2 )
__magic_name__ : int =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : int =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : str =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : List[str] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
assert torch.allclose(__snake_case , __snake_case , atol=1E-5 )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
__magic_name__ : Dict =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(__snake_case )
__magic_name__ : Dict =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Optional[int] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
assert torch.allclose(__snake_case , output + 2 , atol=1E-5 )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : Tuple =ModelForTest()
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Dict =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 ) )
self.assertTrue(outputa.requires_grad )
__magic_name__ : Any =True
__magic_name__ : Any =test_model(__snake_case )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[Any] =model(__snake_case )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) )
__magic_name__ : int =torch.randn(2 , 3 ).to(0 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , torch.device(0 ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : Union[str, Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
__magic_name__ : Tuple ={
"""execution_device""": 0 if torch.cuda.is_available() else """cpu""",
"""offload""": True,
"""offload_buffers""": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Tuple =torch.randn(2 , 3 )
__magic_name__ : int =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : str =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Optional[int] =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Dict =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Any =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
| 21 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class __A :
'''simple docstring'''
def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=2 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , A=0 , ) -> Union[str, Any]:
"""simple docstring"""
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = scope
_a = projection_dim
def a__ (self ) -> int:
"""simple docstring"""
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , )
_a = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ (self , A , A , A , A , A , A , A ) -> int:
"""simple docstring"""
_a = TFDPRContextEncoder(config=A )
_a = model(A , attention_mask=A , token_type_ids=A )
_a = model(A , token_type_ids=A )
_a = model(A )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def a__ (self , A , A , A , A , A , A , A ) -> Tuple:
"""simple docstring"""
_a = TFDPRQuestionEncoder(config=A )
_a = model(A , attention_mask=A , token_type_ids=A )
_a = model(A , token_type_ids=A )
_a = model(A )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def a__ (self , A , A , A , A , A , A , A ) -> List[str]:
"""simple docstring"""
_a = TFDPRReader(config=A )
_a = model(A , attention_mask=A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def a__ (self ) -> str:
"""simple docstring"""
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {'''input_ids''': input_ids}
return config, inputs_dict
@require_tf
class __A ( A , A , unittest.TestCase ):
'''simple docstring'''
__lowerCamelCase : Dict = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
__lowerCamelCase : List[str] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {}
__lowerCamelCase : int = False
__lowerCamelCase : Any = False
__lowerCamelCase : Any = False
__lowerCamelCase : List[Any] = False
__lowerCamelCase : List[Any] = False
def a__ (self ) -> List[str]:
"""simple docstring"""
_a = TFDPRModelTester(self )
_a = ConfigTester(self , config_class=A , hidden_size=37 )
def a__ (self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ (self ) -> Union[str, Any]:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*A )
def a__ (self ) -> int:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*A )
def a__ (self ) -> Dict:
"""simple docstring"""
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*A )
@slow
def a__ (self ) -> List[Any]:
"""simple docstring"""
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFDPRContextEncoder.from_pretrained(A )
self.assertIsNotNone(A )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFDPRContextEncoder.from_pretrained(A )
self.assertIsNotNone(A )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFDPRQuestionEncoder.from_pretrained(A )
self.assertIsNotNone(A )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFDPRReader.from_pretrained(A )
self.assertIsNotNone(A )
@require_tf
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def a__ (self ) -> Any:
"""simple docstring"""
_a = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' )
_a = tf.constant(
[[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP]
_a = model(A )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
_a = tf.constant(
[
[
0.03236253,
0.12753335,
0.16818509,
0.00279786,
0.3896933,
0.24264945,
0.2178971,
-0.02335227,
-0.08481959,
-0.14324117,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 11 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCamelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCamelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return 1_00
@property
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : str =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__magic_name__ : Tuple =MultilingualCLIP(__snake_case )
__magic_name__ : Optional[int] =text_encoder.eval()
return text_encoder
@property
def A__ ( self :Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[Any] ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case )
return model
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_text_encoder
__magic_name__ : Optional[Any] =self.dummy_tokenizer
__magic_name__ : Optional[Any] =self.dummy_unet
__magic_name__ : Tuple =self.dummy_movq
__magic_name__ : List[str] =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
__magic_name__ : str ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case )
# create init_image
__magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
__magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa )
__magic_name__ : Any =0
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Dict =torch.manual_seed(__snake_case )
else:
__magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : List[Any] ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple ="""cpu"""
__magic_name__ : List[Any] =self.get_dummy_components()
__magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case )
__magic_name__ : Tuple =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : List[Any] =output.images
__magic_name__ : Any =pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
__magic_name__ : int =image[0, -3:, -3:, -1]
__magic_name__ : str =image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
__magic_name__ : Optional[Any] =np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A__ ( self :Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
__magic_name__ : int =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa )
__magic_name__ : Any =0
__magic_name__ : int ="""a hat"""
__magic_name__ : int =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
__magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
__magic_name__ : int =pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ , __magic_name__ : Dict =pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Optional[Any] =pipeline(
__snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
__magic_name__ : Optional[int] =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 | 0 |
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
lowercase__ : str = sorted(string.lower() )
return len(lowercase_ ) == len(set(lowercase_ ) )
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = input("""Enter a string """).strip()
lowerCamelCase__ : Optional[Any] = is_isogram(input_str)
print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
| 12 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __A :
def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ):
'''simple docstring'''
__magic_name__ : Optional[int] =parent
__magic_name__ : List[Any] =batch_size
__magic_name__ : List[str] =is_training
__magic_name__ : List[str] =use_auxiliary_loss
__magic_name__ : Union[str, Any] =num_queries
__magic_name__ : str =num_channels
__magic_name__ : Union[str, Any] =min_size
__magic_name__ : Union[str, Any] =max_size
__magic_name__ : Optional[int] =num_labels
__magic_name__ : Tuple =hidden_dim
__magic_name__ : Any =hidden_dim
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__snake_case )
__magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case )
__magic_name__ : List[str] =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5
).float()
__magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long()
__magic_name__ : str =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Dict =MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__magic_name__ : str =self.num_queries
__magic_name__ : Dict =self.num_labels
__magic_name__ : int =[1, 1, 1, 1]
__magic_name__ : List[str] =self.num_channels
__magic_name__ : str =64
__magic_name__ : List[str] =1_28
__magic_name__ : Optional[Any] =self.hidden_dim
__magic_name__ : Tuple =self.hidden_dim
__magic_name__ : Optional[int] =self.hidden_dim
return config
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs()
__magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ):
'''simple docstring'''
__magic_name__ : int =output.encoder_hidden_states
__magic_name__ : List[str] =output.pixel_decoder_hidden_states
__magic_name__ : int =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , config.decoder_layers )
def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ):
'''simple docstring'''
with torch.no_grad():
__magic_name__ : List[str] =MaskaFormerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__snake_case , __snake_case )
def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
def comm_check_on_output(__snake_case :List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : List[str] =model(__snake_case )
comm_check_on_output(__snake_case )
__magic_name__ : Any =model(
pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
comm_check_on_output(__snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Any =MaskaFormerModelTester(self )
__magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def A__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def A__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def A__ ( self :int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def A__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple =model_class(__snake_case )
__magic_name__ : Optional[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple =[*signature.parameters.keys()]
__magic_name__ : Optional[Any] =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@slow
def A__ ( self :Tuple ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =(self.model_tester.min_size,) * 2
__magic_name__ : Union[str, Any] ={
"""pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ),
"""class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(),
}
__magic_name__ : Optional[Any] =self.model_tester.get_config()
__magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case )
__magic_name__ : Any =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case )
__magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case )
self.assertTrue(outputs.attentions is not None )
def A__ ( self :int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__magic_name__ : List[Any] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Dict =model_class(__snake_case )
model.to(__snake_case )
model.train()
__magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss
loss.backward()
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : List[str] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Tuple =True
__magic_name__ : Optional[int] =True
__magic_name__ : int =model_class(__snake_case ).to(__snake_case )
model.train()
__magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
__magic_name__ : Optional[int] =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__magic_name__ : Optional[int] =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCAmelCase_ : Dict = 1e-4
def lowerCAmelCase_ ( ):
__magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __A ( unittest.TestCase ):
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case )
__magic_name__ : int =self.default_image_processor
__magic_name__ : List[Any] =prepare_img()
__magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Dict =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : List[str] =model(**__snake_case )
__magic_name__ : Any =torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Dict =torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Any =torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Optional[int] =self.default_image_processor
__magic_name__ : Tuple =prepare_img()
__magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : str =model(**__snake_case )
# masks_queries_logits
__magic_name__ : List[Any] =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__magic_name__ : List[Any] =[
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
__magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
__magic_name__ : Any =outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__magic_name__ : int =torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Any =self.default_image_processor
__magic_name__ : Union[str, Any] =image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
__magic_name__ : str =inputs["""pixel_values"""].to(__snake_case )
__magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]]
__magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]]
with torch.no_grad():
__magic_name__ : Dict =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
| 21 | 0 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str:
return "\n".join(
F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 13 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """segformer"""
def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(**__snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , )
__magic_name__ : Dict =num_channels
__magic_name__ : str =num_encoder_blocks
__magic_name__ : List[Any] =depths
__magic_name__ : Optional[Any] =sr_ratios
__magic_name__ : List[str] =hidden_sizes
__magic_name__ : List[str] =patch_sizes
__magic_name__ : Any =strides
__magic_name__ : Optional[Any] =mlp_ratios
__magic_name__ : str =num_attention_heads
__magic_name__ : int =hidden_act
__magic_name__ : List[Any] =hidden_dropout_prob
__magic_name__ : Optional[Any] =attention_probs_dropout_prob
__magic_name__ : Optional[Any] =classifier_dropout_prob
__magic_name__ : List[str] =initializer_range
__magic_name__ : List[str] =drop_path_rate
__magic_name__ : List[Any] =layer_norm_eps
__magic_name__ : List[str] =decoder_hidden_size
__magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case )
__magic_name__ : Dict =semantic_loss_ignore_index
class __A ( UpperCamelCase__ ):
UpperCamelCase = version.parse("""1.11""" )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A__ ( self :Any ):
'''simple docstring'''
return 1E-4
@property
def A__ ( self :int ):
'''simple docstring'''
return 12
| 21 | 0 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[Any] ,__a : List[str] ,__a : Tuple ) -> Dict:
"""simple docstring"""
_a : Optional[int] = FunnelConfig.from_json_file(__a )
print(F"""Building PyTorch model from configuration: {config}""" )
_a : Optional[Any] = FunnelBaseModel(__a ) if base_model else FunnelModel(__a )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(__a ,__a ,__a )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() ,__a )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.'''
)
a__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 14 |
import heapq
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
__magic_name__ : Tuple =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0]
chosen_vertices.add(lowerCamelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__magic_name__ : Tuple =elem[1][1].index(lowerCamelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 | 0 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=1E-1_2 ) -> str:
"""simple docstring"""
lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__magic_name__ , axis=1 ) , a_min=__magic_name__ ) ).T
lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__magic_name__ , axis=1 ) , a_min=__magic_name__ ) ).T
return jnp.matmul(__magic_name__ , norm_emb_a.T )
class A ( nn.Module ):
'''simple docstring'''
A__ = 42
A__ = jnp.floataa
def lowerCamelCase__ (self : Dict ) -> Dict:
"""simple docstring"""
lowercase__ = FlaxCLIPVisionModule(self.config.vision_config )
lowercase__ = nn.Dense(self.config.projection_dim , use_bias=_UpperCAmelCase , dtype=self.dtype )
lowercase__ = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
lowercase__ = self.param(
"""special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
lowercase__ = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) )
lowercase__ = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) )
def __call__(self : List[str] , _UpperCAmelCase : List[Any] ) -> List[str]:
"""simple docstring"""
lowercase__ = self.vision_model(_UpperCAmelCase )[1]
lowercase__ = self.visual_projection(_UpperCAmelCase )
lowercase__ = jax_cosine_distance(_UpperCAmelCase , self.special_care_embeds )
lowercase__ = jax_cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
lowercase__ = 0.0
lowercase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
lowercase__ = jnp.round(_UpperCAmelCase , 3 )
lowercase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCAmelCase )
# Use a lower threshold if an image has any special care concept
lowercase__ = is_special_care * 0.01
lowercase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
lowercase__ = jnp.round(_UpperCAmelCase , 3 )
lowercase__ = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = CLIPConfig
A__ = '''clip_input'''
A__ = FlaxStableDiffusionSafetyCheckerModule
def __init__(self : List[str] , _UpperCAmelCase : CLIPConfig , _UpperCAmelCase : Optional[Tuple] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : jnp.dtype = jnp.floataa , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> Dict:
"""simple docstring"""
if input_shape is None:
lowercase__ = (1, 224, 224, 3)
lowercase__ = self.module_class(config=_UpperCAmelCase , dtype=_UpperCAmelCase , **_UpperCAmelCase )
super().__init__(_UpperCAmelCase , _UpperCAmelCase , input_shape=_UpperCAmelCase , seed=_UpperCAmelCase , dtype=_UpperCAmelCase , _do_init=_do_init )
def lowerCamelCase__ (self : int , _UpperCAmelCase : jax.random.KeyArray , _UpperCAmelCase : Tuple , _UpperCAmelCase : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
lowercase__ = jax.random.normal(_UpperCAmelCase , _UpperCAmelCase )
lowercase__ , lowercase__ = jax.random.split(_UpperCAmelCase )
lowercase__ = {"""params""": params_rng, """dropout""": dropout_rng}
lowercase__ = self.module.init(_UpperCAmelCase , _UpperCAmelCase )["""params"""]
return random_params
def __call__(self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : dict = None , ) -> Dict:
"""simple docstring"""
lowercase__ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
return self.module.apply(
{"""params""": params or self.params} , jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
| 15 |
UpperCAmelCase_ : int = range(2, 20 + 1)
UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)]
UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) )
__magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) )
__magic_name__ , __magic_name__ : Tuple =0, 0
__magic_name__ : Optional[Any] =n - i
__magic_name__ : Union[str, Any] =memo.get(lowerCamelCase )
if sub_memo is not None:
__magic_name__ : int =sub_memo.get(lowerCamelCase )
if jumps is not None and len(lowerCamelCase ) > 0:
# find and make the largest jump without going over
__magic_name__ : Dict =-1
for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__magic_name__ : Optional[Any] =_k
break
if max_jump >= 0:
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump]
# since the difference between jumps is cached, add c
__magic_name__ : Tuple =diff + c
for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ):
__magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 )
if new_c > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
__magic_name__ : str =[]
else:
__magic_name__ : List[str] ={c: []}
__magic_name__ : List[str] =sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
__magic_name__ : Tuple =sub_memo[c]
# keep jumps sorted by # of terms skipped
__magic_name__ : List[Any] =0
while j < len(lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if i >= n:
return 0, i
if k > len(lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__magic_name__ : Tuple =i
__magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0
for j in range(len(lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__magic_name__ : Optional[Any] =ds_c + ds_b
diff += addend
__magic_name__ : str =0
for j in range(lowerCamelCase ):
__magic_name__ : int =a_i[j] + addend
__magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return diff, i - start_i
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
for j in range(lowerCamelCase , len(lowerCamelCase ) ):
__magic_name__ : Tuple =digits[j] + addend
if s >= 10:
__magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 )
__magic_name__ : int =addend // 10 + quotient
else:
__magic_name__ : Dict =s
__magic_name__ : Any =addend // 10
if addend == 0:
break
while addend > 0:
__magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 )
digits.append(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase = 10**15 ):
__magic_name__ : List[str] =[1]
__magic_name__ : str =1
__magic_name__ : str =0
while True:
__magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__magic_name__ : int =0
for j in range(len(lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 | 0 |
from __future__ import annotations
import math
def __a ( A__ : int ):
if num <= 0:
SCREAMING_SNAKE_CASE = F"{num}: Invalid input, please enter a positive integer."
raise ValueError(A__ )
SCREAMING_SNAKE_CASE = [True] * (num + 1)
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = int(math.sqrt(A__ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(A__ )
# Set multiples of start be False
for i in range(start * start , num + 1 , A__ ):
if sieve[i] is True:
SCREAMING_SNAKE_CASE = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(A__ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('Enter a positive integer: ').strip()))) | 16 |
from typing import List
from .keymap import KEYMAP, get_character
def lowerCAmelCase_ ( lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] )
handle += [key]
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
def lowerCAmelCase_ ( *lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] )
handle += keys
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
class __A ( UpperCamelCase__ ):
def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case )
if not hasattr(__snake_case , """key_handler""" ):
setattr(__snake_case , """key_handler""" , {} )
setattr(__snake_case , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__magic_name__ : int =getattr(__snake_case , """handle_key""" , [] )
for key in handled_keys:
__magic_name__ : List[str] =value
return new_cls
@staticmethod
def A__ ( cls :Optional[int] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =get_character()
if char != KEYMAP["undefined"]:
__magic_name__ : Optional[int] =ord(__snake_case )
__magic_name__ : int =cls.key_handler.get(__snake_case )
if handler:
__magic_name__ : Dict =char
return handler(cls )
else:
return None
def lowerCAmelCase_ ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 21 | 0 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCAmelCase_ : Optional[Any] = 1.0_5457_1817e-34 # unit of ℏ : J * s
UpperCAmelCase_ : Union[str, Any] = 3e8 # unit of c : m * s^-1
def __SCREAMING_SNAKE_CASE ( a__ : float ,a__ : float ,a__ : float ) -> dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
__A : List[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__A : Tuple = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__A : Optional[int] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 17 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
UpperCAmelCase_ : Dict = 2048
UpperCAmelCase_ : int = 4096
UpperCAmelCase_ : Any = 42
UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false")
UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def lowerCAmelCase_ ( lowerCamelCase ):
def choose_first(lowerCamelCase , lowerCamelCase=False ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if len(lowerCamelCase ) == 1:
__magic_name__ : List[str] =answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__magic_name__ : Tuple ={k: [a[k]] for k in a}
if len(a["""start_token"""] ) > 0:
break
return a
__magic_name__ : str ={"""id""": example["""id"""]}
__magic_name__ : List[Any] =example["""annotations"""]
__magic_name__ : List[str] =annotation["""yes_no_answer"""]
if 0 in yes_no_answer or 1 in yes_no_answer:
__magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""]
__magic_name__ : List[str] =[]
__magic_name__ : Dict =[]
__magic_name__ : str =["""<cls>"""]
else:
__magic_name__ : Tuple =["""short"""]
__magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] )
if len(out["""start_token"""] ) == 0:
# answer will be long if short is not available
__magic_name__ : Tuple =["""long"""]
__magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase )
__magic_name__ : List[Any] =[]
answer.update(lowerCamelCase )
# disregard some samples
if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]:
__magic_name__ : Any =True
else:
__magic_name__ : List[str] =False
__magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""]
if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ):
raise ValueError("""Issue in ID""" , example["""id"""] )
return answer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : Any =example["""document"""]["""tokens"""]
__magic_name__ : str =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__magic_name__ : Dict =["""start_token""", """end_token"""]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__magic_name__ : Tuple =example["""document"""]["""tokens"""]
__magic_name__ : Optional[int] =answer["""start_token"""]
__magic_name__ : List[Any] =answer["""end_token"""]
__magic_name__ : Optional[Any] =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] )
# checking above code
if assertion:
__magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] )
if new != old:
print("""ID:""" , example["""id"""] )
print("""New:""" , lowerCamelCase , end="""\n""" )
print("""Old:""" , lowerCamelCase , end="""\n\n""" )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ):
# overlap will be of doc_stride - q_len
__magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase )
__magic_name__ : Union[str, Any] =out["""answer"""]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids
__magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : List[str] =[]
__magic_name__ : int =[]
__magic_name__ : List[str] =input_ids[:q_len]
__magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Tuple =input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["""category"""][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(lowerCamelCase ),
"end_token": [-100] * len(lowerCamelCase ),
"category": category,
},
}
__magic_name__ : int =out["""context"""].split()
__magic_name__ : Any =splitted_context[answer["""end_token"""]]
__magic_name__ : str =len(
tokenizer(
""" """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids )
__magic_name__ : Optional[int] =len(
tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive
__magic_name__ : Dict =answer["""start_token"""]
__magic_name__ : int =answer["""end_token"""]
if assertion:
__magic_name__ : Any =tokenizer.decode(lowerCamelCase )
if answer["span"] != new:
print("""ISSUE IN TOKENIZATION""" )
print("""OLD:""" , answer["""span"""] )
print("""NEW:""" , lowerCamelCase , end="""\n\n""" )
if len(lowerCamelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__magic_name__ : Any =input_ids[:q_len]
__magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
__magic_name__ : Any =[]
__magic_name__ : List[str] =[]
__magic_name__ : List[str] =[]
__magic_name__ : str =[] # null, yes, no, long, short
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Dict =input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__magic_name__ : List[Any] =start_token - i + q_len
__magic_name__ : Optional[Any] =end_token - i + q_len
answers_category.append(answer["""category"""][0] ) # ["short"] -> "short"
else:
__magic_name__ : Optional[Any] =-100
__magic_name__ : Optional[Any] =-100
answers_category.append("""null""" )
__magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1]
answers_start_token.append(lowerCamelCase )
answers_end_token.append(lowerCamelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("""ISSUE in strided for ID:""" , example["""id"""] )
print("""New:""" , tokenizer.decode(lowerCamelCase ) )
print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ):
__magic_name__ : List[Any] =get_strided_contexts_and_ans(
lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , )
return example
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
with jsonlines.open(lowerCamelCase , """a""" ) as writer:
for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ):
__magic_name__ : int =example["""labels"""]
for ids, start, end, cat in zip(
example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"""input_ids""": ids,
"""start_token""": start,
"""end_token""": end,
"""category""": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions")
UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"]
UpperCAmelCase_ : Optional[int] = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 21 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """xlm-roberta-xl"""
def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
__magic_name__ : List[str] =vocab_size
__magic_name__ : List[str] =hidden_size
__magic_name__ : Union[str, Any] =num_hidden_layers
__magic_name__ : Any =num_attention_heads
__magic_name__ : Any =hidden_act
__magic_name__ : List[str] =intermediate_size
__magic_name__ : Any =hidden_dropout_prob
__magic_name__ : Union[str, Any] =attention_probs_dropout_prob
__magic_name__ : Any =max_position_embeddings
__magic_name__ : Any =type_vocab_size
__magic_name__ : List[str] =initializer_range
__magic_name__ : Optional[int] =layer_norm_eps
__magic_name__ : Dict =position_embedding_type
__magic_name__ : Any =use_cache
__magic_name__ : Dict =classifier_dropout
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
__magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 21 | 0 |
"""simple docstring"""
from collections import defaultdict
from math import gcd
def lowerCamelCase__ ( __snake_case = 1_50_00_00 ) -> int:
"""simple docstring"""
_UpperCamelCase = defaultdict(__snake_case )
_UpperCamelCase = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, __snake_case, 2 ):
if gcd(__snake_case, __snake_case ) > 1:
continue
_UpperCamelCase = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case, limit + 1, __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 19 |
from pathlib import Path
import fire
from tqdm import tqdm
def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ):
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__magic_name__ : Dict =F"{src_lang}-{tgt_lang}"
print(F"Converting {dataset}-{pair}" )
__magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase )
if save_dir is None:
__magic_name__ : Optional[int] =F"{dataset}-{pair}"
__magic_name__ : int =Path(lowerCamelCase )
save_dir.mkdir(exist_ok=lowerCamelCase )
for split in ds.keys():
print(F"Splitting {split} with {ds[split].num_rows} records" )
# to save to val.source, val.target like summary datasets
__magic_name__ : Dict ="""val""" if split == """validation""" else split
__magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" )
__magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" )
__magic_name__ : Optional[Any] =src_path.open("""w+""" )
__magic_name__ : List[Any] =tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__magic_name__ : str =x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(F"Saved {dataset} dataset to {save_dir}" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 21 | 0 |
def _lowercase( __a : Optional[Any] , __a : Optional[int] ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
a__ =(boundary[1] - boundary[0]) / steps
a__ =boundary[0]
a__ =boundary[1]
a__ =make_points(__a , __a , __a )
a__ =0.0
y += (h / 2.0) * f(__a )
for i in x_i:
# print(i)
y += h * f(__a )
y += (h / 2.0) * f(__a )
return y
def _lowercase( __a : Tuple , __a : str , __a : Union[str, Any] ):
a__ =a + h
while x < (b - h):
yield x
a__ =x + h
def _lowercase( __a : Dict ): # enter your function here
a__ =(x - 0) * (x - 0)
return y
def _lowercase( ):
a__ =0.0 # Lower bound of integration
a__ =1.0 # Upper bound of integration
a__ =10.0 # define number of steps or resolution
a__ =[a, b] # define boundary of integration
a__ =method_a(__a , __a )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 20 |
from __future__ import annotations
from fractions import Fraction
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =[]
__magic_name__ : List[Any] =11
__magic_name__ : Tuple =int("""1""" + """0""" * digit_len )
for num in range(lowerCamelCase , lowerCamelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCamelCase , lowerCamelCase ):
solutions.append(F"{num}/{den}" )
den += 1
num += 1
__magic_name__ : List[str] =10
return solutions
def lowerCAmelCase_ ( lowerCamelCase = 2 ):
__magic_name__ : str =1.0
for fraction in fraction_list(lowerCamelCase ):
__magic_name__ : int =Fraction(lowerCamelCase )
result *= frac.denominator / frac.numerator
return int(lowerCamelCase )
if __name__ == "__main__":
print(solution())
| 21 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case : Optional[int] = {
'configuration_mobilebert': [
'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'MobileBertConfig',
'MobileBertOnnxConfig',
],
'tokenization_mobilebert': ['MobileBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : Dict = ['MobileBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : int = [
'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileBertForMaskedLM',
'MobileBertForMultipleChoice',
'MobileBertForNextSentencePrediction',
'MobileBertForPreTraining',
'MobileBertForQuestionAnswering',
'MobileBertForSequenceClassification',
'MobileBertForTokenClassification',
'MobileBertLayer',
'MobileBertModel',
'MobileBertPreTrainedModel',
'load_tf_weights_in_mobilebert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : List[Any] = [
'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileBertForMaskedLM',
'TFMobileBertForMultipleChoice',
'TFMobileBertForNextSentencePrediction',
'TFMobileBertForPreTraining',
'TFMobileBertForQuestionAnswering',
'TFMobileBertForSequenceClassification',
'TFMobileBertForTokenClassification',
'TFMobileBertMainLayer',
'TFMobileBertModel',
'TFMobileBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
_snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 22 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( lowerCamelCase ):
# A local function to see if a dot lands in the circle.
def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool:
__magic_name__ : Dict =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__magic_name__ : Union[str, Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCamelCase ) )
# The ratio of the area for circle to square is pi/4.
__magic_name__ : List[Any] =proportion * 4
print(F"The estimated value of pi is {pi_estimate}" )
print(F"The numpy value of pi is {pi}" )
print(F"The total error is {abs(pi - pi_estimate )}" )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ):
return mean(
function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ):
def identity_function(lowerCamelCase ) -> float:
return x
__magic_name__ : Optional[int] =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
__magic_name__ : str =(max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {expected_value}" )
print(F"Total error is {abs(estimated_value - expected_value )}" )
print("""******************""" )
def lowerCAmelCase_ ( lowerCamelCase ):
def function_to_integrate(lowerCamelCase ) -> float:
return sqrt(4.0 - x * x )
__magic_name__ : Dict =area_under_curve_estimator(
lowerCamelCase , lowerCamelCase , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(F"Estimated value is {estimated_value}" )
print(F"Expected value is {pi}" )
print(F"Total error is {abs(estimated_value - pi )}" )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case__ : Tuple = logging.get_logger(__name__)
snake_case__ : List[str] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = """yolos"""
def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=[512, 864] , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=100 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ) -> List[str]:
super().__init__(**_UpperCAmelCase )
UpperCamelCase_ = hidden_size
UpperCamelCase_ = num_hidden_layers
UpperCamelCase_ = num_attention_heads
UpperCamelCase_ = intermediate_size
UpperCamelCase_ = hidden_act
UpperCamelCase_ = hidden_dropout_prob
UpperCamelCase_ = attention_probs_dropout_prob
UpperCamelCase_ = initializer_range
UpperCamelCase_ = layer_norm_eps
UpperCamelCase_ = image_size
UpperCamelCase_ = patch_size
UpperCamelCase_ = num_channels
UpperCamelCase_ = qkv_bias
UpperCamelCase_ = num_detection_tokens
UpperCamelCase_ = use_mid_position_embeddings
UpperCamelCase_ = auxiliary_loss
# Hungarian matcher
UpperCamelCase_ = class_cost
UpperCamelCase_ = bbox_cost
UpperCamelCase_ = giou_cost
# Loss coefficients
UpperCamelCase_ = bbox_loss_coefficient
UpperCamelCase_ = giou_loss_coefficient
UpperCamelCase_ = eos_coefficient
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = version.parse("""1.11""" )
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def _UpperCAmelCase ( self ) -> float:
return 1e-4
@property
def _UpperCAmelCase ( self ) -> int:
return 12
| 23 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __A ( tf.keras.layers.Layer ):
def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ):
'''simple docstring'''
super().__init__()
__magic_name__ : Optional[int] =pad_token_id
__magic_name__ : List[Any] =max_length
__magic_name__ : Dict =vocab
__magic_name__ : int =merges
__magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case )
@classmethod
def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ):
'''simple docstring'''
__magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()]
__magic_name__ : str =tokenizer.get_vocab()
return cls(__snake_case , __snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ):
'''simple docstring'''
__magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case )
return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case )
@classmethod
def A__ ( cls :Optional[Any] , __snake_case :List[Any] ):
'''simple docstring'''
return cls(**__snake_case )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ):
'''simple docstring'''
__magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case )
__magic_name__ : Tuple =tf.ones_like(__snake_case )
if self.pad_token_id is not None:
# pad the tokens up to max length
__magic_name__ : Tuple =max_length if max_length is not None else self.max_length
if max_length is not None:
__magic_name__ , __magic_name__ : Tuple =pad_model_inputs(
__snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 21 | 0 |
'''simple docstring'''
def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> int:
'''simple docstring'''
return number | (1 << position)
def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> int:
'''simple docstring'''
return number & ~(1 << position)
def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> int:
'''simple docstring'''
return number ^ (1 << position)
def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> bool:
'''simple docstring'''
return ((number >> position) & 1) == 1
def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> int:
'''simple docstring'''
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
import math
import tensorflow as tf
from packaging import version
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype )
__magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) ))
return x * cdf
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase )
return x * tf.tanh(tf.math.softplus(lowerCamelCase ) )
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype )
__magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase )
__magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ):
__magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase )
return a * tf.math.sigmoid(lowerCamelCase )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowerCAmelCase_ ( lowerCamelCase ):
return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase )
UpperCAmelCase_ : List[str] = tf.keras.activations.gelu
UpperCAmelCase_ : Dict = approximate_gelu_wrap
else:
UpperCAmelCase_ : Dict = _gelu
UpperCAmelCase_ : str = _gelu_new
UpperCAmelCase_ : Any = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowerCAmelCase_ ( lowerCamelCase ):
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
| 21 | 0 |
from __future__ import annotations
import math
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Dict , a : int ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = size
# approximate the overall size of segment tree with given value
SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )]
SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update
def __UpperCamelCase ( self : Tuple , a : int ) -> int:
"""simple docstring"""
return idx * 2
def __UpperCamelCase ( self : str , a : int ) -> int:
"""simple docstring"""
return idx * 2 + 1
def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None:
"""simple docstring"""
if left_element == right_element:
SCREAMING_SNAKE_CASE : int = a[left_element - 1]
else:
SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2
self.build(self.left(a ) , a , a , a )
self.build(self.right(a ) , mid + 1 , a , a )
SCREAMING_SNAKE_CASE : List[Any] = max(
self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] )
def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool:
"""simple docstring"""
if self.flag[idx] is True:
SCREAMING_SNAKE_CASE : Any = self.lazy[idx]
SCREAMING_SNAKE_CASE : List[str] = False
if left_element != right_element:
SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx]
SCREAMING_SNAKE_CASE : int = self.lazy[idx]
SCREAMING_SNAKE_CASE : Any = True
SCREAMING_SNAKE_CASE : List[Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
SCREAMING_SNAKE_CASE : Optional[Any] = val
if left_element != right_element:
SCREAMING_SNAKE_CASE : str = val
SCREAMING_SNAKE_CASE : str = val
SCREAMING_SNAKE_CASE : Tuple = True
SCREAMING_SNAKE_CASE : Optional[Any] = True
return True
SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2
self.update(self.left(a ) , a , a , a , a , a )
self.update(self.right(a ) , mid + 1 , a , a , a , a )
SCREAMING_SNAKE_CASE : Optional[int] = max(
self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] )
return True
def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float:
"""simple docstring"""
if self.flag[idx] is True:
SCREAMING_SNAKE_CASE : int = self.lazy[idx]
SCREAMING_SNAKE_CASE : List[Any] = False
if left_element != right_element:
SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx]
SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx]
SCREAMING_SNAKE_CASE : Optional[Any] = True
SCREAMING_SNAKE_CASE : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2
SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a )
SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a )
return max(a , a )
def __str__( self : str ) -> str:
"""simple docstring"""
return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
a_ = 15
a_ = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt) | 25 |
from collections.abc import Sequence
def lowerCAmelCase_ ( lowerCamelCase = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__magic_name__ : str =nums[0]
for i in range(1 , len(lowerCamelCase ) ):
__magic_name__ : Any =nums[i]
__magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip())
UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 21 | 0 |
'''simple docstring'''
import numpy as np
import qiskit
def _a ( _lowerCamelCase = 8 , _lowerCamelCase = None ) -> str:
"""simple docstring"""
__snake_case : Any = np.random.default_rng(seed=_lowerCamelCase )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
__snake_case : Optional[int] = 6 * key_len
# Measurement basis for Alice's qubits.
__snake_case : str = rng.integers(2 , size=_lowerCamelCase )
# The set of states Alice will prepare.
__snake_case : Any = rng.integers(2 , size=_lowerCamelCase )
# Measurement basis for Bob's qubits.
__snake_case : Any = rng.integers(2 , size=_lowerCamelCase )
# Quantum Circuit to simulate BB84
__snake_case : Dict = qiskit.QuantumCircuit(_lowerCamelCase , name="""BB84""" )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(_lowerCamelCase ):
if alice_state[index] == 1:
bbaa_circ.x(_lowerCamelCase )
if alice_basis[index] == 1:
bbaa_circ.h(_lowerCamelCase )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(_lowerCamelCase ):
if bob_basis[index] == 1:
bbaa_circ.h(_lowerCamelCase )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
__snake_case : int = qiskit.Aer.get_backend("""aer_simulator""" )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
__snake_case : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1 , seed_simulator=_lowerCamelCase )
# Returns the result of measurement.
__snake_case : str = job.result().get_counts(_lowerCamelCase ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
__snake_case : Any = """""".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
__snake_case : Any = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase , """0""" )
return key
if __name__ == "__main__":
print(f"""The generated key is : {bbaa(8, seed=0)}""")
from doctest import testmod
testmod()
| 26 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __A :
UpperCamelCase = 42
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def __call__( self :Union[str, Any] ):
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class __A :
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
# Automatically constructed
UpperCamelCase = "dict"
UpperCamelCase = None
UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None
__magic_name__ : Optional[int] =len(self.languages ) if self.languages else None
def __call__( self :List[str] ):
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def A__ ( self :str , __snake_case :str ):
'''simple docstring'''
__magic_name__ : Optional[int] =set(self.languages )
if self.languages and set(__snake_case ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
__magic_name__ : Any =[]
for lang, text in translation_dict.items():
if isinstance(__snake_case , __snake_case ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
__magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) )
return {"language": languages, "translation": translations}
def A__ ( self :List[Any] ):
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 21 | 0 |
import math
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_A = 0
_A = 0
while num > 0:
_A = num % 8
_A = octal + (remainder * math.floor(math.pow(10 , _SCREAMING_SNAKE_CASE ) ))
counter += 1
_A = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return F"0o{int(_SCREAMING_SNAKE_CASE )}"
def __lowerCAmelCase( ) -> None:
"""simple docstring"""
print('\n2 in octal is:' )
print(decimal_to_octal(2 ) ) # = 2
print('\n8 in octal is:' )
print(decimal_to_octal(8 ) ) # = 10
print('\n65 in octal is:' )
print(decimal_to_octal(65 ) ) # = 101
print('\n216 in octal is:' )
print(decimal_to_octal(216 ) ) # = 330
print('\n512 in octal is:' )
print(decimal_to_octal(512 ) ) # = 1000
print('\n' )
if __name__ == "__main__":
main()
| 27 |
from sklearn.metrics import matthews_corrcoef
import datasets
UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def A__ ( self :List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"""
] , )
def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ):
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ),
}
| 21 | 0 |
'''simple docstring'''
UpperCamelCase_ = [
[0, 1_6, 1_3, 0, 0, 0],
[0, 0, 1_0, 1_2, 0, 0],
[0, 4, 0, 0, 1_4, 0],
[0, 0, 9, 0, 0, 2_0],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = [False] * len(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = [s]
SCREAMING_SNAKE_CASE : Optional[Any] = True
while queue:
SCREAMING_SNAKE_CASE : Tuple = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = True
SCREAMING_SNAKE_CASE : Any = u
return visited[t]
def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = [-1] * (len(__UpperCamelCase ))
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : List[Any] = [i[:] for i in graph] # Record original cut, copy.
while bfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
SCREAMING_SNAKE_CASE : str = float('Inf' )
SCREAMING_SNAKE_CASE : str = sink
while s != source:
# Find the minimum value in select path
SCREAMING_SNAKE_CASE : List[str] = min(__UpperCamelCase ,graph[parent[s]][s] )
SCREAMING_SNAKE_CASE : Optional[Any] = parent[s]
max_flow += path_flow
SCREAMING_SNAKE_CASE : Union[str, Any] = sink
while v != source:
SCREAMING_SNAKE_CASE : Any = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
SCREAMING_SNAKE_CASE : Dict = parent[v]
for i in range(len(__UpperCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 28 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase )
if display:
print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) )
return config
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ):
if conf_path is None:
__magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml"""
__magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase )
__magic_name__ : Tuple =VQModel(**config.model.params )
if ckpt_path is None:
__magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt"""
__magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase )
if ".ckpt" in ckpt_path:
__magic_name__ : Any =sd["""state_dict"""]
model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
model.to(lowerCamelCase )
del sd
return model
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
__magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase )
print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" )
__magic_name__ : List[Any] =model.decode(lowerCamelCase )
return xrec
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 )
if reload:
__magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase )
importlib.reload(lowerCamelCase )
return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls )
def lowerCAmelCase_ ( lowerCamelCase ):
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ):
__magic_name__ : str =instantiate_from_config(lowerCamelCase )
if sd is not None:
model.load_state_dict(lowerCamelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
# load the specified checkpoint
if ckpt:
__magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" )
__magic_name__ : Any =pl_sd["""global_step"""]
print(F"loaded model from global step {global_step}." )
else:
__magic_name__ : List[Any] ={"""state_dict""": None}
__magic_name__ : Optional[Any] =None
__magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""]
return model, global_step
| 21 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
A_ = logging.get_logger(__name__)
class __lowerCamelCase ( lowerCAmelCase ):
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ):
warnings.warn(
'''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use SegformerImageProcessor instead.''' , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 29 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self :Dict ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 21 | 0 |
__a = 8.314462 # Unit - J mol-1 K-1
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod() | 30 |
UpperCAmelCase_ : Tuple = 0 # The first color of the flag.
UpperCAmelCase_ : Any = 1 # The second color of the flag.
UpperCAmelCase_ : str = 2 # The third color of the flag.
UpperCAmelCase_ : Tuple = (red, white, blue)
def lowerCAmelCase_ ( lowerCamelCase ):
if not sequence:
return []
if len(lowerCamelCase ) == 1:
return list(lowerCamelCase )
__magic_name__ : int =0
__magic_name__ : str =len(lowerCamelCase ) - 1
__magic_name__ : Optional[Any] =0
while mid <= high:
if sequence[mid] == colors[0]:
__magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid]
high -= 1
else:
__magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values"
raise ValueError(lowerCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip()
UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 21 | 0 |
import operator as op
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation
SCREAMING_SNAKE_CASE_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(__UpperCAmelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCAmelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
else:
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
stack.append(
str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix)) | 31 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __A ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase = 1
@register_to_config
def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ):
'''simple docstring'''
__magic_name__ : Dict =None
__magic_name__ : List[str] =None
__magic_name__ : str =None
def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case )
def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__magic_name__ : int =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__magic_name__ : str =std.flatten()
while len(std.shape ) < len(score.shape ):
__magic_name__ : List[str] =std.unsqueeze(-1 )
__magic_name__ : Union[str, Any] =-score / std
# compute
__magic_name__ : Tuple =-1.0 / len(self.timesteps )
__magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__magic_name__ : Dict =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__magic_name__ : Any =beta_t.unsqueeze(-1 )
__magic_name__ : Dict =-0.5 * beta_t * x
__magic_name__ : Optional[int] =torch.sqrt(__snake_case )
__magic_name__ : int =drift - diffusion**2 * score
__magic_name__ : List[str] =x + drift * dt
# add noise
__magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype )
__magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self :List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 21 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class __UpperCamelCase ( A__ ):
__A : Tuple = """levit"""
def __init__( self , _UpperCamelCase=224 , _UpperCamelCase=3 , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=16 , _UpperCamelCase=[128, 256, 384] , _UpperCamelCase=[4, 8, 12] , _UpperCamelCase=[4, 4, 4] , _UpperCamelCase=[16, 16, 16] , _UpperCamelCase=0 , _UpperCamelCase=[2, 2, 2] , _UpperCamelCase=[2, 2, 2] , _UpperCamelCase=0.02 , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = image_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = kernel_size
_UpperCAmelCase = stride
_UpperCAmelCase = padding
_UpperCAmelCase = hidden_sizes
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = depths
_UpperCAmelCase = key_dim
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = patch_size
_UpperCAmelCase = attention_ratio
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = initializer_range
_UpperCAmelCase = [
['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class __UpperCamelCase ( A__ ):
__A : List[Any] = version.parse("""1.11""" )
@property
def UpperCamelCase( self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def UpperCamelCase( self ):
return 1e-4 | 32 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =feature_size
__magic_name__ : Union[str, Any] =sampling_rate
__magic_name__ : List[Any] =padding_value
__magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" )
__magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case )
super().__init__(**__snake_case )
def A__ ( self :Any , __snake_case :Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ):
'''simple docstring'''
if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
__magic_name__ : Union[str, Any] ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"""You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"""
f" to this method that includes {self.model_input_names[0]}, but you provided"
f" {list(processed_features.keys() )}" )
__magic_name__ : int =processed_features[self.model_input_names[0]]
__magic_name__ : Union[str, Any] =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__snake_case ) == 0:
if return_attention_mask:
__magic_name__ : List[str] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
__magic_name__ : Optional[int] =required_input[0]
if isinstance(__snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
__magic_name__ : Optional[Any] =0
while len(required_input[index] ) == 0:
index += 1
if index < len(__snake_case ):
__magic_name__ : List[str] =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__snake_case ):
__magic_name__ : int ="""tf"""
elif is_torch_tensor(__snake_case ):
__magic_name__ : str ="""pt"""
elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ):
__magic_name__ : List[Any] ="""np"""
else:
raise ValueError(
f"type of {first_element} unknown: {type(__snake_case )}. "
"""Should be one of a python, numpy, pytorch or tensorflow object.""" )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
__magic_name__ : List[str] =to_numpy(__snake_case )
else:
__magic_name__ : str =[to_numpy(__snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
__magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case )
__magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]]
__magic_name__ : Dict =len(__snake_case )
if not all(len(__snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError("""Some items in the output dictionary have a different batch size than others.""" )
__magic_name__ : Optional[int] =[]
for i in range(__snake_case ):
__magic_name__ : Any ={k: v[i] for k, v in processed_features.items()}
# truncation
__magic_name__ : List[str] =self._truncate(
__snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , )
truncated_inputs.append(__snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
__magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
__magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH
__magic_name__ : str ={}
for i in range(__snake_case ):
# padding
__magic_name__ : List[str] =self._pad(
truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
__magic_name__ : Dict =[]
if value.dtype is np.dtype(np.floataa ):
__magic_name__ : Optional[int] =value.astype(np.floataa )
batch_outputs[key].append(__snake_case )
return BatchFeature(__snake_case , tensor_type=__snake_case )
def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
__magic_name__ : Dict =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
__magic_name__ : Any =len(__snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
__magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
__magic_name__ : List[Any] =max_length - len(__snake_case )
if self.padding_side == "right":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (0, difference) )
__magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
__magic_name__ : str =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
__magic_name__ : str =np.pad(
processed_features["""attention_mask"""] , (difference, 0) )
__magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
__magic_name__ : List[Any] =np.pad(
__snake_case , __snake_case , """constant""" , constant_values=self.padding_value )
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return processed_features
def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ):
'''simple docstring'''
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" )
__magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
__magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
__magic_name__ : Any =len(__snake_case ) > max_length
if needs_to_be_truncated:
__magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
__magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length]
return processed_features
def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ):
'''simple docstring'''
if padding is not False:
if padding is True:
__magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__snake_case , __snake_case ):
__magic_name__ : Optional[int] =PaddingStrategy(__snake_case )
elif isinstance(__snake_case , __snake_case ):
__magic_name__ : Any =padding
else:
__magic_name__ : Any =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"""Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"""
""" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" )
return padding_strategy
| 21 | 0 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : List[Any] = logging.get_logger()
@dataclass
class __magic_name__ :
'''simple docstring'''
__lowercase : nn.Module
__lowercase : List[nn.Module] = field(default_factory=snake_case_ )
__lowercase : list = field(default_factory=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str , _a:Tensor , _a:Tensor ):
snake_case__ = len(list(m.modules() ) ) == 1 or isinstance(_a , nn.Convad ) or isinstance(_a , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_a )
def __call__( self:str , _a:Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_a )
[x.remove() for x in self.handles]
return self
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda _a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __magic_name__ :
'''simple docstring'''
__lowercase : nn.Module
__lowercase : nn.Module
__lowercase : int = 0
__lowercase : List = field(default_factory=snake_case_ )
__lowercase : List = field(default_factory=snake_case_ )
def __call__( self:Tuple , _a:Tensor ):
snake_case__ = Tracker(self.dest )(_a ).parametrized
snake_case__ = Tracker(self.src )(_a ).parametrized
snake_case__ = list(filter(lambda _a : type(_a ) not in self.src_skip , _a ) )
snake_case__ = list(filter(lambda _a : type(_a ) not in self.dest_skip , _a ) )
if len(_a ) != len(_a ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(_a )} operations while"""
F""" destination module has {len(_a )}.""" )
for dest_m, src_m in zip(_a , _a ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> int:
print(F"""Converting {name}...""" )
with torch.no_grad():
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval()
snake_case__ = ResNetForImageClassification(__lowerCAmelCase ).eval()
snake_case__ = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase )
snake_case__ = torch.randn((1, 3, 224, 224) )
module_transfer(__lowerCAmelCase )
assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one."
snake_case__ = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(__lowerCAmelCase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowerCAmelCase , )
# we can use the convnext one
snake_case__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowerCAmelCase , )
print(F"""Pushed {checkpoint_name}""" )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ) -> List[Any]:
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = 1000
snake_case__ = (1, num_labels)
snake_case__ = '''huggingface/label-files'''
snake_case__ = num_labels
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
snake_case__ = {
'''resnet18''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'''resnet26''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet34''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'''resnet50''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet101''': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet152''': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
}
if model_name:
convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return config, expected_shape
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported resnet* architecture,"""
""" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
lowerCamelCase__ : Tuple = parser.parse_args()
lowerCamelCase__ : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 33 |
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class __A ( nn.Module ):
def __init__( self :List[Any] ):
'''simple docstring'''
super().__init__()
__magic_name__ : Tuple =nn.Linear(3 , 4 )
__magic_name__ : Union[str, Any] =nn.BatchNormad(4 )
__magic_name__ : List[str] =nn.Linear(4 , 5 )
def A__ ( self :Dict , __snake_case :Tuple ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) )
class __A ( UpperCamelCase__ ):
def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ):
'''simple docstring'''
return (args[0] + 1,) + args[1:], kwargs
class __A ( UpperCamelCase__ ):
def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ):
'''simple docstring'''
return output + 1
class __A ( unittest.TestCase ):
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : Tuple =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
self.assertEqual(test_model._hf_hook , __snake_case )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
__magic_name__ : List[str] =ModelHook()
add_hook_to_module(__snake_case , __snake_case )
add_hook_to_module(__snake_case , __snake_case , append=__snake_case )
self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(__snake_case , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__snake_case )
self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) )
self.assertFalse(hasattr(__snake_case , """_old_forward""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
__magic_name__ : Any =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(x + 1 )
__magic_name__ : Optional[Any] =test_model(x + 2 )
__magic_name__ : int =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : int =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : str =PreForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : List[str] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
assert torch.allclose(__snake_case , __snake_case , atol=1E-5 )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
__magic_name__ : Dict =torch.randn(2 , 3 )
__magic_name__ : Any =test_model(__snake_case )
__magic_name__ : Dict =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Any =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Optional[int] =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
__magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
assert torch.allclose(__snake_case , output + 2 , atol=1E-5 )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ : Tuple =ModelForTest()
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =test_model(__snake_case )
__magic_name__ : Union[str, Any] =PostForwardHook()
add_hook_to_module(__snake_case , __snake_case )
__magic_name__ : Dict =test_model(__snake_case )
self.assertTrue(torch.allclose(__snake_case , output + 1 ) )
self.assertTrue(outputa.requires_grad )
__magic_name__ : Any =True
__magic_name__ : Any =test_model(__snake_case )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[Any] =model(__snake_case )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) )
__magic_name__ : int =torch.randn(2 , 3 ).to(0 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , torch.device(0 ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : int =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : Union[str, Any] =torch.randn(2 , 3 )
__magic_name__ : Optional[int] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
__magic_name__ : Tuple ={
"""execution_device""": 0 if torch.cuda.is_available() else """cpu""",
"""offload""": True,
"""offload_buffers""": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Tuple =torch.randn(2 , 3 )
__magic_name__ : int =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[Any] ):
'''simple docstring'''
__magic_name__ : Any =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : str =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : Optional[int] =torch.randn(2 , 3 )
__magic_name__ : Union[str, Any] =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Dict =ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
__magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
__magic_name__ : Optional[Any] =torch.device(__snake_case )
self.assertEqual(model.batchnorm.running_mean.device , __snake_case )
__magic_name__ : int =torch.randn(2 , 3 )
__magic_name__ : Any =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
__snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
__magic_name__ : List[Any] =torch.randn(2 , 3 )
__magic_name__ : str =model(__snake_case )
self.assertEqual(output.device , __snake_case )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__snake_case )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
| 21 | 0 |
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
SCREAMING_SNAKE_CASE_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class snake_case_ ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase_) -> Optional[int]:
super().__init__()
UpperCamelCase = torchvision.models.resnetaaa(pretrained=lowerCamelCase_)
UpperCamelCase = list(model.children())[:-2]
UpperCamelCase = nn.Sequential(*lowerCamelCase_)
UpperCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds])
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple:
# Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048
UpperCamelCase = self.pool(self.model(lowerCamelCase_))
UpperCamelCase = torch.flatten(lowerCamelCase_ , start_dim=2)
UpperCamelCase = out.transpose(1 , 2).contiguous()
return out # BxNx2048
class snake_case_ ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
UpperCamelCase = [json.loads(lowerCamelCase_) for l in open(lowerCamelCase_)]
UpperCamelCase = os.path.dirname(lowerCamelCase_)
UpperCamelCase = tokenizer
UpperCamelCase = labels
UpperCamelCase = len(lowerCamelCase_)
UpperCamelCase = max_seq_length
UpperCamelCase = transforms
def __len__( self) -> int:
return len(self.data)
def __getitem__( self , lowerCamelCase_) -> int:
UpperCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowerCamelCase_))
UpperCamelCase , UpperCamelCase , UpperCamelCase = sentence[0], sentence[1:-1], sentence[-1]
UpperCamelCase = sentence[: self.max_seq_length]
UpperCamelCase = torch.zeros(self.n_classes)
UpperCamelCase = 1
UpperCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''])).convert('''RGB''')
UpperCamelCase = self.transforms(lowerCamelCase_)
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def UpperCAmelCase__ ( self) -> List[str]:
UpperCamelCase = Counter()
for row in self.data:
label_freqs.update(row['''label'''])
return label_freqs
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = [len(row['''sentence'''] ) for row in batch]
UpperCamelCase , UpperCamelCase = len(_lowercase ), max(_lowercase )
UpperCamelCase = torch.zeros(_lowercase ,_lowercase ,dtype=torch.long )
UpperCamelCase = torch.zeros(_lowercase ,_lowercase ,dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_lowercase ,_lowercase ) ):
UpperCamelCase = input_row['''sentence''']
UpperCamelCase = 1
UpperCamelCase = torch.stack([row['''image'''] for row in batch] )
UpperCamelCase = torch.stack([row['''label'''] for row in batch] )
UpperCamelCase = torch.stack([row['''image_start_token'''] for row in batch] )
UpperCamelCase = torch.stack([row['''image_end_token'''] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def __snake_case ( ):
"""simple docstring"""
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def __snake_case ( ):
"""simple docstring"""
return transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46777044, 0.44531429, 0.40661017] ,std=[0.12221994, 0.12145835, 0.14380469] ,),
] ) | 34 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCamelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCamelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase = False
@property
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :Optional[Any] ):
'''simple docstring'''
return 32
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self :List[Any] ):
'''simple docstring'''
return 1_00
@property
def A__ ( self :Dict ):
'''simple docstring'''
__magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : str =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
__magic_name__ : Tuple =MultilingualCLIP(__snake_case )
__magic_name__ : Optional[int] =text_encoder.eval()
return text_encoder
@property
def A__ ( self :Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Optional[Any] ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case )
return model
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[str] =self.dummy_text_encoder
__magic_name__ : Optional[Any] =self.dummy_tokenizer
__magic_name__ : Optional[Any] =self.dummy_unet
__magic_name__ : Tuple =self.dummy_movq
__magic_name__ : List[str] =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , )
__magic_name__ : str ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case )
# create init_image
__magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case )
__magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
__magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa )
__magic_name__ : Any =0
if str(__snake_case ).startswith("""mps""" ):
__magic_name__ : Dict =torch.manual_seed(__snake_case )
else:
__magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case )
__magic_name__ : List[Any] ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Tuple ="""cpu"""
__magic_name__ : List[Any] =self.get_dummy_components()
__magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case )
__magic_name__ : Tuple =pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) )
__magic_name__ : List[Any] =output.images
__magic_name__ : Any =pipe(
**self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0]
__magic_name__ : int =image[0, -3:, -3:, -1]
__magic_name__ : str =image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
__magic_name__ : Optional[Any] =np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A__ ( self :Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def A__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
__magic_name__ : int =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa )
__magic_name__ : Any =0
__magic_name__ : int ="""a hat"""
__magic_name__ : int =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__snake_case )
__magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
__magic_name__ : int =pipeline.to(__snake_case )
pipeline.set_progress_bar_config(disable=__snake_case )
__magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ , __magic_name__ : Dict =pipe_prior(
__snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Optional[Any] =pipeline(
__snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
__magic_name__ : Optional[int] =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
| 21 | 0 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( _UpperCAmelCase , unittest.TestCase ):
lowerCamelCase : Union[str, Any] = MgpstrTokenizer
lowerCamelCase : Tuple = False
lowerCamelCase : str = {}
lowerCamelCase : Dict = False
def lowercase__ ( self : Dict ):
super().setUp()
# fmt: off
SCREAMING_SNAKE_CASE__ : Optional[int] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
SCREAMING_SNAKE_CASE__ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
def lowercase__ ( self : Any , **_lowercase : List[Any] ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase )
def lowercase__ ( self : int , _lowercase : List[str] ):
SCREAMING_SNAKE_CASE__ : Tuple = '''tester'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''' )
def lowercase__ ( self : Dict ):
pass
def lowercase__ ( self : str ):
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizers(do_lower_case=_lowercase )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
SCREAMING_SNAKE_CASE__ : List[str] = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token} )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase )
self.assertEqual(len(_lowercase ) , 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : Dict ):
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_input_output_texts(_lowercase )
SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize(_lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.convert_tokens_to_ids(_lowercase )
SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
self.assertListEqual(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_ids_to_tokens(_lowercase )
self.assertNotEqual(len(_lowercase ) , 0 )
SCREAMING_SNAKE_CASE__ : str = tokenizer.decode(_lowercase )
self.assertIsInstance(_lowercase , _lowercase )
self.assertEqual(text_a.replace(''' ''' , '''''' ) , _lowercase )
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''' )
def lowercase__ ( self : Optional[int] ):
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' )
def lowercase__ ( self : int ):
pass
| 35 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __A :
def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ):
'''simple docstring'''
__magic_name__ : Optional[int] =parent
__magic_name__ : List[Any] =batch_size
__magic_name__ : List[str] =is_training
__magic_name__ : List[str] =use_auxiliary_loss
__magic_name__ : Union[str, Any] =num_queries
__magic_name__ : str =num_channels
__magic_name__ : Union[str, Any] =min_size
__magic_name__ : Union[str, Any] =max_size
__magic_name__ : Optional[int] =num_labels
__magic_name__ : Tuple =hidden_dim
__magic_name__ : Any =hidden_dim
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__snake_case )
__magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case )
__magic_name__ : List[str] =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5
).float()
__magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long()
__magic_name__ : str =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Dict =MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__magic_name__ : str =self.num_queries
__magic_name__ : Dict =self.num_labels
__magic_name__ : int =[1, 1, 1, 1]
__magic_name__ : List[str] =self.num_channels
__magic_name__ : str =64
__magic_name__ : List[str] =1_28
__magic_name__ : Optional[Any] =self.hidden_dim
__magic_name__ : Tuple =self.hidden_dim
__magic_name__ : Optional[int] =self.hidden_dim
return config
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs()
__magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ):
'''simple docstring'''
__magic_name__ : int =output.encoder_hidden_states
__magic_name__ : List[str] =output.pixel_decoder_hidden_states
__magic_name__ : int =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__snake_case ) , config.decoder_layers )
def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ):
'''simple docstring'''
with torch.no_grad():
__magic_name__ : List[str] =MaskaFormerModel(config=__snake_case )
model.to(__snake_case )
model.eval()
__magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__snake_case , __snake_case )
def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ):
'''simple docstring'''
__magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case )
model.to(__snake_case )
model.eval()
def comm_check_on_output(__snake_case :List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case )
__magic_name__ : List[str] =model(__snake_case )
comm_check_on_output(__snake_case )
__magic_name__ : Any =model(
pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
comm_check_on_output(__snake_case )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def A__ ( self :str ):
'''simple docstring'''
__magic_name__ : Any =MaskaFormerModelTester(self )
__magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case )
def A__ ( self :Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def A__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def A__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def A__ ( self :int ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def A__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple =model_class(__snake_case )
__magic_name__ : Optional[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple =[*signature.parameters.keys()]
__magic_name__ : Optional[Any] =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@slow
def A__ ( self :Tuple ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ : Any =(self.model_tester.min_size,) * 2
__magic_name__ : Union[str, Any] ={
"""pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ),
"""class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(),
}
__magic_name__ : Optional[Any] =self.model_tester.get_config()
__magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case )
__magic_name__ : Any =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
def A__ ( self :List[str] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case )
def A__ ( self :Tuple ):
'''simple docstring'''
__magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case )
__magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case )
self.assertTrue(outputs.attentions is not None )
def A__ ( self :int ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__magic_name__ : List[Any] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Dict =model_class(__snake_case )
model.to(__snake_case )
model.train()
__magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss
loss.backward()
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : List[str] =self.all_model_classes[1]
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs()
__magic_name__ : Tuple =True
__magic_name__ : Optional[int] =True
__magic_name__ : int =model_class(__snake_case ).to(__snake_case )
model.train()
__magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case )
__magic_name__ : Optional[int] =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__magic_name__ : Optional[int] =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__snake_case )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCAmelCase_ : Dict = 1e-4
def lowerCAmelCase_ ( ):
__magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __A ( unittest.TestCase ):
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def A__ ( self :int ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case )
__magic_name__ : int =self.default_image_processor
__magic_name__ : List[Any] =prepare_img()
__magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Dict =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : List[str] =model(**__snake_case )
__magic_name__ : Any =torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Dict =torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
__magic_name__ : Any =torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Optional[int] =self.default_image_processor
__magic_name__ : Tuple =prepare_img()
__magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case )
__magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) )
with torch.no_grad():
__magic_name__ : str =model(**__snake_case )
# masks_queries_logits
__magic_name__ : List[Any] =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__magic_name__ : List[Any] =[
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
__magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) )
# class_queries_logits
__magic_name__ : Any =outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__magic_name__ : int =torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval()
__magic_name__ : Any =self.default_image_processor
__magic_name__ : Union[str, Any] =image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
__magic_name__ : str =inputs["""pixel_values"""].to(__snake_case )
__magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]]
__magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]]
with torch.no_grad():
__magic_name__ : Dict =model(**__snake_case )
self.assertTrue(outputs.loss is not None )
| 21 | 0 |
import os
import sys
__lowercase : Union[str, Any] = os.path.join(os.path.dirname(__file__), '''src''')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
__lowercase : str = [
'''torch''',
'''numpy''',
'''tokenizers''',
'''filelock''',
'''requests''',
'''tqdm''',
'''regex''',
'''sentencepiece''',
'''sacremoses''',
'''importlib_metadata''',
'''huggingface_hub''',
]
@add_start_docstrings(AutoConfig.__doc__ )
def lowercase ( *__A : Optional[int] , **__A : Union[str, Any] ) -> Dict:
'''simple docstring'''
return AutoConfig.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def lowercase ( *__A : List[Any] , **__A : str ) -> List[Any]:
'''simple docstring'''
return AutoTokenizer.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModel.__doc__ )
def lowercase ( *__A : Tuple , **__A : Optional[Any] ) -> int:
'''simple docstring'''
return AutoModel.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def lowercase ( *__A : Any , **__A : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def lowercase ( *__A : Tuple , **__A : Dict ) -> Union[str, Any]:
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def lowercase ( *__A : Optional[Any] , **__A : Tuple ) -> Optional[int]:
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def lowercase ( *__A : Union[str, Any] , **__A : int ) -> int:
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
| 36 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """segformer"""
def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(**__snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , )
__magic_name__ : Dict =num_channels
__magic_name__ : str =num_encoder_blocks
__magic_name__ : List[Any] =depths
__magic_name__ : Optional[Any] =sr_ratios
__magic_name__ : List[str] =hidden_sizes
__magic_name__ : List[str] =patch_sizes
__magic_name__ : Any =strides
__magic_name__ : Optional[Any] =mlp_ratios
__magic_name__ : str =num_attention_heads
__magic_name__ : int =hidden_act
__magic_name__ : List[Any] =hidden_dropout_prob
__magic_name__ : Optional[Any] =attention_probs_dropout_prob
__magic_name__ : Optional[Any] =classifier_dropout_prob
__magic_name__ : List[str] =initializer_range
__magic_name__ : List[str] =drop_path_rate
__magic_name__ : List[Any] =layer_norm_eps
__magic_name__ : List[str] =decoder_hidden_size
__magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case )
__magic_name__ : Dict =semantic_loss_ignore_index
class __A ( UpperCamelCase__ ):
UpperCamelCase = version.parse("""1.11""" )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A__ ( self :Any ):
'''simple docstring'''
return 1E-4
@property
def A__ ( self :int ):
'''simple docstring'''
return 12
| 21 | 0 |
class A__ :
"""simple docstring"""
def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ):
a__ : str = name
a__ : Optional[int] = value
a__ : Dict = weight
def __repr__( self : Union[str, Any] ):
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _UpperCamelCase( self : Dict ):
return self.value
def _UpperCamelCase( self : Optional[Any] ):
return self.name
def _UpperCamelCase( self : Optional[Any] ):
return self.weight
def _UpperCamelCase( self : Optional[int] ):
return self.value / self.weight
def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]:
a__ : Optional[Any] = []
for i in range(len(__a ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]:
a__ : List[str] = sorted(__a , key=__a , reverse=__a )
a__ : List[Any] = []
a__, a__ : Union[str, Any] = 0.0, 0.0
for i in range(len(__a ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def UpperCamelCase_ ( ) -> Union[str, Any]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37 |
import heapq
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
__magic_name__ : Tuple =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0]
chosen_vertices.add(lowerCamelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__magic_name__ : Tuple =elem[1][1].index(lowerCamelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 | 0 |
'''simple docstring'''
import argparse
import os
import re
A_ : Optional[int] = "src/diffusers"
# Pattern that looks at the indentation in a line.
A_ : Optional[int] = re.compile(R"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
A_ : str = re.compile(R"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A_ : Optional[int] = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
A_ : str = re.compile(R"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A_ : List[Any] = re.compile(R"\[([^\]]+)\]")
def UpperCamelCase__ ( __magic_name__ : str ) -> List[str]:
'''simple docstring'''
snake_case__ : Dict = _re_indent.search(__magic_name__ )
return "" if search is None else search.groups()[0]
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : List[Any]="" , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : List[str] = 0
snake_case__ : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(__magic_name__ ):
index += 1
snake_case__ : Dict = ["""\n""".join(lines[:index] )]
else:
snake_case__ : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
snake_case__ : Tuple = [lines[index]]
index += 1
while index < len(__magic_name__ ) and (end_prompt is None or not lines[index].startswith(__magic_name__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__magic_name__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(__magic_name__ ) )
if index < len(__magic_name__ ) - 1:
snake_case__ : List[str] = [lines[index + 1]]
index += 1
else:
snake_case__ : Union[str, Any] = []
else:
blocks.append("""\n""".join(__magic_name__ ) )
snake_case__ : List[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__magic_name__ ) > 0:
blocks.append("""\n""".join(__magic_name__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__magic_name__ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def UpperCamelCase__ ( __magic_name__ : int ) -> int:
'''simple docstring'''
def _inner(__magic_name__ : List[Any] ):
return key(__magic_name__ ).lower().replace("""_""" , """""" )
return _inner
def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
def noop(__magic_name__ : Union[str, Any] ):
return x
if key is None:
snake_case__ : Optional[int] = noop
# Constants are all uppercase, they go first.
snake_case__ : Tuple = [obj for obj in objects if key(__magic_name__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
snake_case__ : Any = [obj for obj in objects if key(__magic_name__ )[0].isupper() and not key(__magic_name__ ).isupper()]
# Functions begin with a lowercase, they go last.
snake_case__ : str = [obj for obj in objects if not key(__magic_name__ )[0].isupper()]
snake_case__ : Dict = ignore_underscore(__magic_name__ )
return sorted(__magic_name__ , key=__magic_name__ ) + sorted(__magic_name__ , key=__magic_name__ ) + sorted(__magic_name__ , key=__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
def _replace(__magic_name__ : Tuple ):
snake_case__ : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f"[{imports}]"
snake_case__ : Any = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
snake_case__ : Optional[int] = keys[:-1]
return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(__magic_name__ )] ) + "]"
snake_case__ : Any = import_statement.split("""\n""" )
if len(__magic_name__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
snake_case__ : List[str] = 2 if lines[1].strip() == """[""" else 1
snake_case__ : Union[str, Any] = [(i, _re_strip_line.search(__magic_name__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
snake_case__ : List[Any] = sort_objects(__magic_name__ , key=lambda __magic_name__ : x[1] )
snake_case__ : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__magic_name__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
snake_case__ : Dict = _re_bracket_content.sub(_replace , lines[1] )
else:
snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
snake_case__ : Any = keys[:-1]
snake_case__ : Tuple = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(__magic_name__ )] )
return "\n".join(__magic_name__ )
else:
# Finally we have to deal with imports fitting on one line
snake_case__ : List[Any] = _re_bracket_content.sub(_replace , __magic_name__ )
return import_statement
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Optional[int]=True ) -> Optional[int]:
'''simple docstring'''
with open(__magic_name__ , """r""" ) as f:
snake_case__ : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
snake_case__ : Any = split_code_in_indented_blocks(
__magic_name__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__magic_name__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
snake_case__ : int = main_blocks[block_idx]
snake_case__ : Optional[Any] = block.split("""\n""" )
# Get to the start of the imports.
snake_case__ : Union[str, Any] = 0
while line_idx < len(__magic_name__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
snake_case__ : Dict = len(__magic_name__ )
else:
line_idx += 1
if line_idx >= len(__magic_name__ ):
continue
# Ignore beginning and last line: they don't contain anything.
snake_case__ : Any = """\n""".join(block_lines[line_idx:-1] )
snake_case__ : Optional[int] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
snake_case__ : int = split_code_in_indented_blocks(__magic_name__ , indent_level=__magic_name__ )
# We have two categories of import key: list or _import_structure[key].append/extend
snake_case__ : Any = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
snake_case__ : Any = [(pattern.search(__magic_name__ ).groups()[0] if pattern.search(__magic_name__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
snake_case__ : Optional[int] = [(i, key) for i, key in enumerate(__magic_name__ ) if key is not None]
snake_case__ : Any = [x[0] for x in sorted(__magic_name__ , key=lambda __magic_name__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
snake_case__ : Dict = 0
snake_case__ : List[str] = []
for i in range(len(__magic_name__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
snake_case__ : Union[str, Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__magic_name__ )
count += 1
# And we put our main block back together with its first and last line.
snake_case__ : List[Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__magic_name__ ):
if check_only:
return True
else:
print(f"Overwriting {file}." )
with open(__magic_name__ , """w""" ) as f:
f.write("""\n""".join(__magic_name__ ) )
def UpperCamelCase__ ( __magic_name__ : int=True ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Dict = []
for root, _, files in os.walk(__magic_name__ ):
if "__init__.py" in files:
snake_case__ : List[Any] = sort_imports(os.path.join(__magic_name__ , """__init__.py""" ) , check_only=__magic_name__ )
if result:
snake_case__ : Optional[Any] = [os.path.join(__magic_name__ , """__init__.py""" )]
if len(__magic_name__ ) > 0:
raise ValueError(f"Would overwrite {len(__magic_name__ )} files, run `make style`." )
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
A_ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 38 |
UpperCAmelCase_ : int = range(2, 20 + 1)
UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)]
UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) )
__magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) )
__magic_name__ , __magic_name__ : Tuple =0, 0
__magic_name__ : Optional[Any] =n - i
__magic_name__ : Union[str, Any] =memo.get(lowerCamelCase )
if sub_memo is not None:
__magic_name__ : int =sub_memo.get(lowerCamelCase )
if jumps is not None and len(lowerCamelCase ) > 0:
# find and make the largest jump without going over
__magic_name__ : Dict =-1
for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
__magic_name__ : Optional[Any] =_k
break
if max_jump >= 0:
__magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump]
# since the difference between jumps is cached, add c
__magic_name__ : Tuple =diff + c
for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ):
__magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 )
if new_c > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
else:
__magic_name__ : str =[]
else:
__magic_name__ : List[str] ={c: []}
__magic_name__ : List[str] =sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
__magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
__magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase )
diff += _diff
dn += terms_jumped
__magic_name__ : Tuple =sub_memo[c]
# keep jumps sorted by # of terms skipped
__magic_name__ : List[Any] =0
while j < len(lowerCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowerCamelCase , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
if i >= n:
return 0, i
if k > len(lowerCamelCase ):
a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
__magic_name__ : Tuple =i
__magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0
for j in range(len(lowerCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
__magic_name__ : Optional[Any] =ds_c + ds_b
diff += addend
__magic_name__ : str =0
for j in range(lowerCamelCase ):
__magic_name__ : int =a_i[j] + addend
__magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return diff, i - start_i
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
for j in range(lowerCamelCase , len(lowerCamelCase ) ):
__magic_name__ : Tuple =digits[j] + addend
if s >= 10:
__magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 )
__magic_name__ : int =addend // 10 + quotient
else:
__magic_name__ : Dict =s
__magic_name__ : Any =addend // 10
if addend == 0:
break
while addend > 0:
__magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 )
digits.append(lowerCamelCase )
def lowerCAmelCase_ ( lowerCamelCase = 10**15 ):
__magic_name__ : List[str] =[1]
__magic_name__ : str =1
__magic_name__ : str =0
while True:
__magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase )
dn += terms_jumped
if dn == n - i:
break
__magic_name__ : int =0
for j in range(len(lowerCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 21 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_ = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 39 |
from typing import List
from .keymap import KEYMAP, get_character
def lowerCAmelCase_ ( lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] )
handle += [key]
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
def lowerCAmelCase_ ( *lowerCamelCase ):
def decorator(lowerCamelCase ):
__magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] )
handle += keys
setattr(lowerCamelCase , """handle_key""" , lowerCamelCase )
return func
return decorator
class __A ( UpperCamelCase__ ):
def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ):
'''simple docstring'''
__magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case )
if not hasattr(__snake_case , """key_handler""" ):
setattr(__snake_case , """key_handler""" , {} )
setattr(__snake_case , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__magic_name__ : int =getattr(__snake_case , """handle_key""" , [] )
for key in handled_keys:
__magic_name__ : List[str] =value
return new_cls
@staticmethod
def A__ ( cls :Optional[int] ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =get_character()
if char != KEYMAP["undefined"]:
__magic_name__ : Optional[int] =ord(__snake_case )
__magic_name__ : int =cls.key_handler.get(__snake_case )
if handler:
__magic_name__ : Dict =char
return handler(cls )
else:
return None
def lowerCAmelCase_ ( cls ):
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 21 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : List[str] = "unispeech"
def __init__( self, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_="group", SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=(512, 512, 512, 512, 512, 512, 512), SCREAMING_SNAKE_CASE_=(5, 2, 2, 2, 2, 2, 2), SCREAMING_SNAKE_CASE_=(10, 3, 3, 3, 3, 2, 2), SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.05, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=320, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=100, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_="mean", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=80, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.5, **SCREAMING_SNAKE_CASE_, ) -> List[str]:
super().__init__(**SCREAMING_SNAKE_CASE_, pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = hidden_size
UpperCamelCase : Dict = feat_extract_norm
UpperCamelCase : Any = feat_extract_activation
UpperCamelCase : str = list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = conv_bias
UpperCamelCase : Union[str, Any] = num_conv_pos_embeddings
UpperCamelCase : Union[str, Any] = num_conv_pos_embedding_groups
UpperCamelCase : int = len(self.conv_dim )
UpperCamelCase : str = num_hidden_layers
UpperCamelCase : List[Any] = intermediate_size
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : str = num_attention_heads
UpperCamelCase : Dict = hidden_dropout
UpperCamelCase : Any = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : Any = feat_proj_dropout
UpperCamelCase : Tuple = final_dropout
UpperCamelCase : Optional[Any] = layerdrop
UpperCamelCase : Tuple = layer_norm_eps
UpperCamelCase : Tuple = initializer_range
UpperCamelCase : Optional[Any] = num_ctc_classes
UpperCamelCase : Any = vocab_size
UpperCamelCase : int = do_stable_layer_norm
UpperCamelCase : int = use_weighted_layer_sum
UpperCamelCase : Tuple = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase : str = apply_spec_augment
UpperCamelCase : Optional[int] = mask_time_prob
UpperCamelCase : Any = mask_time_length
UpperCamelCase : Optional[Any] = mask_time_min_masks
UpperCamelCase : int = mask_feature_prob
UpperCamelCase : Union[str, Any] = mask_feature_length
UpperCamelCase : Optional[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCamelCase : int = num_codevectors_per_group
UpperCamelCase : str = num_codevector_groups
UpperCamelCase : Optional[Any] = contrastive_logits_temperature
UpperCamelCase : Optional[Any] = feat_quantizer_dropout
UpperCamelCase : Union[str, Any] = num_negatives
UpperCamelCase : Dict = codevector_dim
UpperCamelCase : Tuple = proj_codevector_dim
UpperCamelCase : int = diversity_loss_weight
# ctc loss
UpperCamelCase : int = ctc_loss_reduction
UpperCamelCase : str = ctc_zero_infinity
# pretraining loss
UpperCamelCase : Dict = replace_prob
@property
def snake_case_ ( self ) -> List[str]:
return functools.reduce(operator.mul, self.conv_stride, 1 )
| 40 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
UpperCAmelCase_ : Dict = 2048
UpperCAmelCase_ : int = 4096
UpperCAmelCase_ : Any = 42
UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false")
UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def lowerCAmelCase_ ( lowerCamelCase ):
def choose_first(lowerCamelCase , lowerCamelCase=False ):
assert isinstance(lowerCamelCase , lowerCamelCase )
if len(lowerCamelCase ) == 1:
__magic_name__ : List[str] =answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__magic_name__ : Tuple ={k: [a[k]] for k in a}
if len(a["""start_token"""] ) > 0:
break
return a
__magic_name__ : str ={"""id""": example["""id"""]}
__magic_name__ : List[Any] =example["""annotations"""]
__magic_name__ : List[str] =annotation["""yes_no_answer"""]
if 0 in yes_no_answer or 1 in yes_no_answer:
__magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""]
__magic_name__ : List[str] =[]
__magic_name__ : Dict =[]
__magic_name__ : str =["""<cls>"""]
else:
__magic_name__ : Tuple =["""short"""]
__magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] )
if len(out["""start_token"""] ) == 0:
# answer will be long if short is not available
__magic_name__ : Tuple =["""long"""]
__magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase )
__magic_name__ : List[Any] =[]
answer.update(lowerCamelCase )
# disregard some samples
if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]:
__magic_name__ : Any =True
else:
__magic_name__ : List[str] =False
__magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""]
if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ):
raise ValueError("""Issue in ID""" , example["""id"""] )
return answer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ):
__magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : Any =example["""document"""]["""tokens"""]
__magic_name__ : str =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__magic_name__ : Dict =["""start_token""", """end_token"""]
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__magic_name__ : Tuple =example["""document"""]["""tokens"""]
__magic_name__ : Optional[int] =answer["""start_token"""]
__magic_name__ : List[Any] =answer["""end_token"""]
__magic_name__ : Optional[Any] =[]
for i in range(len(doc["""token"""] ) ):
if not doc["is_html"][i]:
context.append(doc["""token"""][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] )
# checking above code
if assertion:
__magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]]
__magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] )
if new != old:
print("""ID:""" , example["""id"""] )
print("""New:""" , lowerCamelCase , end="""\n""" )
print("""Old:""" , lowerCamelCase , end="""\n\n""" )
return {
"context": " ".join(lowerCamelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ):
# overlap will be of doc_stride - q_len
__magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase )
__magic_name__ : Union[str, Any] =out["""answer"""]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids
__magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__magic_name__ : List[str] =[]
__magic_name__ : int =[]
__magic_name__ : List[str] =input_ids[:q_len]
__magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Tuple =input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer["""category"""][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(lowerCamelCase ),
"end_token": [-100] * len(lowerCamelCase ),
"category": category,
},
}
__magic_name__ : int =out["""context"""].split()
__magic_name__ : Any =splitted_context[answer["""end_token"""]]
__magic_name__ : str =len(
tokenizer(
""" """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids )
__magic_name__ : Optional[int] =len(
tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive
__magic_name__ : Dict =answer["""start_token"""]
__magic_name__ : int =answer["""end_token"""]
if assertion:
__magic_name__ : Any =tokenizer.decode(lowerCamelCase )
if answer["span"] != new:
print("""ISSUE IN TOKENIZATION""" )
print("""OLD:""" , answer["""span"""] )
print("""NEW:""" , lowerCamelCase , end="""\n\n""" )
if len(lowerCamelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__magic_name__ : Any =input_ids[:q_len]
__magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride )
__magic_name__ : Any =[]
__magic_name__ : List[str] =[]
__magic_name__ : List[str] =[]
__magic_name__ : str =[] # null, yes, no, long, short
for i in doc_start_indices:
__magic_name__ : List[Any] =i + max_length - q_len
__magic_name__ : Dict =input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__magic_name__ : List[Any] =start_token - i + q_len
__magic_name__ : Optional[Any] =end_token - i + q_len
answers_category.append(answer["""category"""][0] ) # ["short"] -> "short"
else:
__magic_name__ : Optional[Any] =-100
__magic_name__ : Optional[Any] =-100
answers_category.append("""null""" )
__magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1]
answers_start_token.append(lowerCamelCase )
answers_end_token.append(lowerCamelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print("""ISSUE in strided for ID:""" , example["""id"""] )
print("""New:""" , tokenizer.decode(lowerCamelCase ) )
print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ):
__magic_name__ : List[Any] =get_strided_contexts_and_ans(
lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , )
return example
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
with jsonlines.open(lowerCamelCase , """a""" ) as writer:
for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ):
__magic_name__ : int =example["""labels"""]
for ids, start, end, cat in zip(
example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"""input_ids""": ids,
"""start_token""": start,
"""end_token""": end,
"""category""": CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions")
UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"]
UpperCAmelCase_ : Optional[int] = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 21 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.