code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = StableDiffusionInpaintPipeline
_a = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
_a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
_a = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_a = frozenset([] )
def a__ ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
_A : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
_A : List[str] = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
_A : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_A : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
_A : Any = CLIPTextModel(_a )
_A : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_A : Optional[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def a__ ( self , _a , _a=0 ) -> str:
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
_A : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
_A : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_A : Tuple = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) )
_A : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(_a ).startswith("""mps""" ):
_A : Optional[Any] = torch.manual_seed(_a )
else:
_A : Dict = torch.Generator(device=_a ).manual_seed(_a )
_A : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def a__ ( self ) -> List[Any]:
_A : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
_A : List[str] = self.get_dummy_components()
_A : int = StableDiffusionInpaintPipeline(**_a )
_A : Dict = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = self.get_dummy_inputs(_a )
_A : Optional[Any] = sd_pipe(**_a ).images
_A : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_A : Dict = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def a__ ( self ) -> List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self ) -> str:
_A : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_A : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_A : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
_A : Union[str, Any] = """stabilityai/stable-diffusion-2-inpainting"""
_A : Dict = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
_A : int = """Face of a yellow cat, high resolution, sitting on a park bench"""
_A : List[Any] = torch.manual_seed(0 )
_A : str = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type="""np""" , )
_A : Union[str, Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def a__ ( self ) -> List[Any]:
_A : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_A : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
_A : Optional[Any] = """stabilityai/stable-diffusion-2-inpainting"""
_A : Tuple = StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
_A : List[str] = """Face of a yellow cat, high resolution, sitting on a park bench"""
_A : Dict = torch.manual_seed(0 )
_A : Optional[int] = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type="""np""" , )
_A : Any = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def a__ ( self ) -> List[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_A : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_A : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_A : str = """stabilityai/stable-diffusion-2-inpainting"""
_A : List[str] = PNDMScheduler.from_pretrained(_a , subfolder="""scheduler""" )
_A : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_A : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
_A : List[Any] = torch.manual_seed(0 )
_A : Optional[int] = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , )
_A : Optional[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 26 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class lowercase ( UpperCamelCase__ ):
_a = field(default="automatic-speech-recognition",metadata={"include_in_asdict_even_if_is_default": True} )
_a = Features({"audio": Audio()} )
_a = Features({"transcription": Value("string" )} )
_a = "audio"
_a = "transcription"
def a__ ( self , _a ) -> Union[str, Any]:
if self.audio_column not in features:
raise ValueError(F'''Column {self.audio_column} is not present in features.''' )
if not isinstance(features[self.audio_column] , _a ):
raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' )
_A : Union[str, Any] = copy.deepcopy(self )
_A : List[str] = self.input_schema.copy()
_A : int = features[self.audio_column]
_A : List[Any] = input_schema
return task_template
@property
def a__ ( self ) -> Dict[str, str]:
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 26 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
while b:
_A , _A : List[str] = b, a % b
return a
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b )
def lowerCAmelCase_ ( ):
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' )
if __name__ == "__main__":
main()
| 26 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class lowercase ( UpperCamelCase__ ):
@slow
@require_torch
def a__ ( self ) -> Dict:
_A : int = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
_A : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" )
_A : Dict = bertabert.config.encoder.vocab_size
_A : List[str] = tokenizer.sep_token_id
_A : Dict = tokenizer.cls_token_id
_A : List[Any] = 128
_A : Tuple = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
_A : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
_A : Union[str, Any] = train_dataset.select(range(32 ) )
_A : str = val_dataset.select(range(16 ) )
_A : Dict = 4
def _map_to_encoder_decoder_inputs(_a ):
# Tokenizer will automatically set [BOS] <text> [EOS]
_A : List[Any] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_a , max_length=512 )
_A : int = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_a , max_length=128 )
_A : Union[str, Any] = inputs.input_ids
_A : List[Any] = inputs.attention_mask
_A : Dict = outputs.input_ids
_A : str = outputs.input_ids.copy()
_A : Union[str, Any] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
_A : Dict = outputs.attention_mask
assert all(len(_a ) == 512 for x in inputs.input_ids )
assert all(len(_a ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(_a ):
_A : int = pred.label_ids
_A : str = pred.predictions
# all unnecessary tokens are removed
_A : Dict = tokenizer.batch_decode(_a , skip_special_tokens=_a )
_A : Optional[Any] = tokenizer.batch_decode(_a , skip_special_tokens=_a )
_A : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_a ) )] ) / len(_a )
return {"accuracy": accuracy}
# map train dataset
_A : Dict = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=_a , batch_size=_a , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
_A : Optional[int] = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=_a , batch_size=_a , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
_A : Optional[int] = self.get_auto_remove_tmp_dir()
_A : Any = SeqaSeqTrainingArguments(
output_dir=_a , per_device_train_batch_size=_a , per_device_eval_batch_size=_a , predict_with_generate=_a , evaluation_strategy="""steps""" , do_train=_a , do_eval=_a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
_A : Optional[Any] = SeqaSeqTrainer(
model=_a , args=_a , compute_metrics=_compute_metrics , train_dataset=_a , eval_dataset=_a , tokenizer=_a , )
# start training
trainer.train()
| 26 |
def lowerCAmelCase_ ( snake_case_ ):
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 1 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class lowercase :
_a = 42
_a = None
# Automatically constructed
_a = "dict"
_a = None
_a = field(default="Translation",init=UpperCamelCase__,repr=UpperCamelCase__ )
def __call__( self ) -> int:
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class lowercase :
_a = None
_a = None
_a = None
# Automatically constructed
_a = "dict"
_a = None
_a = field(default="TranslationVariableLanguages",init=UpperCamelCase__,repr=UpperCamelCase__ )
def a__ ( self ) -> str:
_A : str = sorted(set(self.languages ) ) if self.languages else None
_A : Any = len(self.languages ) if self.languages else None
def __call__( self ) -> Union[str, Any]:
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def a__ ( self , _a ) -> Optional[int]:
_A : Optional[Any] = set(self.languages )
if self.languages and set(_a ) - lang_set:
raise ValueError(
F'''Some languages in example ({", ".join(sorted(set(_a ) - lang_set ) )}) are not in valid set ({", ".join(_a )}).''' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
_A : Any = []
for lang, text in translation_dict.items():
if isinstance(_a , _a ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
_A , _A : str = zip(*sorted(_a ) )
return {"language": languages, "translation": translations}
def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 26 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : str = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : Optional[Any] = k.replace(""".attn""",""".self_attn""" )
_A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : str = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : str = sd.pop(snake_case_ )
_A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Optional[int] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : List[Any] = model["""model"""]
_A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : List[str] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Any = []
_A : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 | 1 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def lowerCAmelCase_ ( snake_case_ ):
_A , _A : Tuple = analyze_text(snake_case_ )
_A : List[str] = list(""" """ + ascii_lowercase )
# what is our total sum of probabilities.
_A : Dict = sum(single_char_strings.values() )
# one length string
_A : Union[str, Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_A : List[str] = single_char_strings[ch]
_A : Optional[Any] = my_str / all_sum
my_fir_sum += prob * math.loga(snake_case_ ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
_A : str = sum(two_char_strings.values() )
_A : Union[str, Any] = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_A : Union[str, Any] = cha + cha
if sequence in two_char_strings:
_A : List[Any] = two_char_strings[sequence]
_A : str = int(snake_case_ ) / all_sum
my_sec_sum += prob * math.loga(snake_case_ )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[str] = Counter() # type: ignore
_A : Optional[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0,len(snake_case_ ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def lowerCAmelCase_ ( ):
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 26 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int:
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
_A : Optional[int] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def a__ ( self ) -> Optional[Any]:
_A : Tuple = None
_A : int = None
_A : Tuple = None
_A : Union[str, Any] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
_A : int = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class lowercase :
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_A : Dict = dataset
_A : int = name
_A : Union[str, Any] = con
_A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_A : str = num_proc
_A : Optional[Any] = to_sql_kwargs
def a__ ( self ) -> int:
_A : Any = self.to_sql_kwargs.pop("""sql""" , _a )
_A : List[str] = self.to_sql_kwargs.pop("""con""" , _a )
_A : int = self.to_sql_kwargs.pop("""index""" , _a )
_A : List[str] = self._write(index=_a , **self.to_sql_kwargs )
return written
def a__ ( self , _a ) -> Optional[int]:
_A , _A , _A : List[str] = args
_A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
_A : str = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
_A : Tuple = batch.to_pandas()
_A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def a__ ( self , _a , **_a ) -> int:
_A : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_A , _A : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 26 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_snake_case = {
"configuration_rag": ["RagConfig"],
"retrieval_rag": ["RagRetriever"],
"tokenization_rag": ["RagTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"RagModel",
"RagPreTrainedModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TFRagModel",
"TFRagPreTrainedModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class lowercase ( UpperCamelCase__ ):
_a = "fnet"
def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Any = vocab_size
_A : str = max_position_embeddings
_A : Optional[Any] = hidden_size
_A : List[str] = num_hidden_layers
_A : List[str] = intermediate_size
_A : List[Any] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : List[str] = initializer_range
_A : List[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : List[str] = use_tpu_fourier_optimizations
_A : str = tpu_short_seq_length
| 26 | 1 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ):
_A : Union[str, Any] = []
for k, v in d.items():
_A : Optional[int] = parent_key + sep + k if parent_key else k
if isinstance(snake_case_,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case_ )
_A : List[Any] = argparse.Namespace()
with open(snake_case_,"""r""" ) as yaml_file:
try:
_A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader )
_A : Optional[int] = flatten_yaml_as_dict(snake_case_ )
for k, v in flat_cfg.items():
setattr(snake_case_,snake_case_,snake_case_ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) )
return config
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Optional[Any] = MobileViTVaConfig()
_A : Tuple = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_A : Dict = 1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : int = 384
else:
_A : int = 256
_A : List[str] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_A : Union[str, Any] = 21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : str = 384
else:
_A : List[Any] = 256
_A : List[str] = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_A : int = 151
_A : int = 512
_A : Optional[int] = """ade20k-id2label.json"""
_A : Any = True
elif task_name.startswith("""voc_""" ):
_A : List[Any] = 21
_A : Dict = 512
_A : Dict = """pascal-voc-id2label.json"""
_A : int = True
# orig_config
_A : Any = load_orig_config_file(snake_case_ )
assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model"
_A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 )
assert (
getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 )
if "_deeplabv3" in task_name:
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] )
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 )
_A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 )
# id2label
_A : List[Any] = """huggingface/label-files"""
_A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : str = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : str = idalabel
_A : Dict = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = dct.pop(snake_case_ )
_A : Union[str, Any] = val
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
if base_model:
_A : Optional[int] = """"""
else:
_A : Dict = """mobilevitv2."""
_A : int = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_A : Any = k[8:]
else:
_A : List[str] = k
if ".block." in k:
_A : Any = k_new.replace(""".block.""",""".""" )
if ".conv." in k:
_A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" )
if ".norm." in k:
_A : Any = k_new.replace(""".norm.""",""".normalization.""" )
if "conv_1." in k:
_A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
_A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" )
if ".red_1x1." in k:
_A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
_A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
_A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
_A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
_A : Optional[int] = [0, 1]
elif i == 4:
_A : Union[str, Any] = [0, 1, 2, 3]
elif i == 5:
_A : Optional[Any] = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
_A : Union[str, Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
_A : List[str] = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" )
if "pre_norm_attn.1." in k:
_A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" )
if "pre_norm_ffn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" )
if "classifier.1." in k:
_A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" )
if "seg_head." in k:
_A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" )
if ".aspp_layer." in k:
_A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" )
if ".aspp_pool." in k:
_A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" )
rename_keys.append((k, k_new) )
return rename_keys
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case_ )
for k in keys_to_ignore:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( ):
_A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ )
# load original state_dict
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval()
_A : str = False
else:
_A : int = MobileViTVaForImageClassification(snake_case_ ).eval()
_A : List[Any] = False
# remove and rename some keys of load the original model
_A : List[Any] = checkpoint
remove_unused_keys(snake_case_ )
_A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
# load modified state_dict
model.load_state_dict(snake_case_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 )
_A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Optional[Any] = model(**snake_case_ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_A : List[Any] = outputs.logits
_A : Optional[int] = logits.argmax(-1 ).item()
print("""Predicted class:""",model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_snake_case = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 26 |
def lowerCAmelCase_ ( snake_case_ ):
if n_term == "":
return []
_A : list = []
for temp in range(int(snake_case_ ) ):
series.append(f'''1/{temp + 1}''' if series else """1""" )
return series
if __name__ == "__main__":
_snake_case = input("Enter the last number (nth term) of the Harmonic Series")
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
print(harmonic_series(nth_term))
| 26 | 1 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def a__ ( self , _a=0 ) -> Optional[Any]:
_A : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_a ) )
_A : Optional[Any] = np.random.RandomState(_a )
_A : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""strength""": 0.75,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def a__ ( self ) -> int:
_A : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_a )
_A : Any = self.get_dummy_inputs()
_A : List[str] = pipe(**_a ).images
_A : Optional[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
_A : List[Any] = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def a__ ( self ) -> Dict:
_A : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
_A : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a )
pipe.set_progress_bar_config(disable=_a )
_A : List[Any] = self.get_dummy_inputs()
_A : Union[str, Any] = pipe(**_a ).images
_A : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
_A : Dict = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def a__ ( self ) -> List[Any]:
_A : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
_A : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
# warmup pass to apply optimizations
_A : List[Any] = pipe(**self.get_dummy_inputs() )
_A : Tuple = self.get_dummy_inputs()
_A : List[str] = pipe(**_a ).images
_A : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
_A : Dict = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def a__ ( self ) -> Union[str, Any]:
_A : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
_A : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
_A : int = self.get_dummy_inputs()
_A : Tuple = pipe(**_a ).images
_A : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
_A : Any = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def a__ ( self ) -> List[Any]:
_A : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
_A : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = self.get_dummy_inputs()
_A : Tuple = pipe(**_a ).images
_A : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
_A : str = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
_A : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
_A : Union[str, Any] = self.get_dummy_inputs()
_A : List[str] = pipe(**_a ).images
_A : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
_A : Optional[int] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> str:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> Optional[int]:
_A : Union[str, Any] = ort.SessionOptions()
_A : List[str] = False
return options
def a__ ( self ) -> Tuple:
_A : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
_A : Optional[Any] = init_image.resize((768, 512) )
# using the PNDM scheduler by default
_A : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : str = """A fantasy landscape, trending on artstation"""
_A : List[str] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" , )
_A : Optional[Any] = output.images
_A : Optional[Any] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
_A : Optional[int] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def a__ ( self ) -> Optional[Any]:
_A : Any = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
_A : Union[str, Any] = init_image.resize((768, 512) )
_A : Any = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
_A : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : str = """A fantasy landscape, trending on artstation"""
_A : int = np.random.RandomState(0 )
_A : Optional[Any] = pipe(
prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type="""np""" , )
_A : Tuple = output.images
_A : List[Any] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
_A : List[Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 26 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26 | 1 |
from math import sqrt
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = 0
for i in range(1,int(sqrt(snake_case_ ) + 1 ) ):
if n % i == 0 and i != sqrt(snake_case_ ):
total += i + n // i
elif i == sqrt(snake_case_ ):
total += i
return total - n
def lowerCAmelCase_ ( snake_case_ = 10000 ):
_A : List[Any] = sum(
i
for i in range(1,snake_case_ )
if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 26 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 | 1 |
from __future__ import annotations
from math import ceil, floor, sqrt
def lowerCAmelCase_ ( snake_case_ = 2000000 ):
_A : list[int] = [0]
_A : int
for idx in range(1,ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
_A : int = 0
# the area corresponding to the grid that gives the product closest to target
_A : int = 0
# an estimate of b, using the quadratic formula
_A : float
# the largest integer less than b_estimate
_A : int
# the largest integer less than b_estimate
_A : int
# the triangle number corresponding to b_floor
_A : int
# the triangle number corresponding to b_ceil
_A : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:],1 ):
_A : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
_A : Optional[int] = floor(snake_case_ )
_A : List[str] = ceil(snake_case_ )
_A : Optional[int] = triangle_numbers[b_floor]
_A : Tuple = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
_A : Union[str, Any] = triangle_b_first_guess * triangle_a
_A : Optional[Any] = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
_A : int = triangle_b_second_guess * triangle_a
_A : Optional[int] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"""{solution() = }""")
| 26 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.maximum(0,snake_case_ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 26 | 1 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Union[str, Any]:
_A : List[str] = 0
def a__ ( self ) -> str:
_A : Union[str, Any] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(_a , _a )
def a__ ( self ) -> str:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Dict = Path(_a ) / """preprocessor_config.json"""
_A : Union[str, Any] = Path(_a ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) )
_A : Optional[Any] = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def a__ ( self ) -> Optional[Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
_A : List[str] = Path(_a ) / """preprocessor_config.json"""
_A : str = Path(_a ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) )
_A : int = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def a__ ( self ) -> Dict:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : List[Any] = CLIPConfig()
# Create a dummy config file with image_proceesor_type
_A : Tuple = Path(_a ) / """preprocessor_config.json"""
_A : Any = Path(_a ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
_A : Optional[Any] = AutoImageProcessor.from_pretrained(_a ).to_dict()
config_dict.pop("""image_processor_type""" )
_A : Any = CLIPImageProcessor(**_a )
# save in new folder
model_config.save_pretrained(_a )
config.save_pretrained(_a )
_A : int = AutoImageProcessor.from_pretrained(_a )
# make sure private variable is not incorrectly saved
_A : Optional[Any] = json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(_a , _a )
def a__ ( self ) -> Optional[Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Tuple = Path(_a ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , )
_A : List[str] = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def a__ ( self ) -> Tuple:
with self.assertRaisesRegex(
_a , """clip-base is not a local folder and is not a valid model identifier""" ):
_A : Tuple = AutoImageProcessor.from_pretrained("""clip-base""" )
def a__ ( self ) -> Optional[Any]:
with self.assertRaisesRegex(
_a , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
_A : List[Any] = AutoImageProcessor.from_pretrained(_a , revision="""aaaaaa""" )
def a__ ( self ) -> Optional[int]:
with self.assertRaisesRegex(
_a , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
_A : Optional[int] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def a__ ( self ) -> Optional[Any]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
_A : str = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
_A : int = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a )
_A : Tuple = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
_A : List[Any] = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def a__ ( self ) -> List[str]:
try:
AutoConfig.register("""custom""" , _a )
AutoImageProcessor.register(_a , _a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoImageProcessor.register(_a , _a )
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Dict = Path(_a ) / """preprocessor_config.json"""
_A : Optional[Any] = Path(_a ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) )
_A : str = CustomImageProcessor.from_pretrained(_a )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
_A : List[Any] = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def a__ ( self ) -> Optional[int]:
class lowercase ( UpperCamelCase__ ):
_a = True
try:
AutoConfig.register("""custom""" , _a )
AutoImageProcessor.register(_a , _a )
# If remote code is not set, the default is to use local
_A : List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
_A : Dict = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
_A : str = AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(_a , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 26 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_snake_case = getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,):
_A : Dict = str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ )
_A : Tuple = Path(snake_case_ )
_A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(snake_case_ )
_A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
_A : Any = model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params
_A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_A : int = num_return_sequences
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_A : Optional[int] = tokenizer.model_max_length
if prefix is None:
_A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """"""
_A : Optional[int] = SeqaSeqDataset(
snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,)
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ )
_A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn )
_A : Optional[Any] = []
for batch in tqdm(snake_case_ ):
_A : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,)
_A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
_A : Dict = batch["""ids"""]
if num_return_sequences > 1:
_A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(snake_case_,snake_case_ )
return results, sampler.num_replicas
def lowerCAmelCase_ ( ):
_A : Tuple = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",)
parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" )
parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ )
parser.add_argument(
"""--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" )
parser.add_argument(
"""--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",)
parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument(
"""--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""",action="""store_true""" )
parser.add_argument("""--debug""",action="""store_true""" )
_A : Union[str, Any] = time.time()
_A , _A : List[str] = parser.parse_known_args()
_A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(f'''parsed the following generate kwargs: {generate_kwargs}''' )
_A : Dict = Path(args.save_dir + """_tmp""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
_A : int = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_A : Any = {}
if args.src_lang is not None:
_A : int = args.src_lang
if args.tgt_lang is not None:
_A : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
_A , _A : str = eval_data_dir(
args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,)
if args.local_rank <= 0:
_A : List[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
_A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout )
_A : Optional[int] = combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
_A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" )
print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(snake_case_,snake_case_ )
return
_A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(snake_case_ ) as f:
_A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
_A : Dict = """translation""" in args.task
_A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge
_A : Tuple = """bleu""" if calc_bleu else """rouge"""
_A : Dict = score_fn(snake_case_,snake_case_ )
_A : List[Any] = len(snake_case_ )
_A : Optional[int] = time.time() - start_time
_A : Dict = round(runtime / metrics["""n_obs"""],4 )
_A : Dict = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' )
save_json(snake_case_,snake_case_,indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) )
else:
shutil.rmtree(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for partial_result in partial_results:
records.extend(snake_case_ )
_A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] )
_A : List[str] = [x["""pred"""] for x in records]
return preds
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# WAIT FOR lots of .json files
_A : Optional[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_A : List[str] = None
while (time.time() - start_wait) < timeout:
_A : str = list(save_dir.glob("""rank_*.json""" ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_A : List[str] = lmap(snake_case_,snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 26 | 1 |
import math
def lowerCAmelCase_ ( snake_case_,snake_case_ = 0,snake_case_ = 0 ):
_A : Tuple = end or len(snake_case_ )
for i in range(snake_case_,snake_case_ ):
_A : List[str] = i
_A : Optional[Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_A : int = array[temp_index - 1]
temp_index -= 1
_A : Dict = temp_index_value
return array
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # Max Heap
_A : Dict = index
_A : Union[str, Any] = 2 * index + 1 # Left Node
_A : List[Any] = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_A : str = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_A : str = right_index
if largest != index:
_A , _A : List[Any] = array[largest], array[index]
heapify(snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = len(snake_case_ )
for i in range(n // 2,-1,-1 ):
heapify(snake_case_,snake_case_,snake_case_ )
for i in range(n - 1,0,-1 ):
_A , _A : Union[str, Any] = array[0], array[i]
heapify(snake_case_,0,snake_case_ )
return array
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : int = low
_A : List[Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_A , _A : str = array[j], array[i]
i += 1
def lowerCAmelCase_ ( snake_case_ ):
if len(snake_case_ ) == 0:
return array
_A : Tuple = 2 * math.ceil(math.loga(len(snake_case_ ) ) )
_A : List[str] = 16
return intro_sort(snake_case_,0,len(snake_case_ ),snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(snake_case_ )
max_depth -= 1
_A : Optional[Any] = median_of_a(snake_case_,snake_case_,start + ((end - start) // 2) + 1,end - 1 )
_A : List[Any] = partition(snake_case_,snake_case_,snake_case_,snake_case_ )
intro_sort(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ )
_A : Optional[Any] = p
return insertion_sort(snake_case_,snake_case_,snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
_snake_case = input("Enter numbers separated by a comma : ").strip()
_snake_case = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 26 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Any:
_A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_A : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_A : List[str] = model(_a )["""last_hidden_state"""]
_A : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
_A : List[Any] = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 26 | 1 |
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_snake_case = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class lowercase ( unittest.TestCase ):
@classmethod
def a__ ( cls ) -> Optional[int]:
_A : Optional[int] = TOKEN
HfFolder.save_token(_a )
@classmethod
def a__ ( cls ) -> List[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-model-flax""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" )
except HTTPError:
pass
def a__ ( self ) -> Dict:
_A : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
_A : Dict = FlaxBertModel(_a )
model.push_to_hub("""test-model-flax""" , use_auth_token=self._token )
_A : Dict = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' )
_A : Optional[int] = flatten_dict(unfreeze(model.params ) )
_A : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_A : Optional[int] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1e-3 , msg=F'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id="""test-model-flax""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_a , repo_id="""test-model-flax""" , push_to_hub=_a , use_auth_token=self._token )
_A : str = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' )
_A : str = flatten_dict(unfreeze(model.params ) )
_A : List[str] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_A : List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1e-3 , msg=F'''{key} not identical''' )
def a__ ( self ) -> Dict:
_A : List[str] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
_A : List[str] = FlaxBertModel(_a )
model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token )
_A : Union[str, Any] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" )
_A : str = flatten_dict(unfreeze(model.params ) )
_A : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_A : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1e-3 , msg=F'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_a , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=_a , use_auth_token=self._token )
_A : Optional[Any] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" )
_A : List[Any] = flatten_dict(unfreeze(model.params ) )
_A : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_A : Optional[int] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1e-3 , msg=F'''{key} not identical''' )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : List[Any] = True
_A : Union[str, Any] = flatten_dict(modela.params )
_A : Optional[Any] = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
_A : List[str] = False
return models_are_equal
@require_flax
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Union[str, Any]:
_A : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
_A : Optional[int] = FlaxBertModel(_a )
_A : List[str] = """bert"""
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) )
with self.assertRaises(_a ):
_A : int = FlaxBertModel.from_pretrained(_a )
_A : Optional[Any] = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def a__ ( self ) -> Tuple:
_A : Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
_A : Any = FlaxBertModel(_a )
_A : Optional[Any] = """bert"""
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) , max_shard_size="""10KB""" )
with self.assertRaises(_a ):
_A : Any = FlaxBertModel.from_pretrained(_a )
_A : List[str] = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def a__ ( self ) -> Optional[Any]:
_A : List[str] = """bert"""
_A : List[Any] = """hf-internal-testing/tiny-random-bert-subfolder"""
with self.assertRaises(_a ):
_A : Dict = FlaxBertModel.from_pretrained(_a )
_A : Tuple = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
def a__ ( self ) -> Union[str, Any]:
_A : List[str] = """bert"""
_A : str = """hf-internal-testing/tiny-random-bert-sharded-subfolder"""
with self.assertRaises(_a ):
_A : Tuple = FlaxBertModel.from_pretrained(_a )
_A : str = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
| 26 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
_snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
_snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n"
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]:
super().__init__()
self.register_modules(
prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str:
if latents is None:
_A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a )
else:
if latents.shape != shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
_A : Union[str, Any] = latents.to(_a )
_A : int = latents * scheduler.init_noise_sigma
return latents
def a__ ( self , _a=0 ) -> Optional[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
_A : str = torch.device(F'''cuda:{gpu_id}''' )
_A : Any = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
def a__ ( self ) -> List[Any]:
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(_a , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def a__ ( self , _a , _a , _a , _a , ) -> Tuple:
if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ):
_A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 )
if not isinstance(_a , torch.Tensor ):
_A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
_A : int = image.to(dtype=self.image_encoder.dtype , device=_a )
_A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""]
_A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
_A : Dict = image_embeds.repeat_interleave(_a , dim=0 )
if do_classifier_free_guidance:
_A : str = torch.zeros_like(_a )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A : List[str] = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(_a )
def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]:
if isinstance(_a , PIL.Image.Image ):
_A : List[Any] = 1
elif isinstance(_a , torch.Tensor ):
_A : Any = image.shape[0]
elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
_A : Union[str, Any] = len(_a )
else:
raise ValueError(
F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' )
_A : Optional[int] = self._execution_device
_A : Tuple = batch_size * num_images_per_prompt
_A : List[Any] = guidance_scale > 1.0
_A : Optional[Any] = self._encode_image(_a , _a , _a , _a )
# prior
self.scheduler.set_timesteps(_a , device=_a )
_A : Optional[int] = self.scheduler.timesteps
_A : List[str] = self.prior.config.num_embeddings
_A : int = self.prior.config.embedding_dim
_A : Optional[Any] = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
_A : List[Any] = latents.reshape(latents.shape[0] , _a , _a )
for i, t in enumerate(self.progress_bar(_a ) ):
# expand the latents if we are doing classifier free guidance
_A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A : int = self.scheduler.scale_model_input(_a , _a )
_A : Tuple = self.prior(
_a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding
# remove the variance
_A , _A : Optional[Any] = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
_A , _A : Dict = noise_pred.chunk(2 )
_A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
_A : int = self.scheduler.step(
_a , timestep=_a , sample=_a , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=_a )
_A : List[str] = []
for i, latent in enumerate(_a ):
print()
_A : List[str] = self.renderer.decode(
latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(_a )
_A : List[Any] = torch.stack(_a )
if output_type not in ["np", "pil"]:
raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
_A : List[str] = images.cpu().numpy()
if output_type == "pil":
_A : List[Any] = [self.numpy_to_pil(_a ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=_a )
| 26 | 1 |
import enum
import shutil
import sys
_snake_case , _snake_case = shutil.get_terminal_size()
_snake_case = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
class lowercase ( enum.Enum ):
_a = 0
_a = 1
def lowerCAmelCase_ ( snake_case_,snake_case_="" ):
sys.stdout.write(str(snake_case_ ) + end )
sys.stdout.flush()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_="" ):
forceWrite(f'''\u001b[{color}m{content}\u001b[0m''',snake_case_ )
def lowerCAmelCase_ ( ):
forceWrite("""\r""" )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
forceWrite(f'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' )
def lowerCAmelCase_ ( ):
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def lowerCAmelCase_ ( ):
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 26 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ):
_A : Union[str, Any] = []
for k, v in d.items():
_A : Optional[int] = parent_key + sep + k if parent_key else k
if isinstance(snake_case_,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case_ )
_A : List[Any] = argparse.Namespace()
with open(snake_case_,"""r""" ) as yaml_file:
try:
_A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader )
_A : Optional[int] = flatten_yaml_as_dict(snake_case_ )
for k, v in flat_cfg.items():
setattr(snake_case_,snake_case_,snake_case_ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) )
return config
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Optional[Any] = MobileViTVaConfig()
_A : Tuple = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_A : Dict = 1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : int = 384
else:
_A : int = 256
_A : List[str] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_A : Union[str, Any] = 21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : str = 384
else:
_A : List[Any] = 256
_A : List[str] = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_A : int = 151
_A : int = 512
_A : Optional[int] = """ade20k-id2label.json"""
_A : Any = True
elif task_name.startswith("""voc_""" ):
_A : List[Any] = 21
_A : Dict = 512
_A : Dict = """pascal-voc-id2label.json"""
_A : int = True
# orig_config
_A : Any = load_orig_config_file(snake_case_ )
assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model"
_A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 )
assert (
getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 )
if "_deeplabv3" in task_name:
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] )
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 )
_A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 )
# id2label
_A : List[Any] = """huggingface/label-files"""
_A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : str = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : str = idalabel
_A : Dict = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = dct.pop(snake_case_ )
_A : Union[str, Any] = val
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
if base_model:
_A : Optional[int] = """"""
else:
_A : Dict = """mobilevitv2."""
_A : int = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_A : Any = k[8:]
else:
_A : List[str] = k
if ".block." in k:
_A : Any = k_new.replace(""".block.""",""".""" )
if ".conv." in k:
_A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" )
if ".norm." in k:
_A : Any = k_new.replace(""".norm.""",""".normalization.""" )
if "conv_1." in k:
_A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
_A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" )
if ".red_1x1." in k:
_A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
_A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
_A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
_A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
_A : Optional[int] = [0, 1]
elif i == 4:
_A : Union[str, Any] = [0, 1, 2, 3]
elif i == 5:
_A : Optional[Any] = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
_A : Union[str, Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
_A : List[str] = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" )
if "pre_norm_attn.1." in k:
_A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" )
if "pre_norm_ffn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" )
if "classifier.1." in k:
_A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" )
if "seg_head." in k:
_A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" )
if ".aspp_layer." in k:
_A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" )
if ".aspp_pool." in k:
_A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" )
rename_keys.append((k, k_new) )
return rename_keys
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case_ )
for k in keys_to_ignore:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( ):
_A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ )
# load original state_dict
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval()
_A : str = False
else:
_A : int = MobileViTVaForImageClassification(snake_case_ ).eval()
_A : List[Any] = False
# remove and rename some keys of load the original model
_A : List[Any] = checkpoint
remove_unused_keys(snake_case_ )
_A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
# load modified state_dict
model.load_state_dict(snake_case_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 )
_A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Optional[Any] = model(**snake_case_ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_A : List[Any] = outputs.logits
_A : Optional[int] = logits.argmax(-1 ).item()
print("""Predicted class:""",model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_snake_case = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 26 | 1 |
import os
from datetime import datetime as dt
from github import Github
_snake_case = [
"good first issue",
"feature request",
"wip",
]
def lowerCAmelCase_ ( ):
_A : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
_A : Union[str, Any] = g.get_repo("""huggingface/accelerate""" )
_A : List[Any] = repo.get_issues(state="""open""" )
for issue in open_issues:
_A : Tuple = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ )
_A : int = comments[0] if len(snake_case_ ) > 0 else None
_A : Dict = dt.utcnow()
_A : Union[str, Any] = (current_time - issue.updated_at).days
_A : Union[str, Any] = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state="""closed""" )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 26 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class lowercase ( UpperCamelCase__ ):
_a = (DPMSolverSDEScheduler,)
_a = 1_0
def a__ ( self , **_a ) -> Optional[Any]:
_A : str = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**_a )
return config
def a__ ( self ) -> Tuple:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_a )
def a__ ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def a__ ( self ) -> Any:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_a )
def a__ ( self ) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def a__ ( self ) -> Optional[int]:
_A : Any = self.scheduler_classes[0]
_A : List[str] = self.get_scheduler_config()
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Dict = self.dummy_model()
_A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Dict = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : str = model(_a , _a )
_A : List[Any] = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Dict = torch.sum(torch.abs(_a ) )
_A : Dict = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.scheduler_classes[0]
_A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" )
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Tuple = self.dummy_model()
_A : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Tuple = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : int = scheduler.scale_model_input(_a , _a )
_A : Tuple = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Optional[Any] = torch.sum(torch.abs(_a ) )
_A : List[Any] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = self.scheduler_classes[0]
_A : List[Any] = self.get_scheduler_config()
_A : List[str] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Union[str, Any] = self.dummy_model()
_A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A : int = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Dict = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : str = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = self.scheduler_classes[0]
_A : Optional[Any] = self.get_scheduler_config()
_A : int = scheduler_class(**_a , use_karras_sigmas=_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Optional[Any] = self.dummy_model()
_A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
_A : str = sample.to(_a )
for t in scheduler.timesteps:
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : List[str] = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : List[str] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
| 26 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = 1
@register_to_config
def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]:
_A : Dict = None
_A : List[Any] = None
_A : Dict = None
def a__ ( self , _a , _a = None ) -> Union[str, Any]:
_A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a )
def a__ ( self , _a , _a , _a , _a=None ) -> Dict:
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_A : Any = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_A : List[str] = std.flatten()
while len(std.shape ) < len(score.shape ):
_A : List[Any] = std.unsqueeze(-1 )
_A : int = -score / std
# compute
_A : Tuple = -1.0 / len(self.timesteps )
_A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_A : List[str] = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_A : Union[str, Any] = beta_t.unsqueeze(-1 )
_A : Tuple = -0.5 * beta_t * x
_A : Tuple = torch.sqrt(_a )
_A : Dict = drift - diffusion**2 * score
_A : Dict = x + drift * dt
# add noise
_A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype )
_A : str = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self ) -> Optional[Any]:
return self.config.num_train_timesteps
| 26 | 1 |
import math
def lowerCAmelCase_ ( snake_case_ = 100 ):
_A : Optional[Any] = sum(i * i for i in range(1,n + 1 ) )
_A : Optional[Any] = int(math.pow(sum(range(1,n + 1 ) ),2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 26 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
_snake_case = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
_snake_case = "▁"
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "token_type_ids"]
_a = FNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_A : int = (
AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a )
if isinstance(_a , _a )
else mask_token
)
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , )
_A : Optional[int] = do_lower_case
_A : List[Any] = remove_space
_A : str = keep_accents
_A : int = vocab_file
_A : int = False if not self.vocab_file else True
def a__ ( self , _a , _a = None ) -> List[int]:
_A : str = [self.sep_token_id]
_A : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Any = [self.sep_token_id]
_A : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 26 | 1 |
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowerCAmelCase_ ( snake_case_ ):
return np.dot(snake_case_,snake_case_ )
class lowercase :
def __init__( self , *,
_a = np.inf , _a = "linear" , _a = 0.0 , ) -> None:
_A : List[Any] = regularization
_A : Optional[int] = gamma
if kernel == "linear":
_A : List[str] = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("""rbf kernel requires gamma""" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("""gamma must be float or int""" )
if not self.gamma > 0:
raise ValueError("""gamma must be > 0""" )
_A : Optional[int] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
_A : Dict = F'''Unknown kernel: {kernel}'''
raise ValueError(_a )
def a__ ( self , _a , _a ) -> float:
return np.dot(_a , _a )
def a__ ( self , _a , _a ) -> float:
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def a__ ( self , _a , _a ) -> None:
_A : List[Any] = observations
_A : Optional[int] = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((_A) , ) : Union[str, Any] = np.shape(_a )
def to_minimize(_a ) -> float:
_A : str = 0
((_A) , ) : Optional[int] = np.shape(_a )
for i in range(_a ):
for j in range(_a ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_a )
_A : Optional[int] = LinearConstraint(_a , 0 , 0 )
_A : List[str] = Bounds(0 , self.regularization )
_A : Dict = minimize(
_a , np.ones(_a ) , bounds=_a , constraints=[ly_contraint] ).x
_A : Union[str, Any] = l_star
# calculating mean offset of separation plane to points
_A : Optional[int] = 0
for i in range(_a ):
for j in range(_a ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
_A : str = s / n
def a__ ( self , _a ) -> int:
_A : Union[str, Any] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _a )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 |
from math import asin, atan, cos, radians, sin, sqrt, tan
_snake_case = 6_3_7_8_1_3_7.0
_snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5
_snake_case = 6378137
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Any = (AXIS_A - AXIS_B) / AXIS_A
_A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : Optional[Any] = radians(snake_case_ )
_A : str = radians(snake_case_ )
# Equation
_A : Dict = sin((phi_a - phi_a) / 2 )
_A : List[str] = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
_A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 1 |
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : str = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append(
(f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""),
("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""),
("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""),
("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""),
("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""),
("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""),
] )
return rename_keys
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
_A : Tuple = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' )
_A : Tuple = in_proj_weight[
: encoder_config.hidden_size, :
]
_A : Optional[int] = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
_A : Dict = in_proj_weight[
-encoder_config.hidden_size :, :
]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = dct.pop(snake_case_ )
_A : Dict = val
def lowerCAmelCase_ ( snake_case_ ):
if "handwritten" in checkpoint_url:
_A : Union[str, Any] = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
_A : Dict = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"""
_A : Union[str, Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ).convert("""RGB""" )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Any = ViTConfig(image_size=384,qkv_bias=snake_case_ )
_A : Tuple = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
_A : int = 768
elif "large" in checkpoint_url:
# use ViT-large encoder
_A : int = 1024
_A : Tuple = 4096
_A : Union[str, Any] = 24
_A : str = 16
_A : int = 1024
else:
raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
_A : Optional[Any] = False
_A : Union[str, Any] = """relu"""
_A : int = 1024
_A : Union[str, Any] = True
_A : Union[str, Any] = False
_A : Optional[Any] = False
# load HuggingFace model
_A : List[str] = ViTModel(snake_case_,add_pooling_layer=snake_case_ )
_A : List[str] = TrOCRForCausalLM(snake_case_ )
_A : Any = VisionEncoderDecoderModel(encoder=snake_case_,decoder=snake_case_ )
model.eval()
# load state_dict of original model, rename some keys
_A : Dict = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""",check_hash=snake_case_ )["""model"""]
_A : Optional[int] = create_rename_keys(snake_case_,snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
read_in_q_k_v(snake_case_,snake_case_ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
_A : List[str] = state_dict.pop(snake_case_ )
if key.startswith("""decoder""" ) and "output_projection" not in key:
_A : Optional[int] = val
else:
_A : Dict = val
# load state dict
model.load_state_dict(snake_case_ )
# Check outputs on an image
_A : List[Any] = ViTImageProcessor(size=encoder_config.image_size )
_A : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" )
_A : Dict = TrOCRProcessor(snake_case_,snake_case_ )
_A : Tuple = processor(images=prepare_img(snake_case_ ),return_tensors="""pt""" ).pixel_values
# verify logits
_A : Dict = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
_A : Optional[int] = model(pixel_values=snake_case_,decoder_input_ids=snake_case_ )
_A : int = outputs.logits
_A : Optional[int] = torch.Size([1, 1, 50265] )
if "trocr-base-handwritten" in checkpoint_url:
_A : Dict = torch.tensor(
[-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] )
elif "trocr-large-handwritten" in checkpoint_url:
_A : Tuple = torch.tensor(
[-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] )
elif "trocr-base-printed" in checkpoint_url:
_A : int = torch.tensor(
[-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] )
elif "trocr-large-printed" in checkpoint_url:
_A : Optional[int] = torch.tensor(
[-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10],snake_case_,atol=1e-3 ), "First elements of logits not as expected"
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
_snake_case = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 26 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> Optional[int]:
super().__init__(_a )
_A : Union[str, Any] = RobertaEmbeddings(_a )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> str:
super().__init__(_a )
_A : Any = config.num_labels
_A : Dict = config.num_hidden_layers
_A : List[str] = DeeRobertaModel(_a )
_A : int = nn.Dropout(config.hidden_dropout_prob )
_A : int = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_a )
def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any:
_A : Optional[int] = self.num_layers
try:
_A : List[str] = self.roberta(
_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , )
_A : List[str] = outputs[1]
_A : List[str] = self.dropout(_a )
_A : Optional[Any] = self.classifier(_a )
_A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_A : List[Any] = e.message
_A : Optional[int] = e.exit_layer
_A : Optional[int] = outputs[0]
if not self.training:
_A : int = entropy(_a )
_A : int = []
_A : int = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_A : Union[str, Any] = MSELoss()
_A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_A : Optional[Any] = []
for highway_exit in outputs[-1]:
_A : Tuple = highway_exit[0]
if not self.training:
highway_logits_all.append(_a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_A : List[str] = MSELoss()
_A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_a )
if train_highway:
_A : Dict = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_A : int = (loss,) + outputs
if not self.training:
_A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_A : Union[str, Any] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 26 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
_snake_case = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
_snake_case = "▁"
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "token_type_ids"]
_a = FNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_A : int = (
AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a )
if isinstance(_a , _a )
else mask_token
)
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , )
_A : Optional[int] = do_lower_case
_A : List[Any] = remove_space
_A : str = keep_accents
_A : int = vocab_file
_A : int = False if not self.vocab_file else True
def a__ ( self , _a , _a = None ) -> List[int]:
_A : str = [self.sep_token_id]
_A : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Any = [self.sep_token_id]
_A : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 26 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "xmod"
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Tuple = vocab_size
_A : Union[str, Any] = hidden_size
_A : Dict = num_hidden_layers
_A : Dict = num_attention_heads
_A : List[Any] = hidden_act
_A : Optional[Any] = intermediate_size
_A : Any = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Dict = max_position_embeddings
_A : Any = type_vocab_size
_A : List[Any] = initializer_range
_A : int = layer_norm_eps
_A : int = position_embedding_type
_A : Any = use_cache
_A : int = classifier_dropout
_A : int = pre_norm
_A : Optional[Any] = adapter_reduction_factor
_A : List[Any] = adapter_layer_norm
_A : Optional[int] = adapter_reuse_layer_norm
_A : Any = ln_before_adapter
_A : Union[str, Any] = list(_a )
_A : List[Any] = default_language
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_A : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 26 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json",
"umberto-commoncrawl-cased-v1": (
"https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"
),
"umberto-wikipedia-uncased-v1": (
"https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "camembert"
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Any = vocab_size
_A : List[Any] = hidden_size
_A : Dict = num_hidden_layers
_A : int = num_attention_heads
_A : Dict = hidden_act
_A : str = intermediate_size
_A : List[Any] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : int = max_position_embeddings
_A : Tuple = type_vocab_size
_A : List[str] = initializer_range
_A : Dict = layer_norm_eps
_A : str = position_embedding_type
_A : Dict = use_cache
_A : Any = classifier_dropout
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_A : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 26 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
if n == 0:
return 0
_A : Tuple = float("""-inf""" )
for i in range(1,n + 1 ):
_A : str = max(
snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) )
return max_revue
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
_A : Dict = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_A : List[str] = float("""-inf""" )
for i in range(1,n + 1 ):
_A : Optional[Any] = max(
snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),)
_A : Tuple = max_revenue
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_A : Any = 0
for i in range(1,n + 1 ):
_A : Optional[Any] = max_rev[i]
for j in range(1,i + 1 ):
_A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] )
_A : int = max_revenue_i
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if n < 0:
_A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(snake_case_ )
if n > len(snake_case_ ):
_A : Any = (
"""Each integral piece of rod must have a corresponding price. """
f'''Got n = {n} but length of prices = {len(snake_case_ )}'''
)
raise ValueError(snake_case_ )
def lowerCAmelCase_ ( ):
_A : Tuple = [6, 10, 12, 15, 20, 23]
_A : List[Any] = len(snake_case_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_A : Any = 36
_A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ )
_A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ )
_A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 26 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "rwkv"
_a = {"max_position_embeddings": "context_length"}
def __init__( self , _a=5_0277 , _a=1024 , _a=4096 , _a=32 , _a=None , _a=None , _a=1e-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ) -> Dict:
_A : Tuple = vocab_size
_A : Dict = context_length
_A : Optional[Any] = hidden_size
_A : List[Any] = num_hidden_layers
_A : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
_A : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size
_A : Union[str, Any] = layer_norm_epsilon
_A : str = rescale_every
_A : List[Any] = use_cache
_A : int = bos_token_id
_A : List[Any] = eos_token_id
super().__init__(
tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 26 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case_ = "AAPL" ):
_A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
_A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" )
_A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""",class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 26 | 1 |
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
| 26 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
if not isinstance(snake_case_,snake_case_ ):
_A : Tuple = f'''Input value of [number={number}] must be an integer'''
raise TypeError(snake_case_ )
if number < 0:
return False
_A : Union[str, Any] = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
while b:
_A , _A : List[str] = b, a % b
return a
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b )
def lowerCAmelCase_ ( ):
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' )
if __name__ == "__main__":
main()
| 26 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"}
class lowercase ( UpperCamelCase__ ):
_a = "openai-gpt"
_a = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _a=4_0478 , _a=512 , _a=768 , _a=12 , _a=12 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1e-5 , _a=0.02 , _a="cls_index" , _a=True , _a=None , _a=True , _a=0.1 , **_a , ) -> List[str]:
_A : List[Any] = vocab_size
_A : Tuple = n_positions
_A : Union[str, Any] = n_embd
_A : Union[str, Any] = n_layer
_A : List[str] = n_head
_A : int = afn
_A : str = resid_pdrop
_A : Optional[Any] = embd_pdrop
_A : int = attn_pdrop
_A : Dict = layer_norm_epsilon
_A : int = initializer_range
_A : int = summary_type
_A : List[str] = summary_use_proj
_A : Dict = summary_activation
_A : Dict = summary_first_dropout
_A : Any = summary_proj_to_labels
super().__init__(**_a )
| 26 |
def lowerCAmelCase_ ( snake_case_ ):
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = len(snake_case_ )
for i in range(1,snake_case_ ):
_A : str = collection[i]
_A : Optional[int] = 0
_A : Tuple = i - 1
while low <= high:
_A : Any = (low + high) // 2
if val < collection[mid]:
_A : int = mid - 1
else:
_A : Union[str, Any] = mid + 1
for j in range(snake_case_,snake_case_,-1 ):
_A : List[str] = collection[j - 1]
_A : int = val
return collection
if __name__ == "__main__":
_snake_case = input("Enter numbers separated by a comma:\n").strip()
_snake_case = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 26 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : str = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : Optional[Any] = k.replace(""".attn""",""".self_attn""" )
_A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : str = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : str = sd.pop(snake_case_ )
_A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Optional[int] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : List[Any] = model["""model"""]
_A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : List[str] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Any = []
_A : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
# 1. Validate that path exists between current and next vertices
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# Base Case
if curr_ind == len(snake_case_ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0,len(snake_case_ ) ):
if valid_connection(snake_case_,snake_case_,snake_case_,snake_case_ ):
# Insert current vertex into path as next transition
_A : Dict = next_ver
# Validate created path
if util_hamilton_cycle(snake_case_,snake_case_,curr_ind + 1 ):
return True
# Backtrack
_A : Any = -1
return False
def lowerCAmelCase_ ( snake_case_,snake_case_ = 0 ):
_A : int = [-1] * (len(snake_case_ ) + 1)
# initialize start and end of path with starting index
_A : Dict = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(snake_case_,snake_case_,1 ) else []
| 26 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int:
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
_A : Optional[int] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def a__ ( self ) -> Optional[Any]:
_A : Tuple = None
_A : int = None
_A : Tuple = None
_A : Union[str, Any] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
_A : int = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class lowercase :
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_A : Dict = dataset
_A : int = name
_A : Union[str, Any] = con
_A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_A : str = num_proc
_A : Optional[Any] = to_sql_kwargs
def a__ ( self ) -> int:
_A : Any = self.to_sql_kwargs.pop("""sql""" , _a )
_A : List[str] = self.to_sql_kwargs.pop("""con""" , _a )
_A : int = self.to_sql_kwargs.pop("""index""" , _a )
_A : List[str] = self._write(index=_a , **self.to_sql_kwargs )
return written
def a__ ( self , _a ) -> Optional[int]:
_A , _A , _A : List[str] = args
_A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
_A : str = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
_A : Tuple = batch.to_pandas()
_A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def a__ ( self , _a , **_a ) -> int:
_A : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_A , _A : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 26 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "CLIPImageProcessor"
_a = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , _a=None , _a=None , **_a ) -> Dict:
_A : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _a , )
_A : Union[str, Any] = kwargs.pop("""feature_extractor""" )
_A : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(_a , _a )
def __call__( self , _a=None , _a=None , _a=None , **_a ) -> int:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_A : List[str] = self.tokenizer(_a , return_tensors=_a , **_a )
if images is not None:
_A : Dict = self.image_processor(_a , return_tensors=_a , **_a )
if text is not None and images is not None:
_A : Tuple = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_a ) , tensor_type=_a )
def a__ ( self , *_a , **_a ) -> List[Any]:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.tokenizer.model_input_names
_A : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def a__ ( self ) -> List[str]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , )
return self.image_processor_class
@property
def a__ ( self ) -> List[Any]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _a , )
return self.image_processor
| 26 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class lowercase ( UpperCamelCase__ ):
_a = "fnet"
def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Any = vocab_size
_A : str = max_position_embeddings
_A : Optional[Any] = hidden_size
_A : List[str] = num_hidden_layers
_A : List[str] = intermediate_size
_A : List[Any] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : List[str] = initializer_range
_A : List[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : List[str] = use_tpu_fourier_optimizations
_A : str = tpu_short_seq_length
| 26 | 1 |
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
_snake_case = logging.get_logger(__name__)
class lowercase ( UpperCamelCase__ ):
def __init__( self , *_a , **_a ) -> None:
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , _a , )
super().__init__(*_a , **_a )
| 26 |
def lowerCAmelCase_ ( snake_case_ ):
if n_term == "":
return []
_A : list = []
for temp in range(int(snake_case_ ) ):
series.append(f'''1/{temp + 1}''' if series else """1""" )
return series
if __name__ == "__main__":
_snake_case = input("Enter the last number (nth term) of the Harmonic Series")
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
print(harmonic_series(nth_term))
| 26 | 1 |
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
_snake_case = threading.Lock()
_snake_case = None
_snake_case = {
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"critical": logging.CRITICAL,
}
_snake_case = logging.WARNING
_snake_case = True
def lowerCAmelCase_ ( ):
_A : str = os.getenv("""TRANSFORMERS_VERBOSITY""",snake_case_ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '''
f'''has to be one of: { ", ".join(log_levels.keys() ) }''' )
return _default_log_level
def lowerCAmelCase_ ( ):
return __name__.split(""".""" )[0]
def lowerCAmelCase_ ( ):
return logging.getLogger(_get_library_name() )
def lowerCAmelCase_ ( ):
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
_A : Union[str, Any] = logging.StreamHandler() # Set sys.stderr as stream.
_A : Tuple = sys.stderr.flush
# Apply our default configuration to the library root logger.
_A : int = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
_A : List[str] = False
def lowerCAmelCase_ ( ):
global _default_handler
with _lock:
if not _default_handler:
return
_A : List[str] = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
_A : Tuple = None
def lowerCAmelCase_ ( ):
return log_levels
def lowerCAmelCase_ ( snake_case_ = None ):
if name is None:
_A : Optional[int] = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(snake_case_ )
def lowerCAmelCase_ ( ):
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def lowerCAmelCase_ ( snake_case_ ):
_configure_library_root_logger()
_get_library_root_logger().setLevel(snake_case_ )
def lowerCAmelCase_ ( ):
return set_verbosity(snake_case_ )
def lowerCAmelCase_ ( ):
return set_verbosity(snake_case_ )
def lowerCAmelCase_ ( ):
return set_verbosity(snake_case_ )
def lowerCAmelCase_ ( ):
return set_verbosity(snake_case_ )
def lowerCAmelCase_ ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def lowerCAmelCase_ ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def lowerCAmelCase_ ( snake_case_ ):
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(snake_case_ )
def lowerCAmelCase_ ( ):
_configure_library_root_logger()
_A : Union[str, Any] = False
def lowerCAmelCase_ ( ):
_configure_library_root_logger()
_A : List[Any] = True
def lowerCAmelCase_ ( ):
_A : Union[str, Any] = _get_library_root_logger().handlers
for handler in handlers:
_A : str = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" )
handler.setFormatter(snake_case_ )
def lowerCAmelCase_ ( ):
_A : Any = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(snake_case_ )
def lowerCAmelCase_ ( self,*snake_case_,**snake_case_ ):
_A : str = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""",snake_case_ )
if no_advisory_warnings:
return
self.warning(*snake_case_,**snake_case_ )
_snake_case = warning_advice
@functools.lru_cache(snake_case_ )
def lowerCAmelCase_ ( self,*snake_case_,**snake_case_ ):
self.warning(*snake_case_,**snake_case_ )
_snake_case = warning_once
class lowercase :
def __init__( self , *_a , **_a ) -> List[Any]: # pylint: disable=unused-argument
_A : List[str] = args[0] if args else None
def __iter__( self ) -> Optional[Any]:
return iter(self._iterator )
def __getattr__( self , _a ) -> Union[str, Any]:
def empty_fn(*_a , **_a ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ) -> Tuple:
return self
def __exit__( self , _a , _a , _a ) -> List[str]:
return
class lowercase :
def __call__( self , *_a , **_a ) -> Union[str, Any]:
if _tqdm_active:
return tqdm_lib.tqdm(*_a , **_a )
else:
return EmptyTqdm(*_a , **_a )
def a__ ( self , *_a , **_a ) -> Dict:
_A : Optional[Any] = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*_a , **_a )
def a__ ( self ) -> Union[str, Any]:
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_snake_case = _tqdm_cls()
def lowerCAmelCase_ ( ):
global _tqdm_active
return bool(_tqdm_active )
def lowerCAmelCase_ ( ):
global _tqdm_active
_A : Optional[int] = True
hf_hub_utils.enable_progress_bars()
def lowerCAmelCase_ ( ):
global _tqdm_active
_A : List[str] = False
hf_hub_utils.disable_progress_bars()
| 26 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : str = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : Optional[Any] = k.replace(""".attn""",""".self_attn""" )
_A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : str = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : str = sd.pop(snake_case_ )
_A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Optional[int] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : List[Any] = model["""model"""]
_A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : List[str] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Any = []
_A : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = torch.device("cpu")
def lowerCAmelCase_ ( ):
_A : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_A : Optional[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
def lowerCAmelCase_ ( snake_case_ ):
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = dct.pop(snake_case_ )
_A : Optional[Any] = val
def lowerCAmelCase_ ( snake_case_ ):
_A : int = []
for k in state_dict.keys():
_A : Optional[Any] = k
if ".pwconv" in k:
_A : int = k_new.replace(""".pwconv""",""".point_wise_conv""" )
if ".dwconv" in k:
_A : Dict = k_new.replace(""".dwconv""",""".depth_wise_conv""" )
if ".Proj." in k:
_A : str = k_new.replace(""".Proj.""",""".proj.""" )
if "patch_embed" in k_new:
_A : Optional[Any] = k_new.replace("""patch_embed""","""swiftformer.patch_embed.patch_embedding""" )
if "network" in k_new:
_A : Any = k_new.split(""".""" )
if ls[2].isdigit():
_A : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
_A : Optional[Any] = k_new.replace("""network""","""swiftformer.encoder.network""" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
_A : str = 1000
_A : List[str] = """huggingface/label-files"""
_A : Union[str, Any] = """imagenet-1k-id2label.json"""
_A : Tuple = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : int = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : Any = idalabel
_A : List[str] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
_A : List[Any] = [3, 3, 6, 4]
_A : List[Any] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
_A : Dict = [3, 3, 9, 6]
_A : Union[str, Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
_A : Optional[Any] = [4, 3, 10, 5]
_A : Optional[Any] = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
_A : Tuple = [4, 4, 12, 6]
_A : List[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("""https""" ):
_A : Optional[Any] = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""",check_hash=snake_case_ )
else:
_A : List[Any] = torch.load(snake_case_,map_location="""cpu""" )
_A : Dict = checkpoint
_A : Dict = create_rename_keys(snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
# load HuggingFace model
_A : str = SwiftFormerForImageClassification(snake_case_ ).eval()
hf_model.load_state_dict(snake_case_ )
# prepare test inputs
_A : Any = prepare_img()
_A : Optional[Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" )
_A : Any = processor(images=snake_case_,return_tensors="""pt""" )
# compare outputs from both models
_A : Union[str, Any] = get_expected_output(snake_case_ )
_A : List[Any] = hf_model(inputs["""pixel_values"""] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5],snake_case_,atol=1e-3 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
_snake_case = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 26 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.maximum(0,snake_case_ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 26 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
"configuration_x_clip": [
"XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XCLIPConfig",
"XCLIPTextConfig",
"XCLIPVisionConfig",
],
"processing_x_clip": ["XCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"XCLIPModel",
"XCLIPPreTrainedModel",
"XCLIPTextModel",
"XCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_snake_case = getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,):
_A : Dict = str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ )
_A : Tuple = Path(snake_case_ )
_A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(snake_case_ )
_A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
_A : Any = model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params
_A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_A : int = num_return_sequences
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_A : Optional[int] = tokenizer.model_max_length
if prefix is None:
_A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """"""
_A : Optional[int] = SeqaSeqDataset(
snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,)
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ )
_A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn )
_A : Optional[Any] = []
for batch in tqdm(snake_case_ ):
_A : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,)
_A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
_A : Dict = batch["""ids"""]
if num_return_sequences > 1:
_A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(snake_case_,snake_case_ )
return results, sampler.num_replicas
def lowerCAmelCase_ ( ):
_A : Tuple = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",)
parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" )
parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ )
parser.add_argument(
"""--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" )
parser.add_argument(
"""--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",)
parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument(
"""--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""",action="""store_true""" )
parser.add_argument("""--debug""",action="""store_true""" )
_A : Union[str, Any] = time.time()
_A , _A : List[str] = parser.parse_known_args()
_A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(f'''parsed the following generate kwargs: {generate_kwargs}''' )
_A : Dict = Path(args.save_dir + """_tmp""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
_A : int = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_A : Any = {}
if args.src_lang is not None:
_A : int = args.src_lang
if args.tgt_lang is not None:
_A : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
_A , _A : str = eval_data_dir(
args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,)
if args.local_rank <= 0:
_A : List[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
_A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout )
_A : Optional[int] = combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
_A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" )
print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(snake_case_,snake_case_ )
return
_A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(snake_case_ ) as f:
_A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
_A : Dict = """translation""" in args.task
_A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge
_A : Tuple = """bleu""" if calc_bleu else """rouge"""
_A : Dict = score_fn(snake_case_,snake_case_ )
_A : List[Any] = len(snake_case_ )
_A : Optional[int] = time.time() - start_time
_A : Dict = round(runtime / metrics["""n_obs"""],4 )
_A : Dict = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' )
save_json(snake_case_,snake_case_,indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) )
else:
shutil.rmtree(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for partial_result in partial_results:
records.extend(snake_case_ )
_A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] )
_A : List[str] = [x["""pred"""] for x in records]
return preds
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# WAIT FOR lots of .json files
_A : Optional[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_A : List[str] = None
while (time.time() - start_wait) < timeout:
_A : str = list(save_dir.glob("""rank_*.json""" ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_A : List[str] = lmap(snake_case_,snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 26 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json",
"uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json",
"uclanlp/visualbert-vqa-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json"
),
"uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json",
"uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json",
"uclanlp/visualbert-vcr-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json"
),
"uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json",
"uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json",
"uclanlp/visualbert-nlvr2-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json"
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowercase ( UpperCamelCase__ ):
_a = "visual_bert"
def __init__( self , _a=3_0522 , _a=768 , _a=512 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=False , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> Tuple:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : int = vocab_size
_A : Dict = max_position_embeddings
_A : Optional[Any] = hidden_size
_A : List[Any] = visual_embedding_dim
_A : Optional[Any] = num_hidden_layers
_A : Tuple = num_attention_heads
_A : str = intermediate_size
_A : Dict = hidden_act
_A : Union[str, Any] = hidden_dropout_prob
_A : Optional[Any] = attention_probs_dropout_prob
_A : Optional[int] = initializer_range
_A : List[Any] = type_vocab_size
_A : int = layer_norm_eps
_A : Optional[int] = bypass_transformer
_A : List[Any] = special_visual_initialize
| 26 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Any:
_A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_A : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_A : List[str] = model(_a )["""last_hidden_state"""]
_A : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
_A : List[Any] = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 26 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
"configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"],
"tokenization_deberta": ["DebertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["DebertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForMaskedLM",
"DebertaForQuestionAnswering",
"DebertaForSequenceClassification",
"DebertaForTokenClassification",
"DebertaModel",
"DebertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaForMaskedLM",
"TFDebertaForQuestionAnswering",
"TFDebertaForSequenceClassification",
"TFDebertaForTokenClassification",
"TFDebertaModel",
"TFDebertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
_snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
_snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n"
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]:
super().__init__()
self.register_modules(
prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str:
if latents is None:
_A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a )
else:
if latents.shape != shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
_A : Union[str, Any] = latents.to(_a )
_A : int = latents * scheduler.init_noise_sigma
return latents
def a__ ( self , _a=0 ) -> Optional[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
_A : str = torch.device(F'''cuda:{gpu_id}''' )
_A : Any = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
def a__ ( self ) -> List[Any]:
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(_a , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def a__ ( self , _a , _a , _a , _a , ) -> Tuple:
if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ):
_A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 )
if not isinstance(_a , torch.Tensor ):
_A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
_A : int = image.to(dtype=self.image_encoder.dtype , device=_a )
_A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""]
_A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
_A : Dict = image_embeds.repeat_interleave(_a , dim=0 )
if do_classifier_free_guidance:
_A : str = torch.zeros_like(_a )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A : List[str] = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(_a )
def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]:
if isinstance(_a , PIL.Image.Image ):
_A : List[Any] = 1
elif isinstance(_a , torch.Tensor ):
_A : Any = image.shape[0]
elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
_A : Union[str, Any] = len(_a )
else:
raise ValueError(
F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' )
_A : Optional[int] = self._execution_device
_A : Tuple = batch_size * num_images_per_prompt
_A : List[Any] = guidance_scale > 1.0
_A : Optional[Any] = self._encode_image(_a , _a , _a , _a )
# prior
self.scheduler.set_timesteps(_a , device=_a )
_A : Optional[int] = self.scheduler.timesteps
_A : List[str] = self.prior.config.num_embeddings
_A : int = self.prior.config.embedding_dim
_A : Optional[Any] = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
_A : List[Any] = latents.reshape(latents.shape[0] , _a , _a )
for i, t in enumerate(self.progress_bar(_a ) ):
# expand the latents if we are doing classifier free guidance
_A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A : int = self.scheduler.scale_model_input(_a , _a )
_A : Tuple = self.prior(
_a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding
# remove the variance
_A , _A : Optional[Any] = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
_A , _A : Dict = noise_pred.chunk(2 )
_A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
_A : int = self.scheduler.step(
_a , timestep=_a , sample=_a , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=_a )
_A : List[str] = []
for i, latent in enumerate(_a ):
print()
_A : List[str] = self.renderer.decode(
latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(_a )
_A : List[Any] = torch.stack(_a )
if output_type not in ["np", "pil"]:
raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
_A : List[str] = images.cpu().numpy()
if output_type == "pil":
_A : List[Any] = [self.numpy_to_pil(_a ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=_a )
| 26 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"huggingface/time-series-transformer-tourism-monthly": (
"https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class lowercase ( UpperCamelCase__ ):
_a = "time_series_transformer"
_a = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = [1, 2, 3, 4, 5, 6, 7] , _a = "mean" , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 32 , _a = 32 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = True , _a = "gelu" , _a = 64 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a=True , **_a , ) -> Union[str, Any]:
# time series specific configuration
_A : Any = prediction_length
_A : List[Any] = context_length or prediction_length
_A : Dict = distribution_output
_A : List[str] = loss
_A : Any = input_size
_A : Optional[Any] = num_time_features
_A : Optional[int] = lags_sequence
_A : Optional[int] = scaling
_A : Optional[Any] = num_dynamic_real_features
_A : str = num_static_real_features
_A : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(_a ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
_A : List[str] = cardinality
else:
_A : int = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(_a ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
_A : Tuple = embedding_dimension
else:
_A : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
_A : List[Any] = num_parallel_samples
# Transformer architecture configuration
_A : Optional[Any] = input_size * len(_a ) + self._number_of_features
_A : Optional[int] = d_model
_A : List[str] = encoder_attention_heads
_A : str = decoder_attention_heads
_A : Any = encoder_ffn_dim
_A : Dict = decoder_ffn_dim
_A : int = encoder_layers
_A : Dict = decoder_layers
_A : int = dropout
_A : Tuple = attention_dropout
_A : List[str] = activation_dropout
_A : Optional[int] = encoder_layerdrop
_A : int = decoder_layerdrop
_A : Optional[int] = activation_function
_A : Dict = init_std
_A : List[str] = use_cache
super().__init__(is_encoder_decoder=_a , **_a )
@property
def a__ ( self ) -> int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 26 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ):
_A : Union[str, Any] = []
for k, v in d.items():
_A : Optional[int] = parent_key + sep + k if parent_key else k
if isinstance(snake_case_,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case_ )
_A : List[Any] = argparse.Namespace()
with open(snake_case_,"""r""" ) as yaml_file:
try:
_A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader )
_A : Optional[int] = flatten_yaml_as_dict(snake_case_ )
for k, v in flat_cfg.items():
setattr(snake_case_,snake_case_,snake_case_ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) )
return config
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Optional[Any] = MobileViTVaConfig()
_A : Tuple = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_A : Dict = 1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : int = 384
else:
_A : int = 256
_A : List[str] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_A : Union[str, Any] = 21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : str = 384
else:
_A : List[Any] = 256
_A : List[str] = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_A : int = 151
_A : int = 512
_A : Optional[int] = """ade20k-id2label.json"""
_A : Any = True
elif task_name.startswith("""voc_""" ):
_A : List[Any] = 21
_A : Dict = 512
_A : Dict = """pascal-voc-id2label.json"""
_A : int = True
# orig_config
_A : Any = load_orig_config_file(snake_case_ )
assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model"
_A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 )
assert (
getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 )
if "_deeplabv3" in task_name:
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] )
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 )
_A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 )
# id2label
_A : List[Any] = """huggingface/label-files"""
_A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : str = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : str = idalabel
_A : Dict = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = dct.pop(snake_case_ )
_A : Union[str, Any] = val
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
if base_model:
_A : Optional[int] = """"""
else:
_A : Dict = """mobilevitv2."""
_A : int = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_A : Any = k[8:]
else:
_A : List[str] = k
if ".block." in k:
_A : Any = k_new.replace(""".block.""",""".""" )
if ".conv." in k:
_A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" )
if ".norm." in k:
_A : Any = k_new.replace(""".norm.""",""".normalization.""" )
if "conv_1." in k:
_A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
_A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" )
if ".red_1x1." in k:
_A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
_A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
_A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
_A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
_A : Optional[int] = [0, 1]
elif i == 4:
_A : Union[str, Any] = [0, 1, 2, 3]
elif i == 5:
_A : Optional[Any] = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
_A : Union[str, Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
_A : List[str] = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" )
if "pre_norm_attn.1." in k:
_A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" )
if "pre_norm_ffn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" )
if "classifier.1." in k:
_A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" )
if "seg_head." in k:
_A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" )
if ".aspp_layer." in k:
_A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" )
if ".aspp_pool." in k:
_A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" )
rename_keys.append((k, k_new) )
return rename_keys
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case_ )
for k in keys_to_ignore:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( ):
_A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ )
# load original state_dict
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval()
_A : str = False
else:
_A : int = MobileViTVaForImageClassification(snake_case_ ).eval()
_A : List[Any] = False
# remove and rename some keys of load the original model
_A : List[Any] = checkpoint
remove_unused_keys(snake_case_ )
_A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
# load modified state_dict
model.load_state_dict(snake_case_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 )
_A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Optional[Any] = model(**snake_case_ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_A : List[Any] = outputs.logits
_A : Optional[int] = logits.argmax(-1 ).item()
print("""Predicted class:""",model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_snake_case = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 26 | 1 |
from __future__ import annotations
from typing import Generic, TypeVar
_snake_case = TypeVar("T")
class lowercase ( Generic[T] ):
def __init__( self , _a ) -> None:
_A : List[str] = data
_A : int = self
_A : Any = 0
class lowercase ( Generic[T] ):
def __init__( self ) -> None:
# map from node name to the node object
_A : dict[T, DisjointSetTreeNode[T]] = {}
def a__ ( self , _a ) -> None:
# create a new set with x as its member
_A : Union[str, Any] = DisjointSetTreeNode(_a )
def a__ ( self , _a ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
_A : Any = self.map[data]
if elem_ref != elem_ref.parent:
_A : Optional[int] = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def a__ ( self , _a , _a ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
_A : List[str] = nodea
else:
_A : str = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def a__ ( self , _a , _a ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(_a ) , self.find_set(_a ) )
class lowercase ( Generic[T] ):
def __init__( self ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
_A : dict[T, dict[T, int]] = {}
def a__ ( self , _a ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
_A : Dict = {}
def a__ ( self , _a , _a , _a ) -> None:
# add an edge with the given weight
self.add_node(_a )
self.add_node(_a )
_A : Optional[int] = weight
_A : Tuple = weight
def a__ ( self ) -> GraphUndirectedWeighted[T]:
_A : Dict = []
_A : Dict = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda _a : x[2] )
# creating the disjoint set
_A : Any = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(_a )
# MST generation
_A : Optional[int] = 0
_A : List[Any] = 0
_A : Dict = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
_A , _A , _A : Tuple = edges[index]
index += 1
_A : Optional[Any] = disjoint_set.find_set(_a )
_A : List[str] = disjoint_set.find_set(_a )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(_a , _a , _a )
disjoint_set.union(_a , _a )
return graph
| 26 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class lowercase ( UpperCamelCase__ ):
_a = (DPMSolverSDEScheduler,)
_a = 1_0
def a__ ( self , **_a ) -> Optional[Any]:
_A : str = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**_a )
return config
def a__ ( self ) -> Tuple:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_a )
def a__ ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def a__ ( self ) -> Any:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_a )
def a__ ( self ) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def a__ ( self ) -> Optional[int]:
_A : Any = self.scheduler_classes[0]
_A : List[str] = self.get_scheduler_config()
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Dict = self.dummy_model()
_A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Dict = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : str = model(_a , _a )
_A : List[Any] = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Dict = torch.sum(torch.abs(_a ) )
_A : Dict = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.scheduler_classes[0]
_A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" )
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Tuple = self.dummy_model()
_A : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Tuple = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : int = scheduler.scale_model_input(_a , _a )
_A : Tuple = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Optional[Any] = torch.sum(torch.abs(_a ) )
_A : List[Any] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = self.scheduler_classes[0]
_A : List[Any] = self.get_scheduler_config()
_A : List[str] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Union[str, Any] = self.dummy_model()
_A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A : int = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Dict = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : str = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = self.scheduler_classes[0]
_A : Optional[Any] = self.get_scheduler_config()
_A : int = scheduler_class(**_a , use_karras_sigmas=_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Optional[Any] = self.dummy_model()
_A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
_A : str = sample.to(_a )
for t in scheduler.timesteps:
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : List[str] = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : List[str] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
| 26 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "gpt_bigcode"
_a = ["past_key_values"]
_a = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _a=5_0257 , _a=1024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1e-5 , _a=0.02 , _a=True , _a=True , _a=5_0256 , _a=5_0256 , _a=True , _a=True , _a=True , **_a , ) -> Union[str, Any]:
_A : List[str] = vocab_size
_A : List[Any] = n_positions
_A : Union[str, Any] = n_embd
_A : Any = n_layer
_A : Tuple = n_head
_A : List[str] = n_inner
_A : Optional[int] = activation_function
_A : Optional[int] = resid_pdrop
_A : List[str] = embd_pdrop
_A : int = attn_pdrop
_A : str = layer_norm_epsilon
_A : int = initializer_range
_A : List[str] = scale_attn_weights
_A : Optional[int] = use_cache
_A : Any = attention_softmax_in_fpaa
_A : Dict = scale_attention_softmax_in_fpaa
_A : Any = multi_query
_A : Any = bos_token_id
_A : Union[str, Any] = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 26 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = 1
@register_to_config
def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]:
_A : Dict = None
_A : List[Any] = None
_A : Dict = None
def a__ ( self , _a , _a = None ) -> Union[str, Any]:
_A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a )
def a__ ( self , _a , _a , _a , _a=None ) -> Dict:
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_A : Any = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_A : List[str] = std.flatten()
while len(std.shape ) < len(score.shape ):
_A : List[Any] = std.unsqueeze(-1 )
_A : int = -score / std
# compute
_A : Tuple = -1.0 / len(self.timesteps )
_A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_A : List[str] = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_A : Union[str, Any] = beta_t.unsqueeze(-1 )
_A : Tuple = -0.5 * beta_t * x
_A : Tuple = torch.sqrt(_a )
_A : Dict = drift - diffusion**2 * score
_A : Dict = x + drift * dt
# add noise
_A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype )
_A : str = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self ) -> Optional[Any]:
return self.config.num_train_timesteps
| 26 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = []
_A : Union[str, Any] = []
_A : Optional[int] = {
"""^""": 3,
"""*""": 2,
"""/""": 2,
"""%""": 2,
"""+""": 1,
"""-""": 1,
} # Priority of each operator
_A : Dict = len(snake_case_ ) if (len(snake_case_ ) > 7) else 7
# Print table header for output
print(
"""Symbol""".center(8 ),"""Stack""".center(snake_case_ ),"""Postfix""".center(snake_case_ ),sep=""" | """,)
print("""-""" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(snake_case_ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(snake_case_ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(snake_case_ ) == 0:
stack.append(snake_case_ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(snake_case_ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(snake_case_ ) # push x to stack
print(
x.center(8 ),("""""".join(snake_case_ )).ljust(snake_case_ ),("""""".join(snake_case_ )).ljust(snake_case_ ),sep=""" | """,) # Output in tabular format
while len(snake_case_ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
""" """.center(8 ),("""""".join(snake_case_ )).ljust(snake_case_ ),("""""".join(snake_case_ )).ljust(snake_case_ ),sep=""" | """,) # Output in tabular format
return "".join(snake_case_ ) # return Postfix as str
def lowerCAmelCase_ ( snake_case_ ):
_A : str = list(infix[::-1] ) # reverse the infix equation
for i in range(len(snake_case_ ) ):
if infix[i] == "(":
_A : Any = """)""" # change "(" to ")"
elif infix[i] == ")":
_A : int = """(""" # change ")" to "("
return (infix_2_postfix("""""".join(snake_case_ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
_snake_case = input("\nEnter an Infix Equation = ") # Input an Infix equation
_snake_case = "".join(Infix.split()) # Remove spaces from the input
print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
| 26 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
_snake_case = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
_snake_case = "▁"
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "token_type_ids"]
_a = FNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_A : int = (
AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a )
if isinstance(_a , _a )
else mask_token
)
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , )
_A : Optional[int] = do_lower_case
_A : List[Any] = remove_space
_A : str = keep_accents
_A : int = vocab_file
_A : int = False if not self.vocab_file else True
def a__ ( self , _a , _a = None ) -> List[int]:
_A : str = [self.sep_token_id]
_A : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Any = [self.sep_token_id]
_A : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 26 | 1 |
import argparse
import json
from tqdm import tqdm
def lowerCAmelCase_ ( ):
_A : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--src_path""",type=snake_case_,default="""biencoder-nq-dev.json""",help="""Path to raw DPR training data""",)
parser.add_argument(
"""--evaluation_set""",type=snake_case_,help="""where to store parsed evaluation_set file""",)
parser.add_argument(
"""--gold_data_path""",type=snake_case_,help="""where to store parsed gold_data_path file""",)
_A : str = parser.parse_args()
with open(args.src_path,"""r""" ) as src_file, open(args.evaluation_set,"""w""" ) as eval_file, open(
args.gold_data_path,"""w""" ) as gold_file:
_A : List[Any] = json.load(snake_case_ )
for dpr_record in tqdm(snake_case_ ):
_A : Union[str, Any] = dpr_record["""question"""]
_A : List[str] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]]
eval_file.write(question + """\n""" )
gold_file.write("""\t""".join(snake_case_ ) + """\n""" )
if __name__ == "__main__":
main()
| 26 |
from math import asin, atan, cos, radians, sin, sqrt, tan
_snake_case = 6_3_7_8_1_3_7.0
_snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5
_snake_case = 6378137
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Any = (AXIS_A - AXIS_B) / AXIS_A
_A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : Optional[Any] = radians(snake_case_ )
_A : str = radians(snake_case_ )
# Equation
_A : Dict = sin((phi_a - phi_a) / 2 )
_A : List[str] = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
_A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 1 |
import random
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = num - 1
_A : Optional[int] = 0
while s % 2 == 0:
_A : str = s // 2
t += 1
for _ in range(5 ):
_A : Tuple = random.randrange(2,num - 1 )
_A : Dict = pow(snake_case_,snake_case_,snake_case_ )
if v != 1:
_A : int = 0
while v != (num - 1):
if i == t - 1:
return False
else:
_A : int = i + 1
_A : Dict = (v**2) % num
return True
def lowerCAmelCase_ ( snake_case_ ):
if num < 2:
return False
_A : int = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(snake_case_ )
def lowerCAmelCase_ ( snake_case_ = 1024 ):
while True:
_A : List[Any] = random.randrange(2 ** (keysize - 1),2 ** (keysize) )
if is_prime_low_num(snake_case_ ):
return num
if __name__ == "__main__":
_snake_case = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 26 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> Optional[int]:
super().__init__(_a )
_A : Union[str, Any] = RobertaEmbeddings(_a )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> str:
super().__init__(_a )
_A : Any = config.num_labels
_A : Dict = config.num_hidden_layers
_A : List[str] = DeeRobertaModel(_a )
_A : int = nn.Dropout(config.hidden_dropout_prob )
_A : int = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_a )
def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any:
_A : Optional[int] = self.num_layers
try:
_A : List[str] = self.roberta(
_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , )
_A : List[str] = outputs[1]
_A : List[str] = self.dropout(_a )
_A : Optional[Any] = self.classifier(_a )
_A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_A : List[Any] = e.message
_A : Optional[int] = e.exit_layer
_A : Optional[int] = outputs[0]
if not self.training:
_A : int = entropy(_a )
_A : int = []
_A : int = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_A : Union[str, Any] = MSELoss()
_A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_A : Optional[Any] = []
for highway_exit in outputs[-1]:
_A : Tuple = highway_exit[0]
if not self.training:
highway_logits_all.append(_a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_A : List[str] = MSELoss()
_A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_a )
if train_highway:
_A : Dict = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_A : int = (loss,) + outputs
if not self.training:
_A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_A : Union[str, Any] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 26 | 1 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_snake_case = logging.get_logger(__name__)
class lowercase ( enum.Enum ):
_a = 0
_a = 1
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__ ):
_a = "generated"
def __init__( self , *_a , **_a ) -> Optional[int]:
super().__init__(*_a , **_a )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> str:
_A : Dict = {}
if truncation is not None:
_A : Union[str, Any] = truncation
_A : Optional[Any] = generate_kwargs
_A : List[str] = {}
if return_tensors is not None and return_type is None:
_A : Any = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
_A : Union[str, Any] = return_type
if clean_up_tokenization_spaces is not None:
_A : Tuple = clean_up_tokenization_spaces
if stop_sequence is not None:
_A : str = self.tokenizer.encode(_a , add_special_tokens=_a )
if len(_a ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
_A : Any = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def a__ ( self , _a , _a , _a ) -> str:
return True
def a__ ( self , *_a , _a ) -> List[Any]:
_A : Dict = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , _a ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
_A : Optional[int] = ([prefix + arg for arg in args[0]],)
_A : Optional[Any] = True
elif isinstance(args[0] , _a ):
_A : Any = (prefix + args[0],)
_A : str = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
_A : Optional[Any] = self.tokenizer(*_a , padding=_a , truncation=_a , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *_a , **_a ) -> Optional[Any]:
_A : int = super().__call__(*_a , **_a )
if (
isinstance(args[0] , _a )
and all(isinstance(_a , _a ) for el in args[0] )
and all(len(_a ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def a__ ( self , _a , _a=TruncationStrategy.DO_NOT_TRUNCATE , **_a ) -> Tuple:
_A : Optional[Any] = self._parse_and_tokenize(_a , truncation=_a , **_a )
return inputs
def a__ ( self , _a , **_a ) -> Optional[int]:
if self.framework == "pt":
_A , _A : Tuple = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
_A , _A : Dict = tf.shape(model_inputs["""input_ids"""] ).numpy()
_A : List[Any] = generate_kwargs.get("""min_length""" , self.model.config.min_length )
_A : Union[str, Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(_a , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
_A : str = self.model.generate(**_a , **_a )
_A : Optional[int] = output_ids.shape[0]
if self.framework == "pt":
_A : Dict = output_ids.reshape(_a , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
_A : List[str] = tf.reshape(_a , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def a__ ( self , _a , _a=ReturnType.TEXT , _a=False ) -> List[Any]:
_A : Union[str, Any] = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
_A : int = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
_A : Optional[int] = {
F'''{self.return_name}_text''': self.tokenizer.decode(
_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , )
}
records.append(_a )
return records
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__ ):
_a = "summary"
def __call__( self , *_a , **_a ) -> str:
return super().__call__(*_a , **_a )
def a__ ( self , _a , _a , _a ) -> bool:
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__ ):
_a = "translation"
def a__ ( self , _a , _a , _a ) -> Optional[int]:
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def a__ ( self , *_a , _a=TruncationStrategy.DO_NOT_TRUNCATE , _a=None , _a=None ) -> Optional[int]:
if getattr(self.tokenizer , """_build_translation_inputs""" , _a ):
return self.tokenizer._build_translation_inputs(
*_a , return_tensors=self.framework , truncation=_a , src_lang=_a , tgt_lang=_a )
else:
return super()._parse_and_tokenize(*_a , truncation=_a )
def a__ ( self , _a=None , _a=None , **_a ) -> List[Any]:
_A , _A , _A : str = super()._sanitize_parameters(**_a )
if src_lang is not None:
_A : Optional[Any] = src_lang
if tgt_lang is not None:
_A : Any = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
_A : Any = kwargs.get("""task""" , self.task )
_A : Union[str, Any] = task.split("""_""" )
if task and len(_a ) == 4:
# translation, XX, to YY
_A : int = items[1]
_A : Dict = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *_a , **_a ) -> Union[str, Any]:
return super().__call__(*_a , **_a )
| 26 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "xmod"
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Tuple = vocab_size
_A : Union[str, Any] = hidden_size
_A : Dict = num_hidden_layers
_A : Dict = num_attention_heads
_A : List[Any] = hidden_act
_A : Optional[Any] = intermediate_size
_A : Any = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Dict = max_position_embeddings
_A : Any = type_vocab_size
_A : List[Any] = initializer_range
_A : int = layer_norm_eps
_A : int = position_embedding_type
_A : Any = use_cache
_A : int = classifier_dropout
_A : int = pre_norm
_A : Optional[Any] = adapter_reduction_factor
_A : List[Any] = adapter_layer_norm
_A : Optional[int] = adapter_reuse_layer_norm
_A : Any = ln_before_adapter
_A : Union[str, Any] = list(_a )
_A : List[Any] = default_language
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_A : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 26 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase ( UpperCamelCase__ ):
def __init__( self , *_a , _a=None , _a=None , **_a ) -> Dict:
super().__init__(*_a , **_a )
_A : Optional[int] = eval_examples
_A : Tuple = post_process_function
def a__ ( self , _a = None , _a=None , _a = None , _a = "eval" , **_a , ) -> Dict[str, float]:
_A : Any = gen_kwargs.copy()
_A : Tuple = (
gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length
)
_A : Tuple = (
gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams
)
_A : List[str] = gen_kwargs
_A : Dict = self.eval_dataset if eval_dataset is None else eval_dataset
_A : Optional[int] = self.get_eval_dataloader(_a )
_A : Any = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A : List[str] = self.compute_metrics
_A : Tuple = None
_A : str = time.time()
_A : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_A : Optional[int] = eval_loop(
_a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , )
finally:
_A : List[str] = compute_metrics
_A : Tuple = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A : Tuple = self.post_process_function(_a , _a , _a )
_A : Optional[int] = self.compute_metrics(_a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A : int = metrics.pop(_a )
metrics.update(output.metrics )
else:
_A : Union[str, Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a )
return metrics
def a__ ( self , _a , _a , _a=None , _a = "test" , **_a ) -> Tuple:
_A : List[str] = gen_kwargs.copy()
_A : Optional[Any] = self.get_test_dataloader(_a )
# Temporarily disable metric computation, we will do it in the loop here.
_A : List[Any] = self.compute_metrics
_A : int = None
_A : Union[str, Any] = time.time()
_A : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_A : Dict = eval_loop(
_a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , )
finally:
_A : int = compute_metrics
_A : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A : Union[str, Any] = self.post_process_function(_a , _a , _a , """predict""" )
_A : Tuple = self.compute_metrics(_a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A : Optional[Any] = metrics.pop(_a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
| 26 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
if n == 0:
return 0
_A : Tuple = float("""-inf""" )
for i in range(1,n + 1 ):
_A : str = max(
snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) )
return max_revue
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
_A : Dict = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_A : List[str] = float("""-inf""" )
for i in range(1,n + 1 ):
_A : Optional[Any] = max(
snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),)
_A : Tuple = max_revenue
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_A : Any = 0
for i in range(1,n + 1 ):
_A : Optional[Any] = max_rev[i]
for j in range(1,i + 1 ):
_A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] )
_A : int = max_revenue_i
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if n < 0:
_A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(snake_case_ )
if n > len(snake_case_ ):
_A : Any = (
"""Each integral piece of rod must have a corresponding price. """
f'''Got n = {n} but length of prices = {len(snake_case_ )}'''
)
raise ValueError(snake_case_ )
def lowerCAmelCase_ ( ):
_A : Tuple = [6, 10, 12, 15, 20, 23]
_A : List[Any] = len(snake_case_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_A : Any = 36
_A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ )
_A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ )
_A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 26 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
_A : List[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_A : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False ):
for i in range(config.num_hidden_layers ):
if base_model:
_A : Tuple = """"""
else:
_A : Any = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
_A : str = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A : Optional[Any] = in_proj_weight[
: config.hidden_size, :
]
_A : Dict = in_proj_bias[: config.hidden_size]
_A : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A : str = in_proj_weight[
-config.hidden_size :, :
]
_A : int = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = dct.pop(snake_case_ )
_A : str = val
def lowerCAmelCase_ ( ):
_A : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=True ):
_A : List[str] = ViTConfig()
# patch_size
if model_name[-1] == "8":
_A : Optional[Any] = 8
# set labels if required
if not base_model:
_A : Any = 1000
_A : Any = """huggingface/label-files"""
_A : str = """imagenet-1k-id2label.json"""
_A : Any = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : List[str] = idalabel
_A : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
_A : Any = 384
_A : List[str] = 1536
_A : List[Any] = 12
_A : Optional[int] = 6
# load original model from torch hub
_A : str = torch.hub.load("""facebookresearch/dino:main""",snake_case_ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
_A : int = original_model.state_dict()
if base_model:
remove_classification_head_(snake_case_ )
_A : str = create_rename_keys(snake_case_,base_model=snake_case_ )
for src, dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
read_in_q_k_v(snake_case_,snake_case_,snake_case_ )
# load HuggingFace model
if base_model:
_A : List[str] = ViTModel(snake_case_,add_pooling_layer=snake_case_ ).eval()
else:
_A : Tuple = ViTForImageClassification(snake_case_ ).eval()
model.load_state_dict(snake_case_ )
# Check outputs on an image, prepared by ViTImageProcessor
_A : List[str] = ViTImageProcessor()
_A : Dict = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Optional[int] = encoding["""pixel_values"""]
_A : Optional[int] = model(snake_case_ )
if base_model:
_A : Union[str, Any] = original_model(snake_case_ )
assert torch.allclose(snake_case_,outputs.last_hidden_state[:, 0, :],atol=1e-1 )
else:
_A : Any = original_model(snake_case_ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(snake_case_,outputs.logits,atol=1e-3 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="dino_vitb16",
type=str,
help="Name of the model trained with DINO you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--base_model",
action="store_true",
help="Whether to only convert the base model (no projection head weights).",
)
parser.set_defaults(base_model=True)
_snake_case = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 26 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case_ = "AAPL" ):
_A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
_A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" )
_A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""",class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 26 | 1 |
import torch
from diffusers import DiffusionPipeline
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a ) -> Optional[Any]:
super().__init__()
self.register_modules(unet=_a , scheduler=_a )
def __call__( self ) -> Dict:
_A : str = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
_A : Any = 1
_A : List[Any] = self.unet(_a , _a ).sample
_A : Dict = self.scheduler.step(_a , _a , _a ).prev_sample
_A : int = scheduler_output - scheduler_output + torch.ones_like(_a )
return result
| 26 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
while b:
_A , _A : List[str] = b, a % b
return a
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b )
def lowerCAmelCase_ ( ):
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' )
if __name__ == "__main__":
main()
| 26 | 1 |
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class lowercase :
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> List[str]:
_A : Optional[Any] = parent
_A : int = batch_size
_A : List[Any] = seq_length
_A : List[Any] = is_training
_A : str = use_input_mask
_A : List[Any] = use_token_type_ids
_A : Any = use_labels
_A : Dict = vocab_size
_A : List[str] = hidden_size
_A : Optional[int] = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Tuple = intermediate_size
_A : Optional[int] = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : str = max_position_embeddings
_A : Any = type_vocab_size
_A : Optional[Any] = type_sequence_label_size
_A : Optional[Any] = initializer_range
_A : Any = num_labels
_A : int = num_choices
_A : Any = scope
def a__ ( self ) -> List[Any]:
_A : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A : Union[str, Any] = None
if self.use_input_mask:
_A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_A : Tuple = None
if self.use_token_type_ids:
_A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A : Dict = None
_A : List[Any] = None
_A : Dict = None
if self.use_labels:
_A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A : List[str] = ids_tensor([self.batch_size] , self.num_choices )
_A : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self ) -> List[Any]:
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]:
_A : Optional[int] = LlamaModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a , attention_mask=_a )
_A : str = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]:
_A : Union[str, Any] = True
_A : Any = LlamaModel(_a )
model.to(_a )
model.eval()
_A : int = model(
_a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , )
_A : Optional[int] = model(
_a , attention_mask=_a , encoder_hidden_states=_a , )
_A : Optional[int] = model(_a , attention_mask=_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int:
_A : List[Any] = LlamaForCausalLM(config=_a )
model.to(_a )
model.eval()
_A : Optional[Any] = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any:
_A : Optional[Any] = True
_A : Tuple = True
_A : str = LlamaForCausalLM(config=_a )
model.to(_a )
model.eval()
# first forward pass
_A : Union[str, Any] = model(
_a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , )
_A : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_A : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
_A : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
_A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
_A : Dict = model(
_a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0]
_A : Optional[int] = model(
_a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0]
# select random slice
_A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
_A : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) )
def a__ ( self ) -> int:
_A : List[Any] = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) : Any = config_and_inputs
_A : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_a = (LlamaForCausalLM,) if is_torch_available() else ()
_a = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_a = False
_a = False
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = LlamaModelTester(self )
_A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 )
def a__ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def a__ ( self ) -> Union[str, Any]:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_A : Optional[Any] = type
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> List[Any]:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
_A : List[str] = 3
_A : Optional[Any] = input_dict["""input_ids"""]
_A : Tuple = input_ids.ne(1 ).to(_a )
_A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_A : Tuple = LlamaForSequenceClassification(_a )
model.to(_a )
model.eval()
_A : int = model(_a , attention_mask=_a , labels=_a )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def a__ ( self ) -> Tuple:
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_A : int = 3
_A : Union[str, Any] = """single_label_classification"""
_A : Union[str, Any] = input_dict["""input_ids"""]
_A : int = input_ids.ne(1 ).to(_a )
_A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_A : Optional[Any] = LlamaForSequenceClassification(_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = model(_a , attention_mask=_a , labels=_a )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def a__ ( self ) -> str:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_A : List[str] = 3
_A : Tuple = """multi_label_classification"""
_A : List[str] = input_dict["""input_ids"""]
_A : Union[str, Any] = input_ids.ne(1 ).to(_a )
_A : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_A : Optional[int] = LlamaForSequenceClassification(_a )
model.to(_a )
model.eval()
_A : Tuple = model(_a , attention_mask=_a , labels=_a )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def a__ ( self ) -> Dict:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def a__ ( self , _a ) -> Any:
_A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
_A : Dict = ids_tensor([1, 10] , config.vocab_size )
_A : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
_A : str = LlamaModel(_a )
original_model.to(_a )
original_model.eval()
_A : Dict = original_model(_a ).last_hidden_state
_A : Union[str, Any] = original_model(_a ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
_A : Optional[int] = {"""type""": scaling_type, """factor""": 10.0}
_A : Optional[Any] = LlamaModel(_a )
scaled_model.to(_a )
scaled_model.eval()
_A : Tuple = scaled_model(_a ).last_hidden_state
_A : Any = scaled_model(_a ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) )
@require_torch
class lowercase ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def a__ ( self ) -> Dict:
_A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338]
_A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
_A : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
_A : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_A : Any = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def a__ ( self ) -> Any:
_A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338]
_A : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
_A : Dict = model(torch.tensor(_a ) )
# Expected mean on dim = -1
_A : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_A : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def a__ ( self ) -> Optional[Any]:
_A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338]
_A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
_A : Optional[int] = model(torch.tensor(_a ) )
# Expected mean on dim = -1
_A : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_A : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def a__ ( self ) -> Optional[Any]:
_A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338]
_A : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
_A : int = model(torch.tensor(_a ) )
_A : Tuple = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 )
# fmt: off
_A : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def a__ ( self ) -> Any:
_A : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
_A : List[Any] = """Simply put, the theory of relativity states that """
_A : Dict = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
_A : List[str] = tokenizer.encode(_a , return_tensors="""pt""" )
_A : Optional[Any] = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_a )
# greedy generation outputs
_A : Optional[Any] = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a )
_A : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a )
self.assertEqual(_a , _a )
| 26 |
def lowerCAmelCase_ ( snake_case_ ):
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : str = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : Optional[Any] = k.replace(""".attn""",""".self_attn""" )
_A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : str = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : str = sd.pop(snake_case_ )
_A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Optional[int] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : List[Any] = model["""model"""]
_A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : List[str] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Any = []
_A : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 | 1 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Any:
# A mock response for an HTTP head request to emulate server down
_A : Optional[int] = mock.Mock()
_A : Optional[Any] = 500
_A : Dict = {}
_A : Union[str, Any] = HTTPError
_A : List[Any] = {}
# Download this model to make sure it's in the cache.
_A : int = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=_a ) as mock_head:
_A : List[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def a__ ( self ) -> Optional[Any]:
# A mock response for an HTTP head request to emulate server down
_A : str = mock.Mock()
_A : Any = 500
_A : Optional[int] = {}
_A : List[str] = HTTPError
_A : int = {}
# Download this model to make sure it's in the cache.
_A : int = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=_a ) as mock_head:
_A : str = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# This check we did call the fake head request
mock_head.assert_called()
def a__ ( self ) -> Optional[int]:
# This test is for deprecated behavior and can be removed in v5
try:
_A : Tuple = tempfile.mktemp()
with open(_a , """wb""" ) as f:
http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , _a )
_A : str = AlbertTokenizer.from_pretrained(_a )
finally:
os.remove(_a )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("""tokenizer.json""" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("""tokenizer.json""" , """wb""" ) as f:
http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , _a )
_A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("""tokenizer.json""" )
def a__ ( self ) -> Union[str, Any]:
# This test is for deprecated behavior and can be removed in v5
_A : Dict = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" )
@is_staging_test
class lowercase ( unittest.TestCase ):
_a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def a__ ( cls ) -> Tuple:
_A : int = TOKEN
HfFolder.save_token(_a )
@classmethod
def a__ ( cls ) -> List[Any]:
try:
delete_repo(token=cls._token , repo_id="""test-tokenizer""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" )
except HTTPError:
pass
def a__ ( self ) -> Dict:
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Optional[Any] = os.path.join(_a , """vocab.txt""" )
with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
_A : Optional[Any] = BertTokenizer(_a )
tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token )
_A : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="""test-tokenizer""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a , repo_id="""test-tokenizer""" , push_to_hub=_a , use_auth_token=self._token )
_A : List[str] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def a__ ( self ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Optional[int] = os.path.join(_a , """vocab.txt""" )
with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
_A : Tuple = BertTokenizer(_a )
tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token )
_A : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
_a , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=_a , use_auth_token=self._token )
_A : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def a__ ( self ) -> str:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Union[str, Any] = os.path.join(_a , """vocab.txt""" )
with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
_A : str = CustomTokenizer(_a )
# No fast custom tokenizer
tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token )
_A : Optional[int] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_a )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Any = os.path.join(_a , """vocab.txt""" )
with open(_a , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
_A : Dict = BertTokenizerFast.from_pretrained(_a )
bert_tokenizer.save_pretrained(_a )
_A : Dict = CustomTokenizerFast.from_pretrained(_a )
tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token )
_A : Tuple = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_a )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" )
_A : Tuple = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=_a , trust_remote_code=_a )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" )
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = Trie()
trie.add("""Hello 友達""" )
self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
trie.add("""Hello""" )
trie.data
self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = Trie()
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] )
trie.add("""[CLS]""" )
trie.add("""extra_id_1""" )
trie.add("""extra_id_100""" )
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] )
def a__ ( self ) -> Dict:
_A : List[Any] = Trie()
trie.add("""A""" )
self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] )
self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] )
def a__ ( self ) -> Dict:
_A : Dict = Trie()
trie.add("""TOKEN]""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] )
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = Trie()
trie.add("""A""" )
trie.add("""P""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] )
def a__ ( self ) -> List[Any]:
_A : Dict = Trie()
trie.add("""AB""" )
trie.add("""B""" )
trie.add("""C""" )
self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] )
def a__ ( self ) -> int:
_A : Any = Trie()
trie.add("""ABC""" )
trie.add("""B""" )
trie.add("""CD""" )
self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] )
def a__ ( self ) -> List[Any]:
# Even if the offsets are wrong, we necessarily output correct string
# parts.
_A : Tuple = Trie()
_A : int = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(_a , ["""AB""", """C"""] )
| 26 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int:
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
_A : Optional[int] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def a__ ( self ) -> Optional[Any]:
_A : Tuple = None
_A : int = None
_A : Tuple = None
_A : Union[str, Any] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
_A : int = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class lowercase :
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_A : Dict = dataset
_A : int = name
_A : Union[str, Any] = con
_A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_A : str = num_proc
_A : Optional[Any] = to_sql_kwargs
def a__ ( self ) -> int:
_A : Any = self.to_sql_kwargs.pop("""sql""" , _a )
_A : List[str] = self.to_sql_kwargs.pop("""con""" , _a )
_A : int = self.to_sql_kwargs.pop("""index""" , _a )
_A : List[str] = self._write(index=_a , **self.to_sql_kwargs )
return written
def a__ ( self , _a ) -> Optional[int]:
_A , _A , _A : List[str] = args
_A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
_A : str = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
_A : Tuple = batch.to_pandas()
_A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def a__ ( self , _a , **_a ) -> int:
_A : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_A , _A : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 26 | 1 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_snake_case = "\nimport os\n"
_snake_case = "\ndef foo():\n import os\n return False\n"
_snake_case = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n"
_snake_case = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n"
_snake_case = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n"
_snake_case = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n"
_snake_case = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n"
_snake_case = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n"
_snake_case = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n"
_snake_case = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n"
_snake_case = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Tuple = os.path.join(snake_case_,"""test_file.py""" )
with open(snake_case_,"""w""" ) as _tmp_file:
_tmp_file.write(snake_case_ )
_A : Optional[Any] = get_imports(snake_case_ )
assert parsed_imports == ["os"]
| 26 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class lowercase ( UpperCamelCase__ ):
_a = "fnet"
def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Any = vocab_size
_A : str = max_position_embeddings
_A : Optional[Any] = hidden_size
_A : List[str] = num_hidden_layers
_A : List[str] = intermediate_size
_A : List[Any] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : List[str] = initializer_range
_A : List[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : List[str] = use_tpu_fourier_optimizations
_A : str = tpu_short_seq_length
| 26 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
if index == r:
for j in range(snake_case_ ):
print(data[j],end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
_A : Tuple = arr[i]
combination_util(snake_case_,snake_case_,snake_case_,index + 1,snake_case_,i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# A temporary array to store all combination one by one
_A : str = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(snake_case_,snake_case_,snake_case_,0,snake_case_,0 )
if __name__ == "__main__":
# Driver code to check the function above
_snake_case = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 26 |
def lowerCAmelCase_ ( snake_case_ ):
if n_term == "":
return []
_A : list = []
for temp in range(int(snake_case_ ) ):
series.append(f'''1/{temp + 1}''' if series else """1""" )
return series
if __name__ == "__main__":
_snake_case = input("Enter the last number (nth term) of the Harmonic Series")
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
print(harmonic_series(nth_term))
| 26 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Optional[int]:
_A : Optional[int] = size if size is not None else {"""shortest_edge""": 18}
_A : Optional[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_A : Tuple = parent
_A : int = batch_size
_A : int = num_channels
_A : int = image_size
_A : Optional[Any] = min_resolution
_A : Any = max_resolution
_A : Any = do_resize
_A : Any = size
_A : Optional[Any] = do_center_crop
_A : str = crop_size
_A : Union[str, Any] = do_normalize
_A : Any = image_mean
_A : Dict = image_std
def a__ ( self ) -> List[Any]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = LevitImageProcessor if is_vision_available() else None
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = LevitImageProcessingTester(self )
@property
def a__ ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Tuple:
_A : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """do_center_crop""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
_A : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def a__ ( self ) -> Optional[int]:
pass
def a__ ( self ) -> Tuple:
# Initialize image_processing
_A : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_A : Union[str, Any] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def a__ ( self ) -> str:
# Initialize image_processing
_A : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_A : Tuple = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 26 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26 | 1 |
from math import isclose, sqrt
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = point_y / 4 / point_x
_A : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
_A : Dict = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
_A : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
_A : List[Any] = outgoing_gradient**2 + 4
_A : Union[str, Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
_A : List[str] = (point_y - outgoing_gradient * point_x) ** 2 - 100
_A : str = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
_A : int = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
_A : Optional[int] = x_minus if isclose(snake_case_,snake_case_ ) else x_plus
_A : str = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def lowerCAmelCase_ ( snake_case_ = 1.4,snake_case_ = -9.6 ):
_A : int = 0
_A : float = first_x_coord
_A : float = first_y_coord
_A : float = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
_A , _A , _A : Tuple = next_point(snake_case_,snake_case_,snake_case_ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(f"""{solution() = }""")
| 26 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 | 1 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_snake_case = "bart"
_snake_case = True
@st.cache(allow_output_mutation=snake_case_ )
def lowerCAmelCase_ ( ):
if LOAD_DENSE_INDEX:
_A : Optional[int] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
_A : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
_A : str = qar_model.eval()
else:
_A , _A : Dict = (None, None)
if MODEL_TYPE == "bart":
_A : Tuple = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
_A : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
_A : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
_A : Tuple = sas_model.eval()
else:
_A , _A : Optional[int] = make_qa_sas_model(
model_name="""t5-small""",from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""",device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=snake_case_ )
def lowerCAmelCase_ ( ):
if LOAD_DENSE_INDEX:
_A : int = faiss.StandardGpuResources()
_A : int = datasets.load_dataset(path="""wiki_snippets""",name="""wiki40b_en_100_0""" )["""train"""]
_A : List[str] = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""",dtype="""float32""",mode="""r""",shape=(wikiaab_passages.num_rows, 128),)
_A : Any = faiss.IndexFlatIP(128 )
_A : Union[str, Any] = faiss.index_cpu_to_gpu(snake_case_,1,snake_case_ )
wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU
else:
_A , _A : List[str] = (None, None)
_A : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=snake_case_ )
def lowerCAmelCase_ ( ):
_A : Tuple = datasets.load_dataset("""eli5""",name="""LFQA_reddit""" )
_A : Optional[int] = elia["""train_eli5"""]
_A : int = np.memmap(
"""eli5_questions_reps.dat""",dtype="""float32""",mode="""r""",shape=(elia_train.num_rows, 128) )
_A : int = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(snake_case_ )
return (elia_train, eli5_train_q_index)
_snake_case , _snake_case , _snake_case = load_indexes()
_snake_case , _snake_case , _snake_case , _snake_case = load_models()
_snake_case , _snake_case = load_train_data()
def lowerCAmelCase_ ( snake_case_,snake_case_=10 ):
_A : Union[str, Any] = embed_questions_for_retrieval([question],snake_case_,snake_case_ )
_A , _A : Optional[Any] = eli5_train_q_index.search(snake_case_,snake_case_ )
_A : int = [elia_train[int(snake_case_ )] for i in I[0]]
return nn_examples
def lowerCAmelCase_ ( snake_case_,snake_case_="wiki40b",snake_case_="dense",snake_case_=10 ):
if source == "none":
_A , _A : List[str] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
_A , _A : int = query_qa_dense_index(
snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ )
else:
_A , _A : Union[str, Any] = query_es_index(
snake_case_,snake_case_,index_name="""english_wiki40b_snippets_100w""",n_results=snake_case_,)
_A : Tuple = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
_A : Dict = """question: {} context: {}""".format(snake_case_,snake_case_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None),
} )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=64,snake_case_=256,snake_case_=False,snake_case_=2,snake_case_=0.95,snake_case_=0.8 ):
with torch.no_grad():
_A : Union[str, Any] = qa_sas_generate(
snake_case_,snake_case_,snake_case_,num_answers=1,num_beams=snake_case_,min_len=snake_case_,max_len=snake_case_,do_sample=snake_case_,temp=snake_case_,top_p=snake_case_,top_k=snake_case_,max_input_length=1024,device="""cuda:0""",)[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
_snake_case = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
_snake_case = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_snake_case = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
_snake_case = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
_snake_case = st.sidebar.checkbox("Demo options")
if demo_options:
_snake_case = st.sidebar.selectbox(
"",
action_list,
index=3,
)
_snake_case = action_list.index(action_st)
_snake_case = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
_snake_case = show_type == "Show full text of passages"
else:
_snake_case = 3
_snake_case = True
_snake_case = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
_snake_case = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
_snake_case = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
_snake_case = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
_snake_case = "wiki40b"
_snake_case = "dense"
_snake_case = "beam"
_snake_case = 2
_snake_case = 64
_snake_case = 256
_snake_case = None
_snake_case = None
_snake_case = st.sidebar.checkbox("Generation options")
if generate_options:
_snake_case = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
_snake_case = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
_snake_case = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
_snake_case = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
_snake_case = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_snake_case = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
_snake_case = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
_snake_case = None
# start main text
_snake_case = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
_snake_case = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_snake_case = st.text_input("Enter your question here:", "")
else:
_snake_case = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
_snake_case , _snake_case = make_support(question, source=wiki_source, method="dense", n_results=10)
_snake_case , _snake_case = make_support(question, source=wiki_source, method="sparse", n_results=10)
_snake_case = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_snake_case = support_list[:10]
_snake_case = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
_snake_case , _snake_case = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_snake_case , _snake_case = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
_snake_case = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
_snake_case = res[1].strip()
if sec_titles == "":
_snake_case = "[{}]({})".format(res[0], wiki_url)
else:
_snake_case = sec_titles.split(" & ")
_snake_case = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
_snake_case = find_nearest_training(question)
_snake_case = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
_snake_case = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
_snake_case = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 26 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.maximum(0,snake_case_ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 26 | 1 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class lowercase :
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=64 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Optional[int]:
_A : Optional[int] = parent
_A : Optional[Any] = batch_size
_A : Tuple = seq_length
_A : Optional[Any] = is_training
_A : List[Any] = use_input_mask
_A : Any = use_token_type_ids
_A : List[Any] = use_labels
_A : Optional[int] = vocab_size
_A : str = hidden_size
_A : List[str] = embedding_size
_A : List[str] = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Dict = intermediate_size
_A : Dict = hidden_act
_A : Any = hidden_dropout_prob
_A : List[Any] = attention_probs_dropout_prob
_A : str = max_position_embeddings
_A : List[str] = type_vocab_size
_A : int = type_sequence_label_size
_A : Optional[Any] = initializer_range
_A : Union[str, Any] = num_labels
_A : Any = num_choices
_A : List[str] = scope
def a__ ( self ) -> Union[str, Any]:
_A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A : List[str] = None
if self.use_input_mask:
_A : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
_A : Union[str, Any] = None
if self.use_token_type_ids:
_A : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A : Any = None
_A : List[Any] = None
_A : Optional[Any] = None
if self.use_labels:
_A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A : List[str] = ids_tensor([self.batch_size] , self.num_choices )
_A : List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self ) -> Optional[int]:
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Any:
_A : Tuple = MegatronBertModel(config=_a )
model.to(_a )
model.eval()
_A : str = model(_a , attention_mask=_a , token_type_ids=_a )
_A : Any = model(_a , token_type_ids=_a )
_A : int = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : List[Any] = MegatronBertForMaskedLM(config=_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]:
_A : Optional[int] = MegatronBertForCausalLM(config=_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]:
_A : List[str] = MegatronBertForNextSentencePrediction(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(
_a , attention_mask=_a , token_type_ids=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : Dict = MegatronBertForPreTraining(config=_a )
model.to(_a )
model.eval()
_A : str = model(
_a , attention_mask=_a , token_type_ids=_a , labels=_a , next_sentence_label=_a , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : Dict = MegatronBertForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
_A : Dict = model(
_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple:
_A : Tuple = self.num_labels
_A : Any = MegatronBertForSequenceClassification(_a )
model.to(_a )
model.eval()
_A : str = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> int:
_A : Union[str, Any] = self.num_labels
_A : Optional[int] = MegatronBertForTokenClassification(config=_a )
model.to(_a )
model.eval()
_A : Dict = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]:
_A : str = self.num_choices
_A : Optional[Any] = MegatronBertForMultipleChoice(config=_a )
model.to(_a )
model.eval()
_A : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A : Optional[int] = model(
_a , attention_mask=_a , token_type_ids=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self ) -> int:
_A : Optional[int] = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) : int = config_and_inputs
_A : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
_a = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_a = True
# test_resize_embeddings = False
_a = False
def a__ ( self , _a , _a , _a=False ) -> Optional[int]:
_A : List[str] = super()._prepare_for_class(_a , _a , return_labels=_a )
if return_labels:
if model_class in get_values(_a ):
_A : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a )
_A : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_a )
return inputs_dict
def a__ ( self ) -> Dict:
_A : Dict = MegatronBertModelTester(self )
_A : str = ConfigTester(self , config_class=_a , hidden_size=37 )
def a__ ( self ) -> str:
self.config_tester.run_common_tests()
def a__ ( self ) -> Optional[int]:
_A : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*_a )
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_a )
def a__ ( self ) -> Dict:
_A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_a )
def a__ ( self ) -> int:
_A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_a )
def a__ ( self ) -> List[str]:
_A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*_a )
def a__ ( self ) -> int:
_A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*_a )
def a__ ( self ) -> Dict:
_A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_a )
def a__ ( self ) -> int:
_A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*_a )
def lowerCAmelCase_ ( snake_case_ ):
return torch.tensor(
snake_case_,dtype=torch.long,device=snake_case_,)
_snake_case = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""" )
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
_A : List[str] = os.path.join(os.environ["""MYDIR"""] , _a )
_A : Any = MegatronBertModel.from_pretrained(_a )
model.to(_a )
model.half()
_A : Optional[int] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] )
with torch.no_grad():
_A : Dict = model(_a )[0]
_A : List[str] = torch.Size((1, 9, 1024) )
self.assertEqual(output.shape , _a )
_A : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728]
for ii in range(3 ):
for jj in range(3 ):
_A : Any = output[0, ii, jj]
_A : Optional[int] = expected[3 * ii + jj]
_A : Tuple = """ii={} jj={} a={} b={}""".format(_a , _a , _a , _a )
self.assertTrue(math.isclose(_a , _a , rel_tol=_a , abs_tol=_a ) , msg=_a )
| 26 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_snake_case = getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,):
_A : Dict = str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ )
_A : Tuple = Path(snake_case_ )
_A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(snake_case_ )
_A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
_A : Any = model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params
_A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_A : int = num_return_sequences
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_A : Optional[int] = tokenizer.model_max_length
if prefix is None:
_A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """"""
_A : Optional[int] = SeqaSeqDataset(
snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,)
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ )
_A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn )
_A : Optional[Any] = []
for batch in tqdm(snake_case_ ):
_A : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,)
_A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
_A : Dict = batch["""ids"""]
if num_return_sequences > 1:
_A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(snake_case_,snake_case_ )
return results, sampler.num_replicas
def lowerCAmelCase_ ( ):
_A : Tuple = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",)
parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" )
parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ )
parser.add_argument(
"""--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" )
parser.add_argument(
"""--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",)
parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument(
"""--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""",action="""store_true""" )
parser.add_argument("""--debug""",action="""store_true""" )
_A : Union[str, Any] = time.time()
_A , _A : List[str] = parser.parse_known_args()
_A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(f'''parsed the following generate kwargs: {generate_kwargs}''' )
_A : Dict = Path(args.save_dir + """_tmp""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
_A : int = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_A : Any = {}
if args.src_lang is not None:
_A : int = args.src_lang
if args.tgt_lang is not None:
_A : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
_A , _A : str = eval_data_dir(
args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,)
if args.local_rank <= 0:
_A : List[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
_A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout )
_A : Optional[int] = combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
_A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" )
print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(snake_case_,snake_case_ )
return
_A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(snake_case_ ) as f:
_A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
_A : Dict = """translation""" in args.task
_A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge
_A : Tuple = """bleu""" if calc_bleu else """rouge"""
_A : Dict = score_fn(snake_case_,snake_case_ )
_A : List[Any] = len(snake_case_ )
_A : Optional[int] = time.time() - start_time
_A : Dict = round(runtime / metrics["""n_obs"""],4 )
_A : Dict = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' )
save_json(snake_case_,snake_case_,indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) )
else:
shutil.rmtree(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for partial_result in partial_results:
records.extend(snake_case_ )
_A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] )
_A : List[str] = [x["""pred"""] for x in records]
return preds
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# WAIT FOR lots of .json files
_A : Optional[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_A : List[str] = None
while (time.time() - start_wait) < timeout:
_A : str = list(save_dir.glob("""rank_*.json""" ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_A : List[str] = lmap(snake_case_,snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 26 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
while b:
_A , _A : List[str] = b, a % b
return a
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b )
def lowerCAmelCase_ ( ):
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' )
if __name__ == "__main__":
main()
| 26 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Any:
_A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_A : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_A : List[str] = model(_a )["""last_hidden_state"""]
_A : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
_A : List[Any] = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 26 | 1 |
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--pipeline_type",
default=None,
type=str,
help=(
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"
". If `None` pipeline will be automatically inferred."
),
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=(
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
parser.add_argument(
"--stable_unclip",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.",
)
parser.add_argument(
"--stable_unclip_prior",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
)
parser.add_argument(
"--clip_stats_path",
type=str,
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
required=False,
)
parser.add_argument(
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
)
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--vae_path",
type=str,
default=None,
required=False,
help="Set to a path, hub id to an already converted vae to not convert it again.",
)
_snake_case = parser.parse_args()
_snake_case = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 26 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
_snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
_snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n"
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]:
super().__init__()
self.register_modules(
prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str:
if latents is None:
_A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a )
else:
if latents.shape != shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
_A : Union[str, Any] = latents.to(_a )
_A : int = latents * scheduler.init_noise_sigma
return latents
def a__ ( self , _a=0 ) -> Optional[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
_A : str = torch.device(F'''cuda:{gpu_id}''' )
_A : Any = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
def a__ ( self ) -> List[Any]:
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(_a , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def a__ ( self , _a , _a , _a , _a , ) -> Tuple:
if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ):
_A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 )
if not isinstance(_a , torch.Tensor ):
_A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
_A : int = image.to(dtype=self.image_encoder.dtype , device=_a )
_A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""]
_A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
_A : Dict = image_embeds.repeat_interleave(_a , dim=0 )
if do_classifier_free_guidance:
_A : str = torch.zeros_like(_a )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A : List[str] = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(_a )
def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]:
if isinstance(_a , PIL.Image.Image ):
_A : List[Any] = 1
elif isinstance(_a , torch.Tensor ):
_A : Any = image.shape[0]
elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
_A : Union[str, Any] = len(_a )
else:
raise ValueError(
F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' )
_A : Optional[int] = self._execution_device
_A : Tuple = batch_size * num_images_per_prompt
_A : List[Any] = guidance_scale > 1.0
_A : Optional[Any] = self._encode_image(_a , _a , _a , _a )
# prior
self.scheduler.set_timesteps(_a , device=_a )
_A : Optional[int] = self.scheduler.timesteps
_A : List[str] = self.prior.config.num_embeddings
_A : int = self.prior.config.embedding_dim
_A : Optional[Any] = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
_A : List[Any] = latents.reshape(latents.shape[0] , _a , _a )
for i, t in enumerate(self.progress_bar(_a ) ):
# expand the latents if we are doing classifier free guidance
_A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A : int = self.scheduler.scale_model_input(_a , _a )
_A : Tuple = self.prior(
_a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding
# remove the variance
_A , _A : Optional[Any] = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
_A , _A : Dict = noise_pred.chunk(2 )
_A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
_A : int = self.scheduler.step(
_a , timestep=_a , sample=_a , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=_a )
_A : List[str] = []
for i, latent in enumerate(_a ):
print()
_A : List[str] = self.renderer.decode(
latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(_a )
_A : List[Any] = torch.stack(_a )
if output_type not in ["np", "pil"]:
raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
_A : List[str] = images.cpu().numpy()
if output_type == "pil":
_A : List[Any] = [self.numpy_to_pil(_a ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=_a )
| 26 | 1 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json",
"google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json",
"google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "owlvit_text_model"
def __init__( self , _a=4_9408 , _a=512 , _a=2048 , _a=12 , _a=8 , _a=16 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9406 , _a=4_9407 , **_a , ) -> int:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Dict = vocab_size
_A : List[Any] = hidden_size
_A : Optional[int] = intermediate_size
_A : Optional[Any] = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : List[Any] = max_position_embeddings
_A : str = hidden_act
_A : Optional[Any] = layer_norm_eps
_A : Optional[int] = attention_dropout
_A : Optional[int] = initializer_range
_A : Optional[int] = initializer_factor
@classmethod
def a__ ( cls , _a , **_a ) -> "PretrainedConfig":
cls._set_token_in_kwargs(_a )
_A , _A : Union[str, Any] = cls.get_config_dict(_a , **_a )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
_A : Dict = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class lowercase ( UpperCamelCase__ ):
_a = "owlvit_vision_model"
def __init__( self , _a=768 , _a=3072 , _a=12 , _a=12 , _a=3 , _a=768 , _a=32 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Dict:
super().__init__(**_a )
_A : int = hidden_size
_A : Optional[int] = intermediate_size
_A : Tuple = num_hidden_layers
_A : Optional[Any] = num_attention_heads
_A : Union[str, Any] = num_channels
_A : Any = image_size
_A : str = patch_size
_A : List[Any] = hidden_act
_A : Optional[int] = layer_norm_eps
_A : Optional[int] = attention_dropout
_A : List[str] = initializer_range
_A : List[str] = initializer_factor
@classmethod
def a__ ( cls , _a , **_a ) -> "PretrainedConfig":
cls._set_token_in_kwargs(_a )
_A , _A : Tuple = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
_A : List[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class lowercase ( UpperCamelCase__ ):
_a = "owlvit"
_a = True
def __init__( self , _a=None , _a=None , _a=512 , _a=2.6592 , _a=True , **_a , ) -> Optional[Any]:
super().__init__(**_a )
if text_config is None:
_A : str = {}
logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" )
if vision_config is None:
_A : int = {}
logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" )
_A : Dict = OwlViTTextConfig(**_a )
_A : int = OwlViTVisionConfig(**_a )
_A : Any = projection_dim
_A : List[Any] = logit_scale_init_value
_A : Any = return_dict
_A : List[str] = 1.0
@classmethod
def a__ ( cls , _a , **_a ) -> "PretrainedConfig":
cls._set_token_in_kwargs(_a )
_A , _A : Optional[Any] = cls.get_config_dict(_a , **_a )
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
@classmethod
def a__ ( cls , _a , _a , **_a ) -> List[str]:
_A : Dict = {}
_A : Dict = text_config
_A : Optional[Any] = vision_config
return cls.from_dict(_a , **_a )
def a__ ( self ) -> List[Any]:
_A : Dict = copy.deepcopy(self.__dict__ )
_A : Dict = self.text_config.to_dict()
_A : Optional[Any] = self.vision_config.to_dict()
_A : List[str] = self.__class__.model_type
return output
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
] )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""logits_per_image""", {0: """batch"""}),
("""logits_per_text""", {0: """batch"""}),
("""text_embeds""", {0: """batch"""}),
("""image_embeds""", {0: """batch"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-4
def a__ ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]:
_A : Tuple = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a )
_A : Any = super().generate_dummy_inputs(
processor.image_processor , batch_size=_a , framework=_a )
return {**text_input_dict, **image_input_dict}
@property
def a__ ( self ) -> int:
return 14
| 26 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ):
_A : Union[str, Any] = []
for k, v in d.items():
_A : Optional[int] = parent_key + sep + k if parent_key else k
if isinstance(snake_case_,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case_ )
_A : List[Any] = argparse.Namespace()
with open(snake_case_,"""r""" ) as yaml_file:
try:
_A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader )
_A : Optional[int] = flatten_yaml_as_dict(snake_case_ )
for k, v in flat_cfg.items():
setattr(snake_case_,snake_case_,snake_case_ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) )
return config
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Optional[Any] = MobileViTVaConfig()
_A : Tuple = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_A : Dict = 1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : int = 384
else:
_A : int = 256
_A : List[str] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_A : Union[str, Any] = 21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : str = 384
else:
_A : List[Any] = 256
_A : List[str] = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_A : int = 151
_A : int = 512
_A : Optional[int] = """ade20k-id2label.json"""
_A : Any = True
elif task_name.startswith("""voc_""" ):
_A : List[Any] = 21
_A : Dict = 512
_A : Dict = """pascal-voc-id2label.json"""
_A : int = True
# orig_config
_A : Any = load_orig_config_file(snake_case_ )
assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model"
_A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 )
assert (
getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 )
if "_deeplabv3" in task_name:
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] )
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 )
_A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 )
# id2label
_A : List[Any] = """huggingface/label-files"""
_A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : str = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : str = idalabel
_A : Dict = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = dct.pop(snake_case_ )
_A : Union[str, Any] = val
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
if base_model:
_A : Optional[int] = """"""
else:
_A : Dict = """mobilevitv2."""
_A : int = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_A : Any = k[8:]
else:
_A : List[str] = k
if ".block." in k:
_A : Any = k_new.replace(""".block.""",""".""" )
if ".conv." in k:
_A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" )
if ".norm." in k:
_A : Any = k_new.replace(""".norm.""",""".normalization.""" )
if "conv_1." in k:
_A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
_A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" )
if ".red_1x1." in k:
_A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
_A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
_A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
_A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
_A : Optional[int] = [0, 1]
elif i == 4:
_A : Union[str, Any] = [0, 1, 2, 3]
elif i == 5:
_A : Optional[Any] = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
_A : Union[str, Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
_A : List[str] = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" )
if "pre_norm_attn.1." in k:
_A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" )
if "pre_norm_ffn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" )
if "classifier.1." in k:
_A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" )
if "seg_head." in k:
_A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" )
if ".aspp_layer." in k:
_A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" )
if ".aspp_pool." in k:
_A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" )
rename_keys.append((k, k_new) )
return rename_keys
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case_ )
for k in keys_to_ignore:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( ):
_A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ )
# load original state_dict
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval()
_A : str = False
else:
_A : int = MobileViTVaForImageClassification(snake_case_ ).eval()
_A : List[Any] = False
# remove and rename some keys of load the original model
_A : List[Any] = checkpoint
remove_unused_keys(snake_case_ )
_A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
# load modified state_dict
model.load_state_dict(snake_case_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 )
_A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Optional[Any] = model(**snake_case_ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_A : List[Any] = outputs.logits
_A : Optional[int] = logits.argmax(-1 ).item()
print("""Predicted class:""",model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_snake_case = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 26 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[str] = []
_A , _A : int = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
_A : List[Any] = result + left + right
return input_list
def lowerCAmelCase_ ( snake_case_ ):
if len(snake_case_ ) <= 1:
return input_list
_A : Dict = list(snake_case_ )
# iteration for two-way merging
_A : Union[str, Any] = 2
while p <= len(snake_case_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0,len(snake_case_ ),snake_case_ ):
_A : Tuple = i
_A : Optional[Any] = i + p - 1
_A : Optional[int] = (low + high + 1) // 2
_A : Dict = merge(snake_case_,snake_case_,snake_case_,snake_case_ )
# final merge of last two parts
if p * 2 >= len(snake_case_ ):
_A : Dict = i
_A : str = merge(snake_case_,0,snake_case_,len(snake_case_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_snake_case = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
_snake_case = []
else:
_snake_case = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 26 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class lowercase ( UpperCamelCase__ ):
_a = (DPMSolverSDEScheduler,)
_a = 1_0
def a__ ( self , **_a ) -> Optional[Any]:
_A : str = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**_a )
return config
def a__ ( self ) -> Tuple:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_a )
def a__ ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def a__ ( self ) -> Any:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_a )
def a__ ( self ) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def a__ ( self ) -> Optional[int]:
_A : Any = self.scheduler_classes[0]
_A : List[str] = self.get_scheduler_config()
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Dict = self.dummy_model()
_A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Dict = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : str = model(_a , _a )
_A : List[Any] = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Dict = torch.sum(torch.abs(_a ) )
_A : Dict = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.scheduler_classes[0]
_A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" )
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Tuple = self.dummy_model()
_A : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Tuple = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : int = scheduler.scale_model_input(_a , _a )
_A : Tuple = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Optional[Any] = torch.sum(torch.abs(_a ) )
_A : List[Any] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = self.scheduler_classes[0]
_A : List[Any] = self.get_scheduler_config()
_A : List[str] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Union[str, Any] = self.dummy_model()
_A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A : int = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Dict = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : str = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = self.scheduler_classes[0]
_A : Optional[Any] = self.get_scheduler_config()
_A : int = scheduler_class(**_a , use_karras_sigmas=_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Optional[Any] = self.dummy_model()
_A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
_A : str = sample.to(_a )
for t in scheduler.timesteps:
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : List[str] = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : List[str] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
| 26 | 1 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_snake_case = get_logger()
_snake_case = None
class lowercase ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self , _a=None , _a=None , **_a ) -> Dict:
super().__init__(features=_a )
import jax
from jaxlib.xla_client import Device
if isinstance(_a , _a ):
raise ValueError(
F'''Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
_A : Tuple = device if isinstance(_a , _a ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_A : int = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F'''Device with string identifier {self.device} not listed among the available '''
F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
F'''device: {str(jax.devices()[0] )}.''' )
_A : Dict = str(jax.devices()[0] )
_A : int = jnp_array_kwargs
@staticmethod
def a__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(_a ): device for device in jax.devices()}
def a__ ( self , _a ) -> str:
import jax
import jax.numpy as jnp
if isinstance(_a , _a ) and column:
if all(
isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_a , axis=0 )
return column
def a__ ( self , _a ) -> Optional[int]:
import jax
import jax.numpy as jnp
if isinstance(_a , (str, bytes, type(_a )) ):
return value
elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_A : Any = {}
if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_A : List[str] = {"""dtype""": jnp.intaa}
else:
_A : Optional[int] = {"""dtype""": jnp.intaa}
elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_A : List[str] = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_a , PIL.Image.Image ):
_A : Union[str, Any] = np.asarray(_a )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_A : Optional[Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} )
def a__ ( self , _a ) -> Optional[int]:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_a , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_a , """__array__""" ) and not isinstance(_a , jax.Array ):
_A : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_a , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] )
elif isinstance(_a , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] )
return self._tensorize(_a )
def a__ ( self , _a ) -> Tuple:
return map_nested(self._recursive_tensorize , _a , map_list=_a )
def a__ ( self , _a ) -> Mapping:
_A : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_a )
_A : Any = self.python_features_decoder.decode_row(_a )
return self.recursive_tensorize(_a )
def a__ ( self , _a ) -> "jax.Array":
_A : Optional[int] = self.numpy_arrow_extractor().extract_column(_a )
_A : List[Any] = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] )
_A : List[Any] = self.recursive_tensorize(_a )
_A : Optional[int] = self._consolidate(_a )
return column
def a__ ( self , _a ) -> Mapping:
_A : List[Any] = self.numpy_arrow_extractor().extract_batch(_a )
_A : List[Any] = self.python_features_decoder.decode_batch(_a )
_A : Tuple = self.recursive_tensorize(_a )
for column_name in batch:
_A : Union[str, Any] = self._consolidate(batch[column_name] )
return batch
| 26 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = 1
@register_to_config
def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]:
_A : Dict = None
_A : List[Any] = None
_A : Dict = None
def a__ ( self , _a , _a = None ) -> Union[str, Any]:
_A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a )
def a__ ( self , _a , _a , _a , _a=None ) -> Dict:
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_A : Any = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_A : List[str] = std.flatten()
while len(std.shape ) < len(score.shape ):
_A : List[Any] = std.unsqueeze(-1 )
_A : int = -score / std
# compute
_A : Tuple = -1.0 / len(self.timesteps )
_A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_A : List[str] = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_A : Union[str, Any] = beta_t.unsqueeze(-1 )
_A : Tuple = -0.5 * beta_t * x
_A : Tuple = torch.sqrt(_a )
_A : Dict = drift - diffusion**2 * score
_A : Dict = x + drift * dt
# add noise
_A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype )
_A : str = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self ) -> Optional[Any]:
return self.config.num_train_timesteps
| 26 | 1 |
from importlib import import_module
from .logging import get_logger
UpperCAmelCase__ = get_logger(__name__)
class lowercase_ :
'''simple docstring'''
def __init__( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=None ) ->int:
"""simple docstring"""
a = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith('''__''' ):
setattr(self , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) )
a = module._original_module if isinstance(__UpperCAmelCase , _PatchedModuleObj ) else module
class lowercase_ :
'''simple docstring'''
__snake_case = []
def __init__( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None ) ->Union[str, Any]:
"""simple docstring"""
a = obj
a = target
a = new
a = target.split('''.''' )[0]
a = {}
a = attrs or []
def __enter__( self : Tuple ) ->Union[str, Any]:
"""simple docstring"""
*a , a = self.target.split('''.''' )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(__UpperCAmelCase ) ):
try:
a = import_module('''.'''.join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
a = getattr(self.obj , __UpperCAmelCase )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(__UpperCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
a = obj_attr
# patch at top level
setattr(self.obj , __UpperCAmelCase , _PatchedModuleObj(__UpperCAmelCase , attrs=self.attrs ) )
a = getattr(self.obj , __UpperCAmelCase )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(__UpperCAmelCase , __UpperCAmelCase , _PatchedModuleObj(getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , attrs=self.attrs ) )
a = getattr(__UpperCAmelCase , __UpperCAmelCase )
# finally set the target attribute
setattr(__UpperCAmelCase , __UpperCAmelCase , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
a = getattr(import_module('''.'''.join(__UpperCAmelCase ) ) , __UpperCAmelCase )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , __UpperCAmelCase ) is attr_value:
a = getattr(self.obj , __UpperCAmelCase )
setattr(self.obj , __UpperCAmelCase , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
a = globals()['''__builtins__'''][target_attr]
setattr(self.obj , __UpperCAmelCase , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : List[str] , *__UpperCAmelCase : Optional[int] ) ->Tuple:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , __UpperCAmelCase , self.original.pop(__UpperCAmelCase ) )
def __lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def __lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
_snake_case = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
_snake_case = "▁"
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "token_type_ids"]
_a = FNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_A : int = (
AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a )
if isinstance(_a , _a )
else mask_token
)
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , )
_A : Optional[int] = do_lower_case
_A : List[Any] = remove_space
_A : str = keep_accents
_A : int = vocab_file
_A : int = False if not self.vocab_file else True
def a__ ( self , _a , _a = None ) -> List[int]:
_A : str = [self.sep_token_id]
_A : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Any = [self.sep_token_id]
_A : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 26 | 0 |
'''simple docstring'''
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
SCREAMING_SNAKE_CASE_: Dict =get_tests_dir('fixtures/dummy-config.json')
class __A ( unittest.TestCase ):
def _lowercase (self : List[str] ):
UpperCAmelCase_ = 0
def _lowercase (self : Union[str, Any] ):
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowercase (self : int ):
UpperCAmelCase_ = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(__a , __a )
def _lowercase (self : Optional[int] ):
UpperCAmelCase_ = AutoConfig.from_pretrained(__a )
self.assertIsInstance(__a , __a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = AutoConfig.from_pretrained(__a )
self.assertIsInstance(__a , __a )
def _lowercase (self : Tuple ):
UpperCAmelCase_ = AutoConfig.for_model("roberta" )
self.assertIsInstance(__a , __a )
def _lowercase (self : List[str] ):
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
UpperCAmelCase_ = os.path.join(__a , "fake-roberta" )
os.makedirs(__a , exist_ok=__a )
with open(os.path.join(__a , "config.json" ) , "w" ) as f:
f.write(json.dumps({} ) )
UpperCAmelCase_ = AutoConfig.from_pretrained(__a )
self.assertEqual(type(__a ) , __a )
def _lowercase (self : str ):
try:
AutoConfig.register("custom" , __a )
# Wrong model type will raise an error
with self.assertRaises(__a ):
AutoConfig.register("model" , __a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__a ):
AutoConfig.register("bert" , __a )
# Now that the config is registered, it can be used as any other config with the auto-API
UpperCAmelCase_ = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__a )
UpperCAmelCase_ = AutoConfig.from_pretrained(__a )
self.assertIsInstance(__a , __a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowercase (self : Union[str, Any] ):
with self.assertRaisesRegex(
__a , "bert-base is not a local folder and is not a valid model identifier" ):
UpperCAmelCase_ = AutoConfig.from_pretrained("bert-base" )
def _lowercase (self : Optional[Any] ):
with self.assertRaisesRegex(
__a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
UpperCAmelCase_ = AutoConfig.from_pretrained(__a , revision="aaaaaa" )
def _lowercase (self : Tuple ):
with self.assertRaisesRegex(
__a , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ):
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowercase (self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__a ):
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__a ):
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a )
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a )
self.assertEqual(config.__class__.__name__ , "NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__a )
UpperCAmelCase_ = AutoConfig.from_pretrained(__a , trust_remote_code=__a )
self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" )
def _lowercase (self : Tuple ):
class __A ( UpperCamelCase__ ):
a__ : str = """new-model"""
try:
AutoConfig.register("new-model" , __a )
# If remote code is not set, the default is to use local
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a )
self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
UpperCAmelCase_ = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__a )
self.assertEqual(config.__class__.__name__ , "NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
| 1 |
from math import asin, atan, cos, radians, sin, sqrt, tan
_snake_case = 6_3_7_8_1_3_7.0
_snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5
_snake_case = 6378137
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Any = (AXIS_A - AXIS_B) / AXIS_A
_A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : Optional[Any] = radians(snake_case_ )
_A : str = radians(snake_case_ )
# Equation
_A : Dict = sin((phi_a - phi_a) / 2 )
_A : List[str] = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
_A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __lowerCAmelCase (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
lowercase__ = tempfile.mkdtemp()
lowercase__ = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowercase__ = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
lowercase__ = os.path.join(self.tmpdirname , UpperCamelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Tuple , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase )
def UpperCamelCase__ (self : Tuple , **UpperCamelCase : List[str] ):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase )
def UpperCamelCase__ (self : List[Any] , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase )
def UpperCamelCase__ (self : str ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = self.get_image_processor()
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase )
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowercase__ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 )
lowercase__ = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase )
def UpperCamelCase__ (self : List[str] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowercase__ = self.prepare_image_inputs()
lowercase__ = image_processor(UpperCamelCase , return_tensors='''np''' )
lowercase__ = processor(images=UpperCamelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowercase__ = '''lower newer'''
lowercase__ = processor(text=UpperCamelCase )
lowercase__ = tokenizer(UpperCamelCase , padding='''max_length''' , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowercase__ = '''lower newer'''
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=UpperCamelCase , images=UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase ):
processor()
def UpperCamelCase__ (self : Tuple ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ = processor.batch_decode(UpperCamelCase )
lowercase__ = tokenizer.batch_decode(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : Optional[Any] ):
'''simple docstring'''
lowercase__ = self.get_image_processor()
lowercase__ = self.get_tokenizer()
lowercase__ = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase )
lowercase__ = '''lower newer'''
lowercase__ = self.prepare_image_inputs()
lowercase__ = processor(text=UpperCamelCase , images=UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 2 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> Optional[int]:
super().__init__(_a )
_A : Union[str, Any] = RobertaEmbeddings(_a )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> str:
super().__init__(_a )
_A : Any = config.num_labels
_A : Dict = config.num_hidden_layers
_A : List[str] = DeeRobertaModel(_a )
_A : int = nn.Dropout(config.hidden_dropout_prob )
_A : int = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_a )
def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any:
_A : Optional[int] = self.num_layers
try:
_A : List[str] = self.roberta(
_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , )
_A : List[str] = outputs[1]
_A : List[str] = self.dropout(_a )
_A : Optional[Any] = self.classifier(_a )
_A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_A : List[Any] = e.message
_A : Optional[int] = e.exit_layer
_A : Optional[int] = outputs[0]
if not self.training:
_A : int = entropy(_a )
_A : int = []
_A : int = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_A : Union[str, Any] = MSELoss()
_A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_A : Optional[Any] = []
for highway_exit in outputs[-1]:
_A : Tuple = highway_exit[0]
if not self.training:
highway_logits_all.append(_a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_A : List[str] = MSELoss()
_A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_a )
if train_highway:
_A : Dict = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_A : int = (loss,) + outputs
if not self.training:
_A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_A : Union[str, Any] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 26 | 0 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : Union[str, Any] = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : Tuple = create_model(
'''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = {}
A : str = R'''.*sequential.(\d+).*'''
A : Union[str, Any] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Any = key.replace(snake_case__ , snake_case__ )
if re.match(snake_case__ , snake_case__ ):
# replace sequential layers with list
A : Any = re.match(snake_case__ , snake_case__ ).group(1 )
A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' )
elif re.match(snake_case__ , snake_case__ ):
A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
A : str = 1 if projecton_layer == 0 else 2
A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
A : int = value
A : List[Any] = mixed_qkv.size(0 ) // 3
A : Union[str, Any] = mixed_qkv[:qkv_dim]
A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2]
A : Optional[int] = mixed_qkv[qkv_dim * 2 :]
A : Tuple = query_layer
A : Union[str, Any] = key_layer
A : Optional[int] = value_layer
else:
A : Dict = value
return model_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ )
clap_model.eval()
A : str = clap_model.state_dict()
A : Union[str, Any] = rename_state_dict(snake_case__ )
A : Tuple = ClapConfig()
A : str = enable_fusion
A : str = ClapModel(snake_case__ )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case__ , strict=snake_case__ )
model.save_pretrained(snake_case__ )
transformers_config.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
lowercase : Tuple = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "xmod"
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Tuple = vocab_size
_A : Union[str, Any] = hidden_size
_A : Dict = num_hidden_layers
_A : Dict = num_attention_heads
_A : List[Any] = hidden_act
_A : Optional[Any] = intermediate_size
_A : Any = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Dict = max_position_embeddings
_A : Any = type_vocab_size
_A : List[Any] = initializer_range
_A : int = layer_norm_eps
_A : int = position_embedding_type
_A : Any = use_cache
_A : int = classifier_dropout
_A : int = pre_norm
_A : Optional[Any] = adapter_reduction_factor
_A : List[Any] = adapter_layer_norm
_A : Optional[int] = adapter_reuse_layer_norm
_A : Any = ln_before_adapter
_A : Union[str, Any] = list(_a )
_A : List[Any] = default_language
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_A : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 26 | 0 |
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class UpperCAmelCase_ ( __lowercase ):
def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]:
return self[-1] < other[-1]
def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple:
return self[-1] == other[-1]
def a_ ( lowerCamelCase : list ):
lowerCAmelCase = []
# sort into stacks
for element in collection:
lowerCAmelCase = Stack([element] )
lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase )
if i != len(lowerCamelCase ):
stacks[i].append(lowerCamelCase )
else:
stacks.append(lowerCamelCase )
# use a heap-based merge to merge stack efficiently
lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
__snake_case =input("""Enter numbers separated by a comma:\n""").strip()
__snake_case =[int(item) for item in user_input.split(""",""")]
print(patience_sort(unsorted))
| 4 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
if n == 0:
return 0
_A : Tuple = float("""-inf""" )
for i in range(1,n + 1 ):
_A : str = max(
snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) )
return max_revue
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
_A : Dict = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_A : List[str] = float("""-inf""" )
for i in range(1,n + 1 ):
_A : Optional[Any] = max(
snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),)
_A : Tuple = max_revenue
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_A : Any = 0
for i in range(1,n + 1 ):
_A : Optional[Any] = max_rev[i]
for j in range(1,i + 1 ):
_A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] )
_A : int = max_revenue_i
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if n < 0:
_A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(snake_case_ )
if n > len(snake_case_ ):
_A : Any = (
"""Each integral piece of rod must have a corresponding price. """
f'''Got n = {n} but length of prices = {len(snake_case_ )}'''
)
raise ValueError(snake_case_ )
def lowerCAmelCase_ ( ):
_A : Tuple = [6, 10, 12, 15, 20, 23]
_A : List[Any] = len(snake_case_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_A : Any = 36
_A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ )
_A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ )
_A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 26 | 0 |
from random import shuffle
import tensorflow as tf
from numpy import array
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Dict:
"""simple docstring"""
_lowercase =int(__snake_case )
assert noofclusters < len(__snake_case )
# Find out the dimensionality
_lowercase =len(vectors[0] )
# Will help select random centroids from among the available vectors
_lowercase =list(range(len(__snake_case ) ) )
shuffle(__snake_case )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
_lowercase =tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
_lowercase =tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
_lowercase =[
tf.Variable(vectors[vector_indices[i]] ) for i in range(__snake_case )
]
##These nodes will assign the centroid Variables the appropriate
##values
_lowercase =tf.placeholder('''float64''' , [dim] )
_lowercase =[]
for centroid in centroids:
cent_assigns.append(tf.assign(__snake_case , __snake_case ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
_lowercase =[tf.Variable(0 ) for i in range(len(__snake_case ) )]
##These nodes will assign an assignment Variable the appropriate
##value
_lowercase =tf.placeholder('''int32''' )
_lowercase =[]
for assignment in assignments:
cluster_assigns.append(tf.assign(__snake_case , __snake_case ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
_lowercase =tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
_lowercase =tf.reduce_mean(__snake_case , 0 )
##Node for computing Euclidean distances
# Placeholders for input
_lowercase =tf.placeholder('''float''' , [dim] )
_lowercase =tf.placeholder('''float''' , [dim] )
_lowercase =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__snake_case , __snake_case ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
_lowercase =tf.placeholder('''float''' , [noofclusters] )
_lowercase =tf.argmin(__snake_case , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
_lowercase =tf.initialize_all_variables()
# Initialize all variables
sess.run(__snake_case )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
_lowercase =100
for _ in range(__snake_case ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(__snake_case ) ):
_lowercase =vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
_lowercase =[
sess.run(__snake_case , feed_dict={va: vect, va: sess.run(__snake_case )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
_lowercase =sess.run(
__snake_case , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(__snake_case ):
# Collect all the vectors assigned to this cluster
_lowercase =[
vectors[i]
for i in range(len(__snake_case ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
_lowercase =sess.run(
__snake_case , feed_dict={mean_input: array(__snake_case )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
_lowercase =sess.run(__snake_case )
_lowercase =sess.run(__snake_case )
return centroids, assignments
| 5 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case_ = "AAPL" ):
_A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
_A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" )
_A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""",class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 26 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A : List[str] = '▁'
A : str = {'vocab_file': 'spiece.model'}
A : Dict = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}
}
A : Tuple = {
'google/pegasus-xsum': 5_1_2,
}
A : Tuple = logging.get_logger(__name__)
class __A( a ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self , _snake_case , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<mask_2>" , _snake_case="<mask_1>" , _snake_case=None , _snake_case=103 , _snake_case = None , **_snake_case , ) -> None:
'''simple docstring'''
__a = offset
if additional_special_tokens is not None:
if not isinstance(_snake_case , _snake_case ):
raise TypeError(
F"""additional_special_tokens should be of type {type(_snake_case )}, but is"""
F""" {type(_snake_case )}""" )
__a = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_snake_case ) , self.offset - 1 )
]
if len(set(_snake_case ) ) != len(_snake_case ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
__a = additional_special_tokens_extended
else:
__a = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )]
__a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
__a = mask_token_sent
__a = vocab_file
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# add special tokens to encoder dict
__a = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
__a = {v: k for k, v in self.encoder.items()}
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
return len(self.sp_model ) + self.offset
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, int]:
'''simple docstring'''
__a = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Dict:
'''simple docstring'''
__a = self.__dict__.copy()
__a = None
return state
def __setstate__( self , _snake_case ) -> Optional[Any]:
'''simple docstring'''
__a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__a = {}
__a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(_snake_case , out_type=_snake_case )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int:
'''simple docstring'''
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
__a = self.sp_model.piece_to_id(_snake_case )
return sp_id + self.offset
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str:
'''simple docstring'''
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
__a = self.sp_model.IdToPiece(index - self.offset )
return token
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Any:
'''simple docstring'''
__a = []
__a = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_snake_case ) + token
__a = []
else:
current_sub_tokens.append(_snake_case )
out_string += self.sp_model.decode(_snake_case )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> Any:
'''simple docstring'''
return 1
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(_snake_case )
elif token_ids_a is None:
return self._special_token_mask(_snake_case ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__a = os.path.join(
_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(_snake_case , '''wb''' ) as fi:
__a = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (out_vocab_file,) | 6 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26 | 0 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
lowercase_ = 128022
lowercase_ = 128028
@require_sentencepiece
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = MaMaaaTokenizer
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Tuple )-> Dict:
'''simple docstring'''
super().setUp()
A__ = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>']
A__ = dict(zip(lowercase_,range(len(lowercase_ ) ) ) )
A__ = Path(self.tmpdirname )
save_json(lowercase_,save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowercase_,save_dir / VOCAB_FILES_NAMES['spm_file'] )
A__ = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Tuple,**lowercase_ : Any )-> Any:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained(self.tmpdirname,**lowercase_ )
def snake_case__ ( self : Dict,lowercase_ : List[Any] )-> List[str]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def snake_case__ ( self : Tuple )-> Optional[Any]:
'''simple docstring'''
A__ = '</s>'
A__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : Any )-> Optional[Any]:
'''simple docstring'''
A__ = self.get_tokenizer()
A__ = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0],'</s>' )
self.assertEqual(vocab_keys[1],'<unk>' )
self.assertEqual(vocab_keys[-1],'<s>' )
self.assertEqual(len(lowercase_ ),tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip('Skip this test while all models are still to be uploaded.' )
def snake_case__ ( self : str )-> str:
'''simple docstring'''
pass
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
A__ = self.get_tokenizer()
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2, 3, 4, 5, 6],)
A__ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
A__ = tokenizer.convert_tokens_to_string(lowercase_ )
self.assertEqual(lowercase_,'This is a test' )
@slow
def snake_case__ ( self : Dict )-> Union[str, Any]:
'''simple docstring'''
A__ = {'input_ids': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='facebook/m2m100_418M',revision='c168bae485c864188cf9aa0e4108b0b6934dc91e',)
@require_torch
@require_sentencepiece
@require_tokenizers
class A ( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = 'facebook/m2m100_418M'
lowerCamelCase = [
'In my opinion, there are two levels of response from the French government.',
'NSA Affair Emphasizes Complete Lack of Debate on Intelligence',
]
lowerCamelCase = [
'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.',
'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement',
]
# fmt: off
lowerCamelCase = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2]
@classmethod
def snake_case__ ( cls : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
A__ = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name,src_lang='en',tgt_lang='fr' )
A__ = 1
return cls
def snake_case__ ( self : Union[str, Any] )-> List[str]:
'''simple docstring'''
self.assertEqual(self.tokenizer.get_lang_id('ar' ),1_2_8_0_0_6 )
self.assertEqual(self.tokenizer.get_lang_id('en' ),1_2_8_0_2_2 )
self.assertEqual(self.tokenizer.get_lang_id('ro' ),1_2_8_0_7_6 )
self.assertEqual(self.tokenizer.get_lang_id('mr' ),1_2_8_0_6_3 )
def snake_case__ ( self : Any )-> Optional[int]:
'''simple docstring'''
A__ = self.tokenizer.get_vocab()
self.assertEqual(len(lowercase_ ),self.tokenizer.vocab_size )
self.assertEqual(vocab['<unk>'],3 )
self.assertIn(self.tokenizer.get_lang_token('en' ),lowercase_ )
def snake_case__ ( self : Union[str, Any] )-> int:
'''simple docstring'''
A__ = 'en'
A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens,lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
self.assertIn(lowercase_,self.tokenizer.all_special_ids )
# fmt: off
A__ = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2]
# fmt: on
A__ = self.tokenizer.decode(lowercase_,skip_special_tokens=lowercase_ )
A__ = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=lowercase_ )
self.assertEqual(lowercase_,lowercase_ )
self.assertNotIn(self.tokenizer.eos_token,lowercase_ )
def snake_case__ ( self : List[str] )-> int:
'''simple docstring'''
A__ = tempfile.mkdtemp()
A__ = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(lowercase_ )
A__ = MaMaaaTokenizer.from_pretrained(lowercase_ )
self.assertDictEqual(new_tok.lang_token_to_id,lowercase_ )
@require_torch
def snake_case__ ( self : List[Any] )-> List[Any]:
'''simple docstring'''
A__ = 'en'
A__ = 'fr'
A__ = self.tokenizer(self.src_text,text_target=self.tgt_text,padding=lowercase_,return_tensors='pt' )
A__ = shift_tokens_right(
batch['labels'],self.tokenizer.pad_token_id,self.tokenizer.eos_token_id )
for k in batch:
A__ = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] )-> Union[str, Any]:
'''simple docstring'''
A__ = 'mr'
self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('mr' )] )
self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] )
A__ = 'zh'
self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('zh' )] )
self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] )
@require_torch
def snake_case__ ( self : Optional[Any] )-> List[str]:
'''simple docstring'''
A__ = 'mr'
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('mr' )] )
self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
A__ = 'zh'
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id('zh' )] )
self.assertListEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def snake_case__ ( self : Union[str, Any] )-> Any:
'''simple docstring'''
A__ = self.tokenizer._build_translation_inputs('A test',return_tensors='pt',src_lang='en',tgt_lang='ar' )
self.assertEqual(
nested_simplify(lowercase_ ),{
# en_XX, A, test, EOS
'input_ids': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 1_2_8_0_0_6,
},)
| 7 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
while b:
_A , _A : List[str] = b, a % b
return a
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b )
def lowerCAmelCase_ ( ):
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' )
if __name__ == "__main__":
main()
| 26 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = "dandelin/vilt-b32-finetuned-vqa"
SCREAMING_SNAKE_CASE : str = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
SCREAMING_SNAKE_CASE : Any = "image_qa"
SCREAMING_SNAKE_CASE : str = AutoProcessor
SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForVisualQuestionAnswering
SCREAMING_SNAKE_CASE : Optional[int] = ["image", "text"]
SCREAMING_SNAKE_CASE : List[Any] = ["text"]
def __init__( self : Optional[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[Any]:
requires_backends(self , ['''vision'''] )
super().__init__(*_UpperCamelCase , **_UpperCamelCase )
def snake_case__( self : str , _UpperCamelCase : "Image" , _UpperCamelCase : str ) ->Union[str, Any]:
return self.pre_processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' )
def snake_case__( self : Optional[int] , _UpperCamelCase : Dict ) ->int:
with torch.no_grad():
return self.model(**_UpperCamelCase ).logits
def snake_case__( self : Optional[Any] , _UpperCamelCase : Tuple ) ->Tuple:
snake_case_ = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx] | 8 |
def lowerCAmelCase_ ( snake_case_ ):
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 0 |
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class _lowercase :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : float
SCREAMING_SNAKE_CASE__ : TreeNode | None = None
SCREAMING_SNAKE_CASE__ : TreeNode | None = None
def _UpperCamelCase ( lowercase__ ):
# Validation
def is_valid_tree(lowercase__ ) -> bool:
if node is None:
return True
if not isinstance(lowercase__ , lowercase__ ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(lowercase__ ):
raise ValueError(
'''Each node should be type of TreeNode and data should be float.''' )
def is_binary_search_tree_recursive_check(
lowercase__ , lowercase__ , lowercase__ ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , lowercase__ , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , lowercase__ )
)
return is_binary_search_tree_recursive_check(lowercase__ , -float('''inf''' ) , float('''inf''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : str = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : Optional[Any] = k.replace(""".attn""",""".self_attn""" )
_A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : str = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : str = sd.pop(snake_case_ )
_A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Optional[int] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : List[Any] = model["""model"""]
_A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : List[str] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Any = []
_A : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 | 0 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
__A = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
__A = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
__A = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
__A = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
__A = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
__A = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
__A = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
__A = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
__A = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
__A = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
__A = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __call__(self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Any , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
elif titles is None or texts is None:
lowerCamelCase__: Optional[int] =titles if texts is None else texts
return super().__call__(
UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[str] =titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [titles]
lowerCamelCase__: List[str] =texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [texts]
lowerCamelCase__: int =len(UpperCAmelCase_)
lowerCamelCase__: List[str] =questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [questions] * n_passages
if len(UpperCAmelCase_) != len(UpperCAmelCase_):
raise ValueError(
F"""There should be as many titles than texts but got {len(UpperCAmelCase_)} titles and {len(UpperCAmelCase_)} texts.""")
lowerCamelCase__: int =super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_)["input_ids"]
lowerCamelCase__: List[Any] =super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_)["input_ids"]
lowerCamelCase__: Any ={
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_)
]
}
if return_attention_mask is not False:
lowerCamelCase__: Any =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
lowerCamelCase__: Dict =attention_mask
return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : BatchEncoding , UpperCAmelCase_ : DPRReaderOutput , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
lowerCamelCase__: Any =reader_input["input_ids"]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =reader_output[:3]
lowerCamelCase__: Optional[int] =len(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =sorted(range(UpperCAmelCase_) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__)
lowerCamelCase__: List[DPRReaderOutput] =[]
for doc_id in sorted_docs:
lowerCamelCase__: Optional[Any] =list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
lowerCamelCase__: List[str] =sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase__: Optional[Any] =sequence_ids.index(self.pad_token_id)
else:
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase_) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
lowerCamelCase__: str =[]
for start_index, start_score in enumerate(UpperCAmelCase_):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x[1] , reverse=UpperCAmelCase_)
lowerCamelCase__: List[str] =[]
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""")
lowerCamelCase__: int =end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""")
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase_) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = READER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = READER_PRETRAINED_INIT_CONFIGURATION
lowercase_ = ["input_ids", "attention_mask"]
| 10 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int:
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
_A : Optional[int] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def a__ ( self ) -> Optional[Any]:
_A : Tuple = None
_A : int = None
_A : Tuple = None
_A : Union[str, Any] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
_A : int = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class lowercase :
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_A : Dict = dataset
_A : int = name
_A : Union[str, Any] = con
_A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_A : str = num_proc
_A : Optional[Any] = to_sql_kwargs
def a__ ( self ) -> int:
_A : Any = self.to_sql_kwargs.pop("""sql""" , _a )
_A : List[str] = self.to_sql_kwargs.pop("""con""" , _a )
_A : int = self.to_sql_kwargs.pop("""index""" , _a )
_A : List[str] = self._write(index=_a , **self.to_sql_kwargs )
return written
def a__ ( self , _a ) -> Optional[int]:
_A , _A , _A : List[str] = args
_A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
_A : str = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
_A : Tuple = batch.to_pandas()
_A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def a__ ( self , _a , **_a ) -> int:
_A : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_A , _A : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 26 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
lowerCAmelCase__ = random.Random()
def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]=1.0 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ):
if rng is None:
_A : Dict = global_rng
_A : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class lowerCAmelCase__ ( unittest.TestCase):
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=4_0_0 , __lowerCamelCase=2_0_0_0 , __lowerCamelCase=2_4 , __lowerCamelCase=2_4 , __lowerCamelCase=0.0 , __lowerCamelCase=1_6_0_0_0 , __lowerCamelCase=True , __lowerCamelCase=True , ) -> Tuple:
_A : Tuple = parent
_A : Any = batch_size
_A : List[Any] = min_seq_length
_A : List[Any] = max_seq_length
_A : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_A : Optional[Any] = feature_size
_A : List[Any] = num_mel_bins
_A : Optional[int] = padding_value
_A : List[Any] = sampling_rate
_A : List[Any] = return_attention_mask
_A : List[str] = do_normalize
def _lowerCamelCase ( self) -> List[Any]:
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _lowerCamelCase ( self , __lowerCamelCase=False , __lowerCamelCase=False) -> Union[str, Any]:
def _flatten(__lowerCamelCase):
return list(itertools.chain(*__lowerCamelCase))
if equal_length:
_A : List[Any] = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
_A : List[Any] = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff)
]
if numpify:
_A : str = [np.asarray(__lowerCamelCase) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowerCAmelCase__ ( a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SpeechaTextFeatureExtractor if is_speech_available() else None
def _lowerCamelCase ( self) -> Any:
_A : Dict = SpeechaTextFeatureExtractionTester(self)
def _lowerCamelCase ( self , __lowerCamelCase) -> Any:
self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0) - 1) < 1e-3))
def _lowerCamelCase ( self) -> Dict:
# Tests that all call wrap to encode_plus and batch_encode_plus
_A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
_A : List[str] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)]
_A : Any = [np.asarray(__lowerCamelCase) for speech_input in speech_inputs]
# Test feature size
_A : List[Any] = feature_extractor(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
# Test not batched input
_A : Optional[int] = feature_extractor(speech_inputs[0] , return_tensors="np").input_features
_A : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features
self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
# Test batched
_A : Optional[int] = feature_extractor(__lowerCamelCase , return_tensors="np").input_features
_A : Optional[int] = feature_extractor(__lowerCamelCase , return_tensors="np").input_features
for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase):
self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
# Test 2-D numpy arrays are batched.
_A : int = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)]
_A : Optional[Any] = np.asarray(__lowerCamelCase)
_A : Dict = feature_extractor(__lowerCamelCase , return_tensors="np").input_features
_A : Union[str, Any] = feature_extractor(__lowerCamelCase , return_tensors="np").input_features
for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase):
self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
def _lowerCamelCase ( self) -> Dict:
_A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_A : int = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)]
_A : int = ["longest", "max_length", "do_not_pad"]
_A : int = [None, 1_6, None]
for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase):
_A : Optional[Any] = feature_extractor(
__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_attention_mask=__lowerCamelCase)
_A : Union[str, Any] = inputs.input_features
_A : int = inputs.attention_mask
_A : List[str] = [np.sum(__lowerCamelCase) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def _lowerCamelCase ( self) -> Optional[int]:
_A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_A : int = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)]
_A : Any = ["longest", "max_length", "do_not_pad"]
_A : str = [None, 1_6, None]
for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase):
_A : Any = feature_extractor(
__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase)
_A : Dict = inputs.input_features
_A : str = inputs.attention_mask
_A : int = [np.sum(__lowerCamelCase) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]])
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]])
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6)
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]])
def _lowerCamelCase ( self) -> Dict:
_A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_A : Optional[int] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)]
_A : Tuple = feature_extractor(
__lowerCamelCase , padding="max_length" , max_length=4 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , )
_A : Tuple = inputs.input_features
_A : Optional[int] = inputs.attention_mask
_A : Optional[Any] = np.sum(attention_mask == 1 , axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1])
self._check_zero_mean_unit_variance(input_features[2])
def _lowerCamelCase ( self) -> Dict:
_A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_A : Union[str, Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)]
_A : Optional[int] = feature_extractor(
__lowerCamelCase , padding="longest" , max_length=4 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , )
_A : List[Any] = inputs.input_features
_A : int = inputs.attention_mask
_A : Tuple = np.sum(attention_mask == 1 , axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 2_4))
_A : List[str] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)]
_A : List[Any] = feature_extractor(
__lowerCamelCase , padding="longest" , max_length=1_6 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , )
_A : Optional[int] = inputs.input_features
_A : Tuple = inputs.attention_mask
_A : List[str] = np.sum(attention_mask == 1 , axis=1)
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
self._check_zero_mean_unit_variance(input_features[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 2_4))
def _lowerCamelCase ( self) -> str:
import torch
_A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_A : str = np.random.rand(1_0_0 , 3_2).astype(np.floataa)
_A : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
_A : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.floataa)
_A : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.floataa)
def _lowerCamelCase ( self , __lowerCamelCase) -> str:
from datasets import load_dataset
_A : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation")
# automatic decoding with librispeech
_A : Dict = ds.sort("id").select(range(__lowerCamelCase))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _lowerCamelCase ( self) -> Any:
# fmt: off
_A : Dict = np.array([
-1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1,
-1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8,
-1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5,
])
# fmt: on
_A : Union[str, Any] = self._load_datasamples(1)
_A : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_A : Tuple = feature_extractor(__lowerCamelCase , return_tensors="pt").input_features
self.assertEquals(input_features.shape , (1, 5_8_4, 2_4))
self.assertTrue(np.allclose(input_features[0, 0, :3_0] , __lowerCamelCase , atol=1e-4))
| 11 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class lowercase ( UpperCamelCase__ ):
_a = "fnet"
def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Any = vocab_size
_A : str = max_position_embeddings
_A : Optional[Any] = hidden_size
_A : List[str] = num_hidden_layers
_A : List[str] = intermediate_size
_A : List[Any] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : List[str] = initializer_range
_A : List[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : List[str] = use_tpu_fourier_optimizations
_A : str = tpu_short_seq_length
| 26 | 0 |
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class lowerCamelCase__( unittest.TestCase):
UpperCAmelCase__ : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
UpperCAmelCase__ : int = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] ):
__lowerCamelCase = AudioClassificationPipeline(model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ )
# test with a raw waveform
__lowerCamelCase = np.zeros((3_40_00,) )
__lowerCamelCase = np.zeros((1_40_00,) )
return audio_classifier, [audioa, audio]
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Any ):
__lowerCamelCase, __lowerCamelCase = examples
__lowerCamelCase = audio_classifier(UpperCamelCase_ )
# by default a model is initialized with num_labels=2
self.assertEqual(
UpperCamelCase_ , [
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
] , )
__lowerCamelCase = audio_classifier(UpperCamelCase_ , top_k=1 )
self.assertEqual(
UpperCamelCase_ , [
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
] , )
self.run_torchaudio(UpperCamelCase_ )
@require_torchaudio
def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] ):
import datasets
# test with a local file
__lowerCamelCase = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
__lowerCamelCase = dataset[0]["""audio"""]["""array"""]
__lowerCamelCase = audio_classifier(UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
{"""score""": ANY(UpperCamelCase_ ), """label""": ANY(UpperCamelCase_ )},
] , )
@require_torch
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = """anton-l/wav2vec2-random-tiny-classifier"""
__lowerCamelCase = pipeline("""audio-classification""" , model=UpperCamelCase_ )
__lowerCamelCase = np.ones((80_00,) )
__lowerCamelCase = audio_classifier(UpperCamelCase_ , top_k=4 )
__lowerCamelCase = [
{"""score""": 0.0842, """label""": """no"""},
{"""score""": 0.0838, """label""": """up"""},
{"""score""": 0.0837, """label""": """go"""},
{"""score""": 0.0834, """label""": """right"""},
]
__lowerCamelCase = [
{"""score""": 0.0845, """label""": """stop"""},
{"""score""": 0.0844, """label""": """on"""},
{"""score""": 0.0841, """label""": """right"""},
{"""score""": 0.0834, """label""": """left"""},
]
self.assertIn(nested_simplify(UpperCamelCase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
__lowerCamelCase = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate}
__lowerCamelCase = audio_classifier(UpperCamelCase_ , top_k=4 )
self.assertIn(nested_simplify(UpperCamelCase_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
@require_torch
@slow
def lowerCAmelCase__ ( self: List[Any] ):
import datasets
__lowerCamelCase = """superb/wav2vec2-base-superb-ks"""
__lowerCamelCase = pipeline("""audio-classification""" , model=UpperCamelCase_ )
__lowerCamelCase = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" )
__lowerCamelCase = np.array(dataset[3]["""speech"""] , dtype=np.floataa )
__lowerCamelCase = audio_classifier(UpperCamelCase_ , top_k=4 )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=3 ) , [
{"""score""": 0.981, """label""": """go"""},
{"""score""": 0.007, """label""": """up"""},
{"""score""": 0.006, """label""": """_unknown_"""},
{"""score""": 0.001, """label""": """down"""},
] , )
@require_tf
@unittest.skip("""Audio classification is not implemented for TF""" )
def lowerCAmelCase__ ( self: Union[str, Any] ):
pass
| 12 |
def lowerCAmelCase_ ( snake_case_ ):
if n_term == "":
return []
_A : list = []
for temp in range(int(snake_case_ ) ):
series.append(f'''1/{temp + 1}''' if series else """1""" )
return series
if __name__ == "__main__":
_snake_case = input("Enter the last number (nth term) of the Harmonic Series")
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
print(harmonic_series(nth_term))
| 26 | 0 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[str] = XCLIPTextConfig()
# derive patch size from model name
SCREAMING_SNAKE_CASE_: int = model_name.find("patch" )
SCREAMING_SNAKE_CASE_: List[str] = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] )
SCREAMING_SNAKE_CASE_: Union[str, Any] = XCLIPVisionConfig(patch_size=_UpperCAmelCase , num_frames=_UpperCAmelCase )
if "large" in model_name:
SCREAMING_SNAKE_CASE_: Union[str, Any] = 7_68
SCREAMING_SNAKE_CASE_: List[str] = 30_72
SCREAMING_SNAKE_CASE_: str = 12
SCREAMING_SNAKE_CASE_: int = 10_24
SCREAMING_SNAKE_CASE_: List[Any] = 40_96
SCREAMING_SNAKE_CASE_: str = 16
SCREAMING_SNAKE_CASE_: Dict = 24
SCREAMING_SNAKE_CASE_: Optional[Any] = 7_68
SCREAMING_SNAKE_CASE_: Any = 30_72
if model_name == "xclip-large-patch14-16-frames":
SCREAMING_SNAKE_CASE_: List[Any] = 3_36
SCREAMING_SNAKE_CASE_: Optional[int] = XCLIPConfig.from_text_vision_configs(_UpperCAmelCase , _UpperCAmelCase )
if "large" in model_name:
SCREAMING_SNAKE_CASE_: Optional[int] = 7_68
return config
def A_ ( _UpperCAmelCase ):
# text encoder
if name == "token_embedding.weight":
SCREAMING_SNAKE_CASE_: int = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" )
if name == "positional_embedding":
SCREAMING_SNAKE_CASE_: Any = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" )
if "ln_1" in name:
SCREAMING_SNAKE_CASE_: Union[str, Any] = name.replace("ln_1" , "layer_norm1" )
if "ln_2" in name:
SCREAMING_SNAKE_CASE_: List[str] = name.replace("ln_2" , "layer_norm2" )
if "c_fc" in name:
SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace("c_fc" , "fc1" )
if "c_proj" in name:
SCREAMING_SNAKE_CASE_: Dict = name.replace("c_proj" , "fc2" )
if name.startswith("transformer.resblocks" ):
SCREAMING_SNAKE_CASE_: Any = name.replace("transformer.resblocks" , "text_model.encoder.layers" )
if "attn.out_proj" in name and "message" not in name:
SCREAMING_SNAKE_CASE_: str = name.replace("attn.out_proj" , "self_attn.out_proj" )
if "ln_final" in name:
SCREAMING_SNAKE_CASE_: int = name.replace("ln_final" , "text_model.final_layer_norm" )
# visual encoder
if name == "visual.class_embedding":
SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" )
if name == "visual.positional_embedding":
SCREAMING_SNAKE_CASE_: int = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" )
if name.startswith("visual.transformer.resblocks" ):
SCREAMING_SNAKE_CASE_: str = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" )
if "visual.conv1" in name:
SCREAMING_SNAKE_CASE_: List[Any] = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" )
if "visual.ln_pre" in name:
SCREAMING_SNAKE_CASE_: Tuple = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" )
if "visual.ln_post" in name:
SCREAMING_SNAKE_CASE_: Any = name.replace("visual.ln_post" , "vision_model.post_layernorm" )
if "visual.proj" in name:
SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace("visual.proj" , "visual_projection.weight" )
if "text_projection" in name:
SCREAMING_SNAKE_CASE_: Dict = name.replace("text_projection" , "text_projection.weight" )
# things on top
if "prompts_visual_proj" in name:
SCREAMING_SNAKE_CASE_: List[Any] = name.replace("prompts_visual_proj" , "prompts_visual_projection" )
if "prompts_visual_ln" in name:
SCREAMING_SNAKE_CASE_: List[Any] = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" )
# mit
if name == "mit.positional_embedding":
SCREAMING_SNAKE_CASE_: str = name.replace("positional" , "position" )
if name.startswith("mit.resblocks" ):
SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("mit.resblocks" , "mit.encoder.layers" )
# prompts generator
if name.startswith("prompts_generator.norm" ):
SCREAMING_SNAKE_CASE_: Tuple = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" )
return name
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE_: Optional[Any] = orig_state_dict.pop(_UpperCAmelCase )
if "attn.in_proj" in key:
SCREAMING_SNAKE_CASE_: Optional[int] = key.split("." )
if key.startswith("visual" ):
SCREAMING_SNAKE_CASE_: Optional[int] = key_split[3]
SCREAMING_SNAKE_CASE_: Dict = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
SCREAMING_SNAKE_CASE_: Union[str, Any] = val[
:dim, :
]
SCREAMING_SNAKE_CASE_: Dict = val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE_: Any = val[
-dim:, :
]
else:
SCREAMING_SNAKE_CASE_: Dict = val[
:dim
]
SCREAMING_SNAKE_CASE_: Optional[Any] = val[
dim : dim * 2
]
SCREAMING_SNAKE_CASE_: List[Any] = val[
-dim:
]
else:
if "weight" in key:
SCREAMING_SNAKE_CASE_: List[str] = val[
:dim, :
]
SCREAMING_SNAKE_CASE_: str = val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE_: int = val[
-dim:, :
]
else:
SCREAMING_SNAKE_CASE_: Dict = val[:dim]
SCREAMING_SNAKE_CASE_: int = val[
dim : dim * 2
]
SCREAMING_SNAKE_CASE_: Union[str, Any] = val[-dim:]
elif key.startswith("mit" ):
SCREAMING_SNAKE_CASE_: List[Any] = key_split[2]
SCREAMING_SNAKE_CASE_: Tuple = config.vision_config.mit_hidden_size
if "weight" in key:
SCREAMING_SNAKE_CASE_: Tuple = val[:dim, :]
SCREAMING_SNAKE_CASE_: Dict = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE_: Optional[int] = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE_: List[Any] = val[:dim]
SCREAMING_SNAKE_CASE_: List[str] = val[dim : dim * 2]
SCREAMING_SNAKE_CASE_: str = val[-dim:]
else:
SCREAMING_SNAKE_CASE_: Any = key_split[2]
SCREAMING_SNAKE_CASE_: Optional[Any] = config.text_config.hidden_size
if "weight" in key:
SCREAMING_SNAKE_CASE_: List[str] = val[:dim, :]
SCREAMING_SNAKE_CASE_: List[Any] = val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE_: List[str] = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE_: Tuple = val[:dim]
SCREAMING_SNAKE_CASE_: List[str] = val[
dim : dim * 2
]
SCREAMING_SNAKE_CASE_: Optional[Any] = val[-dim:]
else:
SCREAMING_SNAKE_CASE_: Union[str, Any] = rename_key(_UpperCAmelCase )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
SCREAMING_SNAKE_CASE_: Dict = val.T
SCREAMING_SNAKE_CASE_: Any = val
return orig_state_dict
def A_ ( _UpperCAmelCase ):
if num_frames == 8:
SCREAMING_SNAKE_CASE_: Union[str, Any] = "eating_spaghetti_8_frames.npy"
elif num_frames == 16:
SCREAMING_SNAKE_CASE_: str = "eating_spaghetti.npy"
elif num_frames == 32:
SCREAMING_SNAKE_CASE_: Union[str, Any] = "eating_spaghetti_32_frames.npy"
SCREAMING_SNAKE_CASE_: List[Any] = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" , filename=_UpperCAmelCase , repo_type="dataset" , )
SCREAMING_SNAKE_CASE_: str = np.load(_UpperCAmelCase )
return list(_UpperCAmelCase )
def A_ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ):
SCREAMING_SNAKE_CASE_: Optional[Any] = {
# fully supervised kinetics-400 checkpoints
"xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth",
"xclip-base-patch32-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"
),
"xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth",
"xclip-base-patch16-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"
),
"xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb",
"xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f",
# fully supervised kinetics-600 checkpoints
"xclip-base-patch16-kinetics-600": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"
),
"xclip-base-patch16-kinetics-600-16-frames": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"
),
"xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be",
# few shot
"xclip-base-patch16-hmdb-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"
),
"xclip-base-patch16-hmdb-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"
),
"xclip-base-patch16-hmdb-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"
),
"xclip-base-patch16-hmdb-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"
),
"xclip-base-patch16-ucf-2-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"
),
"xclip-base-patch16-ucf-4-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"
),
"xclip-base-patch16-ucf-8-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"
),
"xclip-base-patch16-ucf-16-shot": (
"https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"
),
# zero shot
"xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth",
}
SCREAMING_SNAKE_CASE_: Tuple = model_to_url[model_name]
SCREAMING_SNAKE_CASE_: int = 8
if "16-frames" in model_name:
SCREAMING_SNAKE_CASE_: int = 16
elif "shot" in model_name:
SCREAMING_SNAKE_CASE_: int = 32
SCREAMING_SNAKE_CASE_: int = get_xclip_config(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Union[str, Any] = XCLIPModel(_UpperCAmelCase )
model.eval()
if "drive" in checkpoint_url:
SCREAMING_SNAKE_CASE_: List[str] = "pytorch_model.bin"
gdown.cached_download(_UpperCAmelCase , _UpperCAmelCase , quiet=_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Tuple = torch.load(_UpperCAmelCase , map_location="cpu" )["model"]
else:
SCREAMING_SNAKE_CASE_: str = torch.hub.load_state_dict_from_url(_UpperCAmelCase )["model"]
SCREAMING_SNAKE_CASE_: Union[str, Any] = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: List[Any] = XCLIPModel(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
SCREAMING_SNAKE_CASE_: Optional[int] = 3_36 if model_name == "xclip-large-patch14-16-frames" else 2_24
SCREAMING_SNAKE_CASE_: int = VideoMAEImageProcessor(size=_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" )
SCREAMING_SNAKE_CASE_: Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" )
SCREAMING_SNAKE_CASE_: Optional[Any] = XCLIPProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: int = prepare_video(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: List[Any] = processor(
text=["playing sports", "eating spaghetti", "go shopping"] , videos=_UpperCAmelCase , return_tensors="pt" , padding=_UpperCAmelCase )
print("Shape of pixel values:" , inputs.pixel_values.shape )
with torch.no_grad():
SCREAMING_SNAKE_CASE_: List[str] = model(**_UpperCAmelCase )
# Verify outputs
SCREAMING_SNAKE_CASE_: Any = outputs.logits_per_video
SCREAMING_SNAKE_CASE_: str = logits_per_video.softmax(dim=1 )
print("Probs:" , _UpperCAmelCase )
# kinetics-400
if model_name == "xclip-base-patch32":
SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
SCREAMING_SNAKE_CASE_: Any = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
SCREAMING_SNAKE_CASE_: int = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
SCREAMING_SNAKE_CASE_: Dict = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
SCREAMING_SNAKE_CASE_: int = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
SCREAMING_SNAKE_CASE_: int = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
SCREAMING_SNAKE_CASE_: int = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
SCREAMING_SNAKE_CASE_: int = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
SCREAMING_SNAKE_CASE_: List[str] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
SCREAMING_SNAKE_CASE_: List[str] = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
SCREAMING_SNAKE_CASE_: Tuple = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
SCREAMING_SNAKE_CASE_: int = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_UpperCAmelCase )
if push_to_hub:
print("Pushing model, processor and slow tokenizer files to the hub..." )
model.push_to_hub(_UpperCAmelCase , organization="nielsr" )
processor.push_to_hub(_UpperCAmelCase , organization="nielsr" )
slow_tokenizer.push_to_hub(_UpperCAmelCase , organization="nielsr" )
if __name__ == "__main__":
lowerCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCAmelCase : Dict = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 13 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
UpperCAmelCase__ = Features({'''text''': Value('''string''' )} )
UpperCAmelCase__ = Features({'''labels''': ClassLabel} )
UpperCAmelCase__ = "text"
UpperCAmelCase__ = "labels"
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase__):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""")
A__ = copy.deepcopy(self)
A__ = self.label_schema.copy()
A__ = features[self.label_column]
A__ = label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict[str, str]:
'''simple docstring'''
return {
self.text_column: "text",
self.label_column: "labels",
}
| 14 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 | 0 |
from __future__ import annotations
from collections.abc import Generator
def UpperCAmelCase ( ) -> Generator[int, None, None]:
"""simple docstring"""
__A = {}
__A = 2
while True:
__A = factor_map.pop(a_ , a_ )
if factor:
__A = factor + prime
while x in factor_map:
x += factor
__A = factor
else:
__A = prime
yield prime
prime += 1
def UpperCAmelCase ( a_ = 1E10 ) -> int:
"""simple docstring"""
__A = sieve()
__A = 1
while True:
__A = next(a_ )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(a_ )
n += 2
if __name__ == "__main__":
print(solution())
| 15 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.maximum(0,snake_case_ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 26 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'],
'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'],
'processing_wav2vec2': ['Wav2Vec2Processor'],
'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Wav2Vec2ForAudioFrameClassification',
'Wav2Vec2ForCTC',
'Wav2Vec2ForMaskedLM',
'Wav2Vec2ForPreTraining',
'Wav2Vec2ForSequenceClassification',
'Wav2Vec2ForXVector',
'Wav2Vec2Model',
'Wav2Vec2PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWav2Vec2ForCTC',
'TFWav2Vec2Model',
'TFWav2Vec2PreTrainedModel',
'TFWav2Vec2ForSequenceClassification',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'FlaxWav2Vec2ForCTC',
'FlaxWav2Vec2ForPreTraining',
'FlaxWav2Vec2Model',
'FlaxWav2Vec2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 16 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_snake_case = getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,):
_A : Dict = str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ )
_A : Tuple = Path(snake_case_ )
_A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(snake_case_ )
_A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
_A : Any = model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params
_A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_A : int = num_return_sequences
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_A : Optional[int] = tokenizer.model_max_length
if prefix is None:
_A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """"""
_A : Optional[int] = SeqaSeqDataset(
snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,)
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ )
_A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn )
_A : Optional[Any] = []
for batch in tqdm(snake_case_ ):
_A : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,)
_A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
_A : Dict = batch["""ids"""]
if num_return_sequences > 1:
_A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(snake_case_,snake_case_ )
return results, sampler.num_replicas
def lowerCAmelCase_ ( ):
_A : Tuple = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",)
parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" )
parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ )
parser.add_argument(
"""--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" )
parser.add_argument(
"""--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",)
parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument(
"""--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""",action="""store_true""" )
parser.add_argument("""--debug""",action="""store_true""" )
_A : Union[str, Any] = time.time()
_A , _A : List[str] = parser.parse_known_args()
_A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(f'''parsed the following generate kwargs: {generate_kwargs}''' )
_A : Dict = Path(args.save_dir + """_tmp""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
_A : int = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_A : Any = {}
if args.src_lang is not None:
_A : int = args.src_lang
if args.tgt_lang is not None:
_A : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
_A , _A : str = eval_data_dir(
args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,)
if args.local_rank <= 0:
_A : List[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
_A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout )
_A : Optional[int] = combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
_A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" )
print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(snake_case_,snake_case_ )
return
_A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(snake_case_ ) as f:
_A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
_A : Dict = """translation""" in args.task
_A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge
_A : Tuple = """bleu""" if calc_bleu else """rouge"""
_A : Dict = score_fn(snake_case_,snake_case_ )
_A : List[Any] = len(snake_case_ )
_A : Optional[int] = time.time() - start_time
_A : Dict = round(runtime / metrics["""n_obs"""],4 )
_A : Dict = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' )
save_json(snake_case_,snake_case_,indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) )
else:
shutil.rmtree(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for partial_result in partial_results:
records.extend(snake_case_ )
_A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] )
_A : List[str] = [x["""pred"""] for x in records]
return preds
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# WAIT FOR lots of .json files
_A : Optional[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_A : List[str] = None
while (time.time() - start_wait) < timeout:
_A : str = list(save_dir.glob("""rank_*.json""" ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_A : List[str] = lmap(snake_case_,snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 26 | 0 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_a = 16
_a = 32
def _A ( UpperCamelCase_ : Accelerator, UpperCamelCase_ : int = 16, UpperCamelCase_ : str = "bert-base-cased") -> List[str]:
'''simple docstring'''
__lowercase = AutoTokenizer.from_pretrained(UpperCamelCase_)
__lowercase = load_dataset("glue", "mrpc")
def tokenize_function(UpperCamelCase_ : Optional[Any]):
# max_length=None => use the model max length (it's actually the default)
__lowercase = tokenizer(examples["sentence1"], examples["sentence2"], truncation=UpperCamelCase_, max_length=UpperCamelCase_)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__lowercase = datasets.map(
UpperCamelCase_, batched=UpperCamelCase_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=UpperCamelCase_)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowercase = tokenized_datasets.rename_column("label", "labels")
def collate_fn(UpperCamelCase_ : Tuple):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(UpperCamelCase_, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(UpperCamelCase_, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
__lowercase = DataLoader(
tokenized_datasets["train"], shuffle=UpperCamelCase_, collate_fn=UpperCamelCase_, batch_size=UpperCamelCase_)
__lowercase = DataLoader(
tokenized_datasets["validation"], shuffle=UpperCamelCase_, collate_fn=UpperCamelCase_, batch_size=UpperCamelCase_)
return train_dataloader, eval_dataloader
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple) -> Tuple:
'''simple docstring'''
__lowercase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowercase = config["lr"]
__lowercase = int(config["num_epochs"])
__lowercase = int(config["seed"])
__lowercase = int(config["batch_size"])
__lowercase = args.model_name_or_path
set_seed(UpperCamelCase_)
__lowercase ,__lowercase = get_dataloaders(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowercase = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_, return_dict=UpperCamelCase_)
# Instantiate optimizer
__lowercase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__lowercase = optimizer_cls(params=model.parameters(), lr=UpperCamelCase_)
if accelerator.state.deepspeed_plugin is not None:
__lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
__lowercase = 1
__lowercase = (len(UpperCamelCase_) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__lowercase = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase_, num_warmup_steps=0, num_training_steps=UpperCamelCase_, )
else:
__lowercase = DummyScheduler(UpperCamelCase_, total_num_steps=UpperCamelCase_, warmup_num_steps=0)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = accelerator.prepare(
UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_)
# We need to keep track of how many total steps we have iterated over
__lowercase = 0
# We also need to keep track of the stating epoch so files are named properly
__lowercase = 0
# Now we train the model
__lowercase = evaluate.load("glue", "mrpc")
__lowercase = 0
__lowercase = {}
for epoch in range(UpperCamelCase_, UpperCamelCase_):
model.train()
for step, batch in enumerate(UpperCamelCase_):
__lowercase = model(**UpperCamelCase_)
__lowercase = outputs.loss
__lowercase = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase_)
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__lowercase = 0
for step, batch in enumerate(UpperCamelCase_):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
__lowercase = model(**UpperCamelCase_)
__lowercase = outputs.logits.argmax(dim=-1)
# It is slightly faster to call this once, than multiple times
__lowercase ,__lowercase = accelerator.gather(
(predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(UpperCamelCase_) - 1:
__lowercase = predictions[: len(eval_dataloader.dataset) - samples_seen]
__lowercase = references[: len(eval_dataloader.dataset) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=UpperCamelCase_, references=UpperCamelCase_, )
__lowercase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""", UpperCamelCase_)
__lowercase = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
__lowercase = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"""
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump(UpperCamelCase_, UpperCamelCase_)
def _A ( ) -> List[str]:
'''simple docstring'''
__lowercase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.")
parser.add_argument(
"--model_name_or_path", type=UpperCamelCase_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=UpperCamelCase_, )
parser.add_argument(
"--output_dir", type=UpperCamelCase_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", )
parser.add_argument(
"--performance_lower_bound", type=UpperCamelCase_, default=UpperCamelCase_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", )
parser.add_argument(
"--num_epochs", type=UpperCamelCase_, default=3, help="Number of train epochs.", )
__lowercase = parser.parse_args()
__lowercase = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(UpperCamelCase_, UpperCamelCase_)
if __name__ == "__main__":
main()
| 17 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Any:
_A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_A : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_A : List[str] = model(_a )["""last_hidden_state"""]
_A : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
_A : List[Any] = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 26 | 0 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class a__ ( A__ ):
def __init__( self : Tuple,_A : Optional[int],_A : Any=13,_A : List[str]=7,_A : int=True,_A : Dict=True,_A : Dict=False,_A : List[Any]=True,_A : Any=99,_A : Optional[int]=32,_A : Any=5,_A : List[Any]=4,_A : Dict=64,_A : Optional[Any]="gelu",_A : Tuple=0.1,_A : Any=0.1,_A : List[Any]=512,_A : Dict=16,_A : Optional[Any]=2,_A : Union[str, Any]=0.02,_A : List[str]=3,_A : Optional[Any]=4,_A : Union[str, Any]=None,_A : Tuple=2,_A : List[str]=2,_A : str=2,_A : Dict=2,_A : Optional[Any]=4,_A : Union[str, Any]=1,):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = parent
SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size
SCREAMING_SNAKE_CASE_ : Dict = seq_length
SCREAMING_SNAKE_CASE_ : Dict = is_training
SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask
SCREAMING_SNAKE_CASE_ : int = use_token_type_ids
SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels
SCREAMING_SNAKE_CASE_ : Tuple = vocab_size
SCREAMING_SNAKE_CASE_ : Any = hidden_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : List[str] = hidden_act
SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : str = max_position_embeddings
SCREAMING_SNAKE_CASE_ : str = type_vocab_size
SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size
SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : Tuple = num_labels
SCREAMING_SNAKE_CASE_ : List[Any] = num_choices
SCREAMING_SNAKE_CASE_ : Dict = scope
SCREAMING_SNAKE_CASE_ : int = q_groups
SCREAMING_SNAKE_CASE_ : Tuple = k_groups
SCREAMING_SNAKE_CASE_ : List[Any] = v_groups
SCREAMING_SNAKE_CASE_ : Tuple = post_attention_groups
SCREAMING_SNAKE_CASE_ : int = intermediate_groups
SCREAMING_SNAKE_CASE_ : List[Any] = output_groups
def __UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
SCREAMING_SNAKE_CASE_ : List[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : Any = None
SCREAMING_SNAKE_CASE_ : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size],self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size],self.num_choices )
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self : str ):
"""simple docstring"""
return SqueezeBertConfig(
embedding_size=self.hidden_size,vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,attention_probs_dropout_prob=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,q_groups=self.q_groups,k_groups=self.k_groups,v_groups=self.v_groups,post_attention_groups=self.post_attention_groups,intermediate_groups=self.intermediate_groups,output_groups=self.output_groups,)
def __UpperCamelCase ( self : Tuple,_A : Union[str, Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : Union[str, Any],_A : Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertModel(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE_ : Any = model(_A,_A )
SCREAMING_SNAKE_CASE_ : List[str] = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self : Dict,_A : Any,_A : Tuple,_A : str,_A : Any,_A : Union[str, Any],_A : Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = SqueezeBertForMaskedLM(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE_ : List[str] = model(_A,attention_mask=_A,labels=_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : Any,_A : Tuple,_A : int,_A : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE_ : Dict = model(
_A,attention_mask=_A,start_positions=_A,end_positions=_A )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : List[Any],_A : List[str],_A : Tuple,_A : List[Any],_A : List[str],_A : List[str],_A : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.num_labels
SCREAMING_SNAKE_CASE_ : List[str] = SqueezeBertForSequenceClassification(_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE_ : Dict = model(_A,attention_mask=_A,labels=_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : str,_A : Optional[int],_A : str,_A : List[Any],_A : List[str],_A : str,_A : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels
SCREAMING_SNAKE_CASE_ : Optional[int] = SqueezeBertForTokenClassification(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE_ : Optional[int] = model(_A,attention_mask=_A,labels=_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : List[Any],_A : Tuple,_A : str,_A : Optional[Any],_A : int,_A : str,_A : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices
SCREAMING_SNAKE_CASE_ : Union[str, Any] = SqueezeBertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE_ : Dict = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous()
SCREAMING_SNAKE_CASE_ : str = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous()
SCREAMING_SNAKE_CASE_ : Optional[int] = model(
_A,attention_mask=_A,labels=_A,)
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Dict = config_and_inputs
SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class a__ ( A__ , A__ , unittest.TestCase ):
A = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
A = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
A = False
A = True
A = False
def __UpperCamelCase ( self : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = SqueezeBertModelTester(self )
SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self,config_class=_A,dim=37 )
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*_A )
def __UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A )
def __UpperCamelCase ( self : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*_A )
def __UpperCamelCase ( self : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A )
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*_A )
def __UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A )
@slow
def __UpperCamelCase ( self : Any ):
"""simple docstring"""
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ : Tuple = SqueezeBertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_sentencepiece
@require_tokenizers
@require_torch
class a__ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" )
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] )
SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )[0]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 3) )
self.assertEqual(output.shape,_A )
SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(_A,_A,atol=1E-4 ) )
| 18 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
_snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
_snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n"
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]:
super().__init__()
self.register_modules(
prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str:
if latents is None:
_A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a )
else:
if latents.shape != shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
_A : Union[str, Any] = latents.to(_a )
_A : int = latents * scheduler.init_noise_sigma
return latents
def a__ ( self , _a=0 ) -> Optional[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
_A : str = torch.device(F'''cuda:{gpu_id}''' )
_A : Any = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_a , _a )
@property
def a__ ( self ) -> List[Any]:
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(_a , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def a__ ( self , _a , _a , _a , _a , ) -> Tuple:
if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ):
_A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 )
if not isinstance(_a , torch.Tensor ):
_A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
_A : int = image.to(dtype=self.image_encoder.dtype , device=_a )
_A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""]
_A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
_A : Dict = image_embeds.repeat_interleave(_a , dim=0 )
if do_classifier_free_guidance:
_A : str = torch.zeros_like(_a )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A : List[str] = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(_a )
def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]:
if isinstance(_a , PIL.Image.Image ):
_A : List[Any] = 1
elif isinstance(_a , torch.Tensor ):
_A : Any = image.shape[0]
elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
_A : Union[str, Any] = len(_a )
else:
raise ValueError(
F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' )
_A : Optional[int] = self._execution_device
_A : Tuple = batch_size * num_images_per_prompt
_A : List[Any] = guidance_scale > 1.0
_A : Optional[Any] = self._encode_image(_a , _a , _a , _a )
# prior
self.scheduler.set_timesteps(_a , device=_a )
_A : Optional[int] = self.scheduler.timesteps
_A : List[str] = self.prior.config.num_embeddings
_A : int = self.prior.config.embedding_dim
_A : Optional[Any] = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
_A : List[Any] = latents.reshape(latents.shape[0] , _a , _a )
for i, t in enumerate(self.progress_bar(_a ) ):
# expand the latents if we are doing classifier free guidance
_A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A : int = self.scheduler.scale_model_input(_a , _a )
_A : Tuple = self.prior(
_a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding
# remove the variance
_A , _A : Optional[Any] = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
_A , _A : Dict = noise_pred.chunk(2 )
_A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
_A : int = self.scheduler.step(
_a , timestep=_a , sample=_a , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=_a )
_A : List[str] = []
for i, latent in enumerate(_a ):
print()
_A : List[str] = self.renderer.decode(
latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(_a )
_A : List[Any] = torch.stack(_a )
if output_type not in ["np", "pil"]:
raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
_A : List[str] = images.cpu().numpy()
if output_type == "pil":
_A : List[Any] = [self.numpy_to_pil(_a ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=_a )
| 26 | 0 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
__A =logging.get_logger(__name__) # pylint: disable=invalid-name
class _SCREAMING_SNAKE_CASE ( snake_case_ ):
def __init__( self , lowercase , lowercase=768 ) -> Optional[int]:
super().__init__(lowercase )
lowerCamelCase_ = proj_size
lowerCamelCase_ = CLIPVisionModel(lowercase )
lowerCamelCase_ = PaintByExampleMapper(lowercase )
lowerCamelCase_ = nn.LayerNorm(config.hidden_size )
lowerCamelCase_ = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
lowerCamelCase_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=False ) -> List[Any]:
lowerCamelCase_ = self.model(pixel_values=lowercase )
lowerCamelCase_ = clip_output.pooler_output
lowerCamelCase_ = self.mapper(latent_states[:, None] )
lowerCamelCase_ = self.final_layer_norm(lowercase )
lowerCamelCase_ = self.proj_out(lowercase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self , lowercase ) -> Any:
super().__init__()
lowerCamelCase_ = (config.num_hidden_layers + 1) // 5
lowerCamelCase_ = config.hidden_size
lowerCamelCase_ = 1
lowerCamelCase_ = nn.ModuleList(
[
BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn="gelu" , attention_bias=lowercase )
for _ in range(lowercase )
] )
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tuple:
for block in self.blocks:
lowerCamelCase_ = block(lowercase )
return hidden_states
| 19 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
print("""Loading config file...""" )
def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ):
_A : Union[str, Any] = []
for k, v in d.items():
_A : Optional[int] = parent_key + sep + k if parent_key else k
if isinstance(snake_case_,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() )
else:
items.append((new_key, v) )
return dict(snake_case_ )
_A : List[Any] = argparse.Namespace()
with open(snake_case_,"""r""" ) as yaml_file:
try:
_A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader )
_A : Optional[int] = flatten_yaml_as_dict(snake_case_ )
for k, v in flat_cfg.items():
setattr(snake_case_,snake_case_,snake_case_ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) )
return config
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Optional[Any] = MobileViTVaConfig()
_A : Tuple = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
_A : Dict = 1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : int = 384
else:
_A : int = 256
_A : List[str] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
_A : Union[str, Any] = 21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
_A : str = 384
else:
_A : List[Any] = 256
_A : List[str] = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
_A : int = 151
_A : int = 512
_A : Optional[int] = """ade20k-id2label.json"""
_A : Any = True
elif task_name.startswith("""voc_""" ):
_A : List[Any] = 21
_A : Dict = 512
_A : Dict = """pascal-voc-id2label.json"""
_A : int = True
# orig_config
_A : Any = load_orig_config_file(snake_case_ )
assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model"
_A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 )
assert (
getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
_A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
_A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 )
if "_deeplabv3" in task_name:
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] )
_A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 )
_A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 )
# id2label
_A : List[Any] = """huggingface/label-files"""
_A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) )
_A : str = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : str = idalabel
_A : Dict = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = dct.pop(snake_case_ )
_A : Union[str, Any] = val
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
if base_model:
_A : Optional[int] = """"""
else:
_A : Dict = """mobilevitv2."""
_A : int = []
for k in state_dict.keys():
if k[:8] == "encoder.":
_A : Any = k[8:]
else:
_A : List[str] = k
if ".block." in k:
_A : Any = k_new.replace(""".block.""",""".""" )
if ".conv." in k:
_A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" )
if ".norm." in k:
_A : Any = k_new.replace(""".norm.""",""".normalization.""" )
if "conv_1." in k:
_A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
_A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" )
if ".red_1x1." in k:
_A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
_A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
_A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
_A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
_A : Optional[int] = [0, 1]
elif i == 4:
_A : Union[str, Any] = [0, 1, 2, 3]
elif i == 5:
_A : Optional[Any] = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
_A : Union[str, Any] = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
_A : List[str] = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
_A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" )
if "pre_norm_attn.1." in k:
_A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" )
if "pre_norm_ffn.0." in k:
_A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" )
if "pre_norm_ffn.1." in k:
_A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
_A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" )
if "classifier.1." in k:
_A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" )
if "seg_head." in k:
_A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" )
if ".aspp_layer." in k:
_A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" )
if ".aspp_pool." in k:
_A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" )
rename_keys.append((k, k_new) )
return rename_keys
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(snake_case_ )
for k in keys_to_ignore:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( ):
_A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
_A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ )
# load original state_dict
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
_A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval()
_A : str = False
else:
_A : int = MobileViTVaForImageClassification(snake_case_ ).eval()
_A : List[Any] = False
# remove and rename some keys of load the original model
_A : List[Any] = checkpoint
remove_unused_keys(snake_case_ )
_A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_,snake_case_,snake_case_ )
# load modified state_dict
model.load_state_dict(snake_case_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 )
_A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Optional[Any] = model(**snake_case_ )
# verify classification model
if task_name.startswith("""imagenet""" ):
_A : List[Any] = outputs.logits
_A : Optional[int] = logits.argmax(-1 ).item()
print("""Predicted class:""",model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
_A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] )
assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
_snake_case = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 26 | 0 |
def _snake_case( SCREAMING_SNAKE_CASE__ = 1_000_000 ) -> int:
lowercase : Optional[Any] = 1
lowercase : List[Any] = 1
lowercase : Any = {1: 1}
for inputa in range(2 , SCREAMING_SNAKE_CASE__ ):
lowercase : Any = 0
lowercase : int = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
lowercase : Optional[Any] = (3 * number) + 1
counter += 1
if inputa not in counters:
lowercase : Union[str, Any] = counter
if counter > pre_counter:
lowercase : List[Any] = inputa
lowercase : str = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 20 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class lowercase ( UpperCamelCase__ ):
_a = (DPMSolverSDEScheduler,)
_a = 1_0
def a__ ( self , **_a ) -> Optional[Any]:
_A : str = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**_a )
return config
def a__ ( self ) -> Tuple:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_a )
def a__ ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def a__ ( self ) -> Any:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_a )
def a__ ( self ) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def a__ ( self ) -> Optional[int]:
_A : Any = self.scheduler_classes[0]
_A : List[str] = self.get_scheduler_config()
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Dict = self.dummy_model()
_A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Dict = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : str = model(_a , _a )
_A : List[Any] = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Dict = torch.sum(torch.abs(_a ) )
_A : Dict = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.scheduler_classes[0]
_A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" )
_A : Optional[Any] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
_A : Tuple = self.dummy_model()
_A : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_A : Tuple = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
_A : int = scheduler.scale_model_input(_a , _a )
_A : Tuple = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Optional[int] = output.prev_sample
_A : Optional[Any] = torch.sum(torch.abs(_a ) )
_A : List[Any] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = self.scheduler_classes[0]
_A : List[Any] = self.get_scheduler_config()
_A : List[str] = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Union[str, Any] = self.dummy_model()
_A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A : int = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : Dict = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : str = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = self.scheduler_classes[0]
_A : Optional[Any] = self.get_scheduler_config()
_A : int = scheduler_class(**_a , use_karras_sigmas=_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
_A : Optional[Any] = self.dummy_model()
_A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma
_A : str = sample.to(_a )
for t in scheduler.timesteps:
_A : Optional[int] = scheduler.scale_model_input(_a , _a )
_A : List[Any] = model(_a , _a )
_A : Dict = scheduler.step(_a , _a , _a )
_A : List[str] = output.prev_sample
_A : str = torch.sum(torch.abs(_a ) )
_A : List[str] = torch.mean(torch.abs(_a ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
| 26 | 0 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCamelCase_( lowerCamelCase_ ) -> Any:
warnings.warn(
'The preprocess method is deprecated and will be removed in a future version. Please'
' use VaeImageProcessor.preprocess instead' , lowerCamelCase_ , )
if isinstance(lowerCamelCase_ , torch.Tensor ):
return image
elif isinstance(lowerCamelCase_ , PIL.Image.Image ):
_lowercase : int = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowercase , _lowercase : Dict = image[0].size
_lowercase , _lowercase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
_lowercase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_lowercase : Optional[Any] = np.concatenate(lowerCamelCase_ , axis=0 )
_lowercase : Optional[int] = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0
_lowercase : List[Any] = image.transpose(0 , 3 , 1 , 2 )
_lowercase : str = 2.0 * image - 1.0
_lowercase : Dict = torch.from_numpy(lowerCamelCase_ )
elif isinstance(image[0] , torch.Tensor ):
_lowercase : List[Any] = torch.cat(lowerCamelCase_ , dim=0 )
return image
def UpperCamelCase_( lowerCamelCase_ ) -> str:
if isinstance(lowerCamelCase_ , torch.Tensor ):
return mask
elif isinstance(lowerCamelCase_ , PIL.Image.Image ):
_lowercase : Dict = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
_lowercase , _lowercase : Dict = mask[0].size
_lowercase , _lowercase : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
_lowercase : List[str] = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask]
_lowercase : Any = np.concatenate(lowerCamelCase_ , axis=0 )
_lowercase : Any = mask.astype(np.floataa ) / 2_55.0
_lowercase : List[str] = 0
_lowercase : Dict = 1
_lowercase : int = torch.from_numpy(lowerCamelCase_ )
elif isinstance(mask[0] , torch.Tensor ):
_lowercase : Tuple = torch.cat(lowerCamelCase_ , dim=0 )
return mask
class _lowerCamelCase( _a ):
lowercase_ : UNetaDModel
lowercase_ : RePaintScheduler
def __init__( self, lowerCamelCase, lowerCamelCase) -> List[str]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase)
@torch.no_grad()
def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 2_50, lowerCamelCase = 0.0, lowerCamelCase = 10, lowerCamelCase = 10, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
_lowercase : Tuple = image
_lowercase : List[str] = _preprocess_image(lowerCamelCase)
_lowercase : List[Any] = original_image.to(device=self.device, dtype=self.unet.dtype)
_lowercase : int = _preprocess_mask(lowerCamelCase)
_lowercase : Dict = mask_image.to(device=self.device, dtype=self.unet.dtype)
_lowercase : Optional[int] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''')
_lowercase : int = original_image.shape
_lowercase : Dict = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(lowerCamelCase, lowerCamelCase, lowerCamelCase, self.device)
_lowercase : Optional[Any] = eta
_lowercase : Dict = self.scheduler.timesteps[0] + 1
_lowercase : Optional[Any] = generator[0] if isinstance(lowerCamelCase, lowerCamelCase) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
if t < t_last:
# predict the noise residual
_lowercase : int = self.unet(lowerCamelCase, lowerCamelCase).sample
# compute previous image: x_t -> x_t-1
_lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
_lowercase : int = self.scheduler.undo_step(lowerCamelCase, lowerCamelCase, lowerCamelCase)
_lowercase : List[Any] = t
_lowercase : Dict = (image / 2 + 0.5).clamp(0, 1)
_lowercase : Optional[Any] = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
_lowercase : Tuple = self.numpy_to_pil(lowerCamelCase)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCamelCase)
| 21 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = 1
@register_to_config
def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]:
_A : Dict = None
_A : List[Any] = None
_A : Dict = None
def a__ ( self , _a , _a = None ) -> Union[str, Any]:
_A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a )
def a__ ( self , _a , _a , _a , _a=None ) -> Dict:
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_A : Any = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_A : List[str] = std.flatten()
while len(std.shape ) < len(score.shape ):
_A : List[Any] = std.unsqueeze(-1 )
_A : int = -score / std
# compute
_A : Tuple = -1.0 / len(self.timesteps )
_A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_A : List[str] = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_A : Union[str, Any] = beta_t.unsqueeze(-1 )
_A : Tuple = -0.5 * beta_t * x
_A : Tuple = torch.sqrt(_a )
_A : Dict = drift - diffusion**2 * score
_A : Dict = x + drift * dt
# add noise
_A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype )
_A : str = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self ) -> Optional[Any]:
return self.config.num_train_timesteps
| 26 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE :Any = {
'''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig''']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE :Union[str, Any] = ['''RemBertTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE :List[str] = ['''RemBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE :int = [
'''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RemBertForCausalLM''',
'''RemBertForMaskedLM''',
'''RemBertForMultipleChoice''',
'''RemBertForQuestionAnswering''',
'''RemBertForSequenceClassification''',
'''RemBertForTokenClassification''',
'''RemBertLayer''',
'''RemBertModel''',
'''RemBertPreTrainedModel''',
'''load_tf_weights_in_rembert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE :Optional[Any] = [
'''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRemBertForCausalLM''',
'''TFRemBertForMaskedLM''',
'''TFRemBertForMultipleChoice''',
'''TFRemBertForQuestionAnswering''',
'''TFRemBertForSequenceClassification''',
'''TFRemBertForTokenClassification''',
'''TFRemBertLayer''',
'''TFRemBertModel''',
'''TFRemBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 22 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
_snake_case = None
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
_snake_case = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
_snake_case = "▁"
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "token_type_ids"]
_a = FNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
_A : int = (
AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a )
if isinstance(_a , _a )
else mask_token
)
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , )
_A : Optional[int] = do_lower_case
_A : List[Any] = remove_space
_A : str = keep_accents
_A : int = vocab_file
_A : int = False if not self.vocab_file else True
def a__ ( self , _a , _a = None ) -> List[int]:
_A : str = [self.sep_token_id]
_A : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Any = [self.sep_token_id]
_A : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 26 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
UpperCamelCase__: Optional[Any] = {
"config": [
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
"OnnxConfig",
"OnnxConfigWithPast",
"OnnxSeq2SeqConfigWithPast",
"PatchingSpec",
],
"convert": ["export", "validate_model_outputs"],
"features": ["FeaturesManager"],
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
UpperCamelCase__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 |
from math import asin, atan, cos, radians, sin, sqrt, tan
_snake_case = 6_3_7_8_1_3_7.0
_snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5
_snake_case = 6378137
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Any = (AXIS_A - AXIS_B) / AXIS_A
_A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) )
_A : Optional[Any] = radians(snake_case_ )
_A : str = radians(snake_case_ )
# Equation
_A : Dict = sin((phi_a - phi_a) / 2 )
_A : List[str] = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
_A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 0 |
import math
def lowerCamelCase__ ( snake_case_ : int ) -> int:
if not isinstance(snake_case_ , snake_case_ ):
__snake_case = f"""Input value of [number={number}] must be an integer"""
raise TypeError(snake_case_ )
if number < 1:
__snake_case = f"""Input value of [number={number}] must be > 0"""
raise ValueError(snake_case_ )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__snake_case = int(math.log(number // 3 , 2 ) ) + 2
__snake_case = [3, 5]
__snake_case = 2
__snake_case = 3
for block in range(1 , snake_case_ ):
for _ in range(snake_case_ ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
snake_case_ = 0
try:
snake_case_ = proth(number)
except ValueError:
print(F'ValueError: there is no {number}th Proth number')
continue
print(F'The {number}th Proth number: {value}')
| 24 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> Optional[int]:
super().__init__(_a )
_A : Union[str, Any] = RobertaEmbeddings(_a )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,)
class lowercase ( UpperCamelCase__ ):
_a = RobertaConfig
_a = "roberta"
def __init__( self , _a ) -> str:
super().__init__(_a )
_A : Any = config.num_labels
_A : Dict = config.num_hidden_layers
_A : List[str] = DeeRobertaModel(_a )
_A : int = nn.Dropout(config.hidden_dropout_prob )
_A : int = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_a )
def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any:
_A : Optional[int] = self.num_layers
try:
_A : List[str] = self.roberta(
_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , )
_A : List[str] = outputs[1]
_A : List[str] = self.dropout(_a )
_A : Optional[Any] = self.classifier(_a )
_A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_A : List[Any] = e.message
_A : Optional[int] = e.exit_layer
_A : Optional[int] = outputs[0]
if not self.training:
_A : int = entropy(_a )
_A : int = []
_A : int = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_A : Union[str, Any] = MSELoss()
_A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_A : Optional[Any] = []
for highway_exit in outputs[-1]:
_A : Tuple = highway_exit[0]
if not self.training:
highway_logits_all.append(_a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_A : List[str] = MSELoss()
_A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_A : List[Any] = CrossEntropyLoss()
_A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_a )
if train_highway:
_A : Dict = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_A : int = (loss,) + outputs
if not self.training:
_A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_A : Union[str, Any] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 26 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = IFPipeline
__UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
__UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
return self._get_dummy_components()
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> List[Any]:
"""simple docstring"""
if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ):
SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __magic_name__ (self ) -> List[str]:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __magic_name__ (self ) -> List[Any]:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
self._test_save_load_local()
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __magic_name__ (self ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __magic_name__ (self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
SCREAMING_SNAKE_CASE__ : List[str] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components )
SCREAMING_SNAKE_CASE__ : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
SCREAMING_SNAKE_CASE__ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components )
SCREAMING_SNAKE_CASE__ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Dict = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : int = output.images[0]
assert image.shape == (64, 64, 3)
SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# pipeline 2
_start_torch_memory_measurement()
SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : List[str] = output.images[0]
assert image.shape == (2_56, 2_56, 3)
SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
SCREAMING_SNAKE_CASE__ : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str:
"""simple docstring"""
_start_torch_memory_measurement()
SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : Dict = output.images[0]
assert image.shape == (64, 64, 3)
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
SCREAMING_SNAKE_CASE__ : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# pipeline 2
_start_torch_memory_measurement()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0]
assert image.shape == (2_56, 2_56, 3)
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
SCREAMING_SNAKE_CASE__ : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]:
"""simple docstring"""
_start_torch_memory_measurement()
SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[str] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0]
assert image.shape == (64, 64, 3)
SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# pipeline 2
_start_torch_memory_measurement()
SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : Dict = output.images[0]
assert image.shape == (2_56, 2_56, 3)
SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
SCREAMING_SNAKE_CASE__ : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase_ ( ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 25 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__ ):
_a = "xmod"
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Tuple = vocab_size
_A : Union[str, Any] = hidden_size
_A : Dict = num_hidden_layers
_A : Dict = num_attention_heads
_A : List[Any] = hidden_act
_A : Optional[Any] = intermediate_size
_A : Any = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Dict = max_position_embeddings
_A : Any = type_vocab_size
_A : List[Any] = initializer_range
_A : int = layer_norm_eps
_A : int = position_embedding_type
_A : Any = use_cache
_A : int = classifier_dropout
_A : int = pre_norm
_A : Optional[Any] = adapter_reduction_factor
_A : List[Any] = adapter_layer_norm
_A : Optional[int] = adapter_reuse_layer_norm
_A : Any = ln_before_adapter
_A : Union[str, Any] = list(_a )
_A : List[Any] = default_language
class lowercase ( UpperCamelCase__ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_A : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 26 | 0 |
'''simple docstring'''
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ):
__a : Dict = fname.split(os.path.sep )[-1]
return re.search(r'^(.*)_\d+\.jpg$' , _SCREAMING_SNAKE_CASE ).groups()[0]
class __UpperCamelCase ( lowerCAmelCase_ ):
def __init__( self , __a , __a=None , __a=None ):
'''simple docstring'''
__a : Any = file_names
__a : List[str] = image_transform
__a : List[str] = label_to_id
def __len__( self ):
'''simple docstring'''
return len(self.file_names )
def __getitem__( self , __a ):
'''simple docstring'''
__a : Dict = self.file_names[idx]
__a : Tuple = PIL.Image.open(__a )
__a : int = raw_image.convert('RGB' )
if self.image_transform is not None:
__a : List[Any] = self.image_transform(__a )
__a : List[str] = extract_label(__a )
if self.label_to_id is not None:
__a : List[Any] = self.label_to_id[label]
return {"image": image, "label": label}
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ):
# Initialize accelerator
if args.with_tracking:
__a : Optional[int] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir )
else:
__a : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a : Optional[int] = config['lr']
__a : Optional[Any] = int(config['num_epochs'] )
__a : Tuple = int(config['seed'] )
__a : List[str] = int(config['batch_size'] )
__a : Union[str, Any] = config['image_size']
if not isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
__a : Optional[int] = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , 'isdigit' ):
if args.checkpointing_steps == "epoch":
__a : Optional[int] = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
__a : Dict = int(args.checkpointing_steps )
else:
raise ValueError(
F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" )
else:
__a : Optional[Any] = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
__a : List[str] = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split('.' )[0]
accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Grab all the image filenames
__a : Optional[int] = [os.path.join(args.data_dir , _SCREAMING_SNAKE_CASE ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )]
# Build the label correspondences
__a : List[str] = [extract_label(_SCREAMING_SNAKE_CASE ) for fname in file_names]
__a : Tuple = list(set(_SCREAMING_SNAKE_CASE ) )
id_to_label.sort()
__a : Optional[Any] = {lbl: i for i, lbl in enumerate(_SCREAMING_SNAKE_CASE )}
# Set the seed before splitting the data.
np.random.seed(_SCREAMING_SNAKE_CASE )
torch.manual_seed(_SCREAMING_SNAKE_CASE )
torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE )
# Split our filenames between train and validation
__a : int = np.random.permutation(len(_SCREAMING_SNAKE_CASE ) )
__a : str = int(0.8 * len(_SCREAMING_SNAKE_CASE ) )
__a : List[Any] = random_perm[:cut]
__a : int = random_perm[cut:]
# For training we use a simple RandomResizedCrop
__a : str = Compose([RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.5, 1.0) ), ToTensor()] )
__a : Dict = PetsDataset(
[file_names[i] for i in train_split] , image_transform=_SCREAMING_SNAKE_CASE , label_to_id=_SCREAMING_SNAKE_CASE )
# For evaluation, we use a deterministic Resize
__a : Optional[int] = Compose([Resize(_SCREAMING_SNAKE_CASE ), ToTensor()] )
__a : Tuple = PetsDataset([file_names[i] for i in eval_split] , image_transform=_SCREAMING_SNAKE_CASE , label_to_id=_SCREAMING_SNAKE_CASE )
# Instantiate dataloaders.
__a : Dict = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 )
__a : Optional[Any] = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a : List[Any] = create_model('resnet50d' , pretrained=_SCREAMING_SNAKE_CASE , num_classes=len(_SCREAMING_SNAKE_CASE ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__a : Optional[int] = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
__a : str = False
for param in model.get_classifier().parameters():
__a : List[Any] = True
# We normalize the batches of images to be a bit faster.
__a : List[Any] = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device )
__a : Dict = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
__a : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
__a : Union[str, Any] = OneCycleLR(optimizer=_SCREAMING_SNAKE_CASE , max_lr=_SCREAMING_SNAKE_CASE , epochs=_SCREAMING_SNAKE_CASE , steps_per_epoch=len(_SCREAMING_SNAKE_CASE ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a , __a , __a , __a , __a : List[str] = accelerator.prepare(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# We need to keep track of how many total steps we have iterated over
__a : List[Any] = 0
# We also need to keep track of the starting epoch so files are named properly
__a : Tuple = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" )
accelerator.load_state(args.resume_from_checkpoint )
__a : List[Any] = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
__a : Any = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
__a : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
__a : Optional[int] = os.path.splitext(_SCREAMING_SNAKE_CASE )[0]
if "epoch" in training_difference:
__a : Optional[int] = int(training_difference.replace('epoch_' , '' ) ) + 1
__a : str = None
else:
__a : str = int(training_difference.replace('step_' , '' ) )
__a : Union[str, Any] = resume_step // len(_SCREAMING_SNAKE_CASE )
resume_step -= starting_epoch * len(_SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
model.train()
if args.with_tracking:
__a : Dict = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
__a : int = accelerator.skip_first_batches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
__a : Any = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
__a : int = {k: v.to(accelerator.device ) for k, v in batch.items()}
__a : Tuple = (batch['image'] - mean) / std
__a : List[str] = model(_SCREAMING_SNAKE_CASE )
__a : List[Any] = torch.nn.functional.cross_entropy(_SCREAMING_SNAKE_CASE , batch['label'] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(_SCREAMING_SNAKE_CASE )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__a : Optional[int] = F"""step_{overall_step}"""
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
__a : List[Any] = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
accelerator.save_state(_SCREAMING_SNAKE_CASE )
model.eval()
__a : str = 0
__a : List[Any] = 0
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
__a : Dict = {k: v.to(accelerator.device ) for k, v in batch.items()}
__a : Tuple = (batch['image'] - mean) / std
with torch.no_grad():
__a : List[Any] = model(_SCREAMING_SNAKE_CASE )
__a : str = outputs.argmax(dim=-1 )
__a , __a : Dict = accelerator.gather_for_metrics((predictions, batch['label']) )
__a : Optional[int] = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
__a : int = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" )
if args.with_tracking:
accelerator.log(
{
'accuracy': 100 * eval_metric,
'train_loss': total_loss.item() / len(_SCREAMING_SNAKE_CASE ),
'epoch': epoch,
} , step=_SCREAMING_SNAKE_CASE , )
if checkpointing_steps == "epoch":
__a : str = F"""epoch_{epoch}"""
if args.output_dir is not None:
__a : Tuple = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE )
accelerator.save_state(_SCREAMING_SNAKE_CASE )
if args.with_tracking:
accelerator.end_training()
def lowerCamelCase ():
__a : Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument('--data_dir' , required=_SCREAMING_SNAKE_CASE , help='The data folder on disk.' )
parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' )
parser.add_argument(
'--mixed_precision' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
parser.add_argument(
'--checkpointing_steps' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , )
parser.add_argument(
'--output_dir' , type=_SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--resume_from_checkpoint' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='If the training should continue from a checkpoint folder.' , )
parser.add_argument(
'--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , )
parser.add_argument(
'--project_dir' , type=_SCREAMING_SNAKE_CASE , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , )
__a : Tuple = parser.parse_args()
__a : int = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224}
training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 27 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
if n == 0:
return 0
_A : Tuple = float("""-inf""" )
for i in range(1,n + 1 ):
_A : str = max(
snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) )
return max_revue
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
_A : Dict = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_A : List[str] = float("""-inf""" )
for i in range(1,n + 1 ):
_A : Optional[Any] = max(
snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),)
_A : Tuple = max_revenue
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_enforce_args(snake_case_,snake_case_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_A : Any = 0
for i in range(1,n + 1 ):
_A : Optional[Any] = max_rev[i]
for j in range(1,i + 1 ):
_A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] )
_A : int = max_revenue_i
return max_rev[n]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if n < 0:
_A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(snake_case_ )
if n > len(snake_case_ ):
_A : Any = (
"""Each integral piece of rod must have a corresponding price. """
f'''Got n = {n} but length of prices = {len(snake_case_ )}'''
)
raise ValueError(snake_case_ )
def lowerCAmelCase_ ( ):
_A : Tuple = [6, 10, 12, 15, 20, 23]
_A : List[Any] = len(snake_case_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_A : Any = 36
_A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ )
_A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ )
_A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 26 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
_lowerCamelCase : int = False
@skip_mps
class SCREAMING_SNAKE_CASE ( _a , _a , _a , unittest.TestCase ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = StableDiffusionAttendAndExcitePipeline
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} )
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def A ( cls : Union[str, Any] ):
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(UpperCamelCase__ )
@classmethod
def A ( cls : Union[str, Any] ):
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(UpperCamelCase__ )
def A ( self : Optional[int] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , )
UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , )
torch.manual_seed(0 )
UpperCamelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , )
UpperCamelCase = CLIPTextModel(UpperCamelCase__ )
UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def A ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=0 ):
"""simple docstring"""
if str(UpperCamelCase__ ).startswith('mps' ):
UpperCamelCase = torch.manual_seed(UpperCamelCase__ )
else:
UpperCamelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ )
UpperCamelCase = UpperCamelCase = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def A ( self : int ):
"""simple docstring"""
UpperCamelCase = 'cpu'
UpperCamelCase = self.get_dummy_components()
UpperCamelCase = self.pipeline_class(**UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCamelCase = self.get_dummy_inputs(UpperCamelCase__ )
UpperCamelCase = pipe(**UpperCamelCase__ ).images
UpperCamelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 6_4, 6_4, 3) )
UpperCamelCase = np.array(
[0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] )
UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase__ , 1E-3 )
def A ( self : Any ):
"""simple docstring"""
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def A ( self : int ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def A ( self : Union[str, Any] ):
"""simple docstring"""
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 )
def A ( self : Tuple ):
"""simple docstring"""
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def A ( self : Optional[int] ):
"""simple docstring"""
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def A ( self : List[Any] ):
"""simple docstring"""
super().test_save_load_local(expected_max_difference=5E-4 )
def A ( self : Optional[Any] ):
"""simple docstring"""
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ):
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(UpperCamelCase__ )
@classmethod
def A ( cls : Any ):
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(UpperCamelCase__ )
def A ( self : int ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : Tuple ):
"""simple docstring"""
UpperCamelCase = torch.manual_seed(5_1 )
UpperCamelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa )
pipe.to('cuda' )
UpperCamelCase = 'a painting of an elephant with glasses'
UpperCamelCase = [5, 7]
UpperCamelCase = pipe(
prompt=UpperCamelCase__ , token_indices=UpperCamelCase__ , guidance_scale=7.5 , generator=UpperCamelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0]
UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 28 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( snake_case_ = "AAPL" ):
_A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
_A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" )
_A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""",class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 26 | 0 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class lowerCamelCase (_snake_case ):
'''simple docstring'''
def __UpperCAmelCase ( self , _UpperCamelCase ) -> float:
return 0.0
def lowercase__ ( __snake_case : np.ndarray , __snake_case : int ):
'''simple docstring'''
UpperCAmelCase_ : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
UpperCAmelCase_ : Dict = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def lowercase__ ( __snake_case : FilterType , __snake_case : int ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = 512
UpperCAmelCase_ : str = [1] + [0] * (size - 1)
UpperCAmelCase_ : Optional[Any] = [filter_type.process(__snake_case ) for item in inputs]
UpperCAmelCase_ : Dict = [0] * (samplerate - size) # zero-padding
outputs += filler
UpperCAmelCase_ : Optional[int] = np.abs(np.fft.fft(__snake_case ) )
UpperCAmelCase_ : List[str] = 20 * np.logaa(__snake_case )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('Frequency (Hz)' )
plt.xscale('log' )
# Display within reasonable bounds
UpperCAmelCase_ : Union[str, Any] = get_bounds(__snake_case , __snake_case )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel('Gain (dB)' )
plt.plot(__snake_case )
plt.show()
def lowercase__ ( __snake_case : FilterType , __snake_case : int ):
'''simple docstring'''
UpperCAmelCase_ : int = 512
UpperCAmelCase_ : Tuple = [1] + [0] * (size - 1)
UpperCAmelCase_ : Tuple = [filter_type.process(__snake_case ) for item in inputs]
UpperCAmelCase_ : List[str] = [0] * (samplerate - size) # zero-padding
outputs += filler
UpperCAmelCase_ : Dict = np.angle(np.fft.fft(__snake_case ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('Frequency (Hz)' )
plt.xscale('log' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('Phase shift (Radians)' )
plt.plot(np.unwrap(__snake_case , -2 * pi ) )
plt.show()
| 29 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26 | 0 |
import argparse
import os
import re
__a = 'src/transformers/models/auto'
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__a = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict')
# re pattern that matches identifiers in mappings
__a = re.compile(r'\s*\(\s*"(\S[^"]+)"')
def a ( snake_case__: str , snake_case__: bool = False ):
'''simple docstring'''
with open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f:
lowercase_ = f.read()
lowercase_ = content.split('''\n''' )
lowercase_ = []
lowercase_ = 0
while line_idx < len(snake_case__ ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
lowercase_ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(''' ''' * indent + '''(''' ):
new_lines.append(lines[line_idx] )
line_idx += 1
lowercase_ = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
lowercase_ = line_idx
while not lines[line_idx].startswith(''' ''' * indent + ''')''' ):
line_idx += 1
blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
lowercase_ = sorted(snake_case__ , key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(snake_case__ ) )
elif "\n".join(snake_case__ ) != content:
return True
def a ( snake_case__: bool = False ):
'''simple docstring'''
lowercase_ = [os.path.join(snake_case__ , snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith('''.py''' )]
lowercase_ = [sort_auto_mapping(snake_case__ , overwrite=snake_case__ ) for fname in fnames]
if not overwrite and any(snake_case__ ):
lowercase_ = [f for f, d in zip(snake_case__ , snake_case__ ) if d]
raise ValueError(
F'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix'''
''' this.''' )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
__a = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 30 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
while b:
_A , _A : List[str] = b, a % b
return a
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b )
def lowerCAmelCase_ ( ):
print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' )
print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' )
print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' )
print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' )
print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' )
print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' )
print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' )
print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' )
print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' )
if __name__ == "__main__":
main()
| 26 | 0 |
'''simple docstring'''
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class lowerCamelCase_ (snake_case__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase: List[str] = FlaxAutoencoderKL
@property
def _A ( self : Union[str, Any] ):
_UpperCAmelCase : Optional[int] = 4
_UpperCAmelCase : str = 3
_UpperCAmelCase : int = (32, 32)
_UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
_UpperCAmelCase : Optional[Any] = jax.random.uniform(A , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def _A ( self : Tuple ):
_UpperCAmelCase : Tuple = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_UpperCAmelCase : Union[str, Any] = self.dummy_input
return init_dict, inputs_dict
| 31 |
def lowerCAmelCase_ ( snake_case_ ):
if number < 0:
raise ValueError("""number must not be negative""" )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
if is_vision_available():
import PIL
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
snake_case__ : Union[str, Any] = ['''pixel_values''']
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> None:
super().__init__(**SCREAMING_SNAKE_CASE__ )
a_ : int = size if size is not None else {'shortest_edge': 2_2_4}
a_ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ )
a_ : Optional[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4}
a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ , param_name='crop_size' )
a_ : Optional[int] = do_resize
a_ : Dict = size
a_ : Union[str, Any] = resample
a_ : Optional[int] = do_center_crop
a_ : Optional[int] = crop_size
a_ : Optional[int] = do_rescale
a_ : List[str] = rescale_factor
a_ : Optional[Any] = do_normalize
a_ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
a_ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD
a_ : Tuple = do_convert_rgb
def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> np.ndarray:
a_ : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
a_ : Dict = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ )
return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> np.ndarray:
a_ : Any = get_size_dict(SCREAMING_SNAKE_CASE__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[int, float] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[int]:
return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> np.ndarray:
return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : int , ) -> PIL.Image.Image:
a_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
a_ : Optional[int] = size if size is not None else self.size
a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='size' , default_to_square=SCREAMING_SNAKE_CASE__ )
a_ : int = resample if resample is not None else self.resample
a_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
a_ : Tuple = crop_size if crop_size is not None else self.crop_size
a_ : str = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' , default_to_square=SCREAMING_SNAKE_CASE__ )
a_ : Any = do_rescale if do_rescale is not None else self.do_rescale
a_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
a_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
a_ : List[Any] = image_mean if image_mean is not None else self.image_mean
a_ : int = image_std if image_std is not None else self.image_std
a_ : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
a_ : List[str] = make_list_of_images(SCREAMING_SNAKE_CASE__ )
if not valid_images(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
a_ : Any = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images]
# All transformations expect numpy arrays.
a_ : Optional[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images]
if do_resize:
a_ : Dict = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_center_crop:
a_ : str = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_rescale:
a_ : int = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_normalize:
a_ : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images]
a_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images]
a_ : List[Any] = {'pixel_values': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
| 32 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : str = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : Optional[Any] = k.replace(""".attn""",""".self_attn""" )
_A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : str = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : str = sd.pop(snake_case_ )
_A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Optional[int] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : List[Any] = model["""model"""]
_A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : List[str] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Any = []
_A : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : Dict = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 26 | 0 |
"""simple docstring"""
from __future__ import annotations
import requests
__A : Optional[Any] = set(
'''approved_at_utc approved_by author_flair_background_color
author_flair_css_class author_flair_richtext author_flair_template_id author_fullname
author_premium can_mod_post category clicked content_categories created_utc downs
edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta
is_original_content is_reddit_media_domain is_video link_flair_css_class
link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title
name permalink pwls quarantine saved score secure_media secure_media_embed selftext
subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type
total_awards_received ups upvote_ratio url user_reports'''.split()
)
def lowercase ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ):
lowercase_ : Tuple = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
lowercase_ : Union[str, Any] = F'''Invalid search term: {invalid_search_terms}'''
raise ValueError(__snake_case )
lowercase_ : Optional[Any] = requests.get(
F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , )
if response.status_code == 4_2_9:
raise requests.HTTPError
lowercase_ : Optional[int] = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
lowercase_ : str = {}
for id_ in range(__snake_case ):
lowercase_ : Dict = {
item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
| 33 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int:
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
_A : Optional[int] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def a__ ( self ) -> Optional[Any]:
_A : Tuple = None
_A : int = None
_A : Tuple = None
_A : Union[str, Any] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
_A : int = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class lowercase :
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]:
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
_A : Dict = dataset
_A : int = name
_A : Union[str, Any] = con
_A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_A : str = num_proc
_A : Optional[Any] = to_sql_kwargs
def a__ ( self ) -> int:
_A : Any = self.to_sql_kwargs.pop("""sql""" , _a )
_A : List[str] = self.to_sql_kwargs.pop("""con""" , _a )
_A : int = self.to_sql_kwargs.pop("""index""" , _a )
_A : List[str] = self._write(index=_a , **self.to_sql_kwargs )
return written
def a__ ( self , _a ) -> Optional[int]:
_A , _A , _A : List[str] = args
_A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
_A : str = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
_A : Tuple = batch.to_pandas()
_A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def a__ ( self , _a , **_a ) -> int:
_A : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
_A , _A : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 26 | 0 |
'''simple docstring'''
def snake_case_ (_a : int , _a : int ):
while b:
UpperCAmelCase , UpperCAmelCase = b, a % b
return a
def snake_case_ (_a : int , _a : int ):
return a if b == 0 else euclidean_gcd_recursive(_a , a % b )
def snake_case_ ():
print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" )
print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" )
print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" )
print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" )
print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" )
print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" )
print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" )
print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" )
print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" )
print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" )
if __name__ == "__main__":
main()
| 34 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class lowercase ( UpperCamelCase__ ):
_a = "fnet"
def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : Any = vocab_size
_A : str = max_position_embeddings
_A : Optional[Any] = hidden_size
_A : List[str] = num_hidden_layers
_A : List[str] = intermediate_size
_A : List[Any] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : List[str] = initializer_range
_A : List[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : List[str] = use_tpu_fourier_optimizations
_A : str = tpu_short_seq_length
| 26 | 0 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __snake_case( _lowerCAmelCase ) -> Optional[int]:
snake_case__ : Tuple = OrderedDict()
for key, value in state_dict.items():
if key.startswith("""module.encoder""" ):
snake_case__ : str = key.replace("""module.encoder""" , """glpn.encoder""" )
if key.startswith("""module.decoder""" ):
snake_case__ : Optional[int] = key.replace("""module.decoder""" , """decoder.stages""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case__ : int = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
snake_case__ : Any = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(_lowerCAmelCase )-1}" )
if "norm" in key:
snake_case__ : Union[str, Any] = key.replace("""norm""" , """layer_norm""" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case__ : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )]
snake_case__ : str = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(_lowerCAmelCase )-1}" )
if "layer_norm1" in key:
snake_case__ : str = key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
snake_case__ : Optional[int] = key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
snake_case__ : Dict = key[key.find("""block""" ) + len("""block""" )]
snake_case__ : Any = key.replace(f"block{idx}" , f"block.{int(_lowerCAmelCase )-1}" )
if "attn.q" in key:
snake_case__ : str = key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
snake_case__ : Optional[Any] = key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
snake_case__ : Tuple = key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
snake_case__ : List[Any] = key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
snake_case__ : List[str] = key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
snake_case__ : Dict = key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
snake_case__ : Union[str, Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" )
snake_case__ : Tuple = key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case__ : Optional[int] = key[key.find("""linear_c""" ) + len("""linear_c""" )]
snake_case__ : str = key.replace(f"linear_c{idx}" , f"linear_c.{int(_lowerCAmelCase )-1}" )
if "bot_conv" in key:
snake_case__ : Dict = key.replace("""bot_conv""" , """0.convolution""" )
if "skip_conv1" in key:
snake_case__ : Union[str, Any] = key.replace("""skip_conv1""" , """1.convolution""" )
if "skip_conv2" in key:
snake_case__ : Tuple = key.replace("""skip_conv2""" , """2.convolution""" )
if "fusion1" in key:
snake_case__ : Any = key.replace("""fusion1""" , """1.fusion""" )
if "fusion2" in key:
snake_case__ : List[str] = key.replace("""fusion2""" , """2.fusion""" )
if "fusion3" in key:
snake_case__ : Optional[int] = key.replace("""fusion3""" , """3.fusion""" )
if "fusion" in key and "conv" in key:
snake_case__ : Tuple = key.replace("""conv""" , """convolutional_layer""" )
if key.startswith("""module.last_layer_depth""" ):
snake_case__ : Dict = key.replace("""module.last_layer_depth""" , """head.head""" )
snake_case__ : List[str] = value
return new_state_dict
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case__ : Tuple = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" )
snake_case__ : List[Any] = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" )
# next, add keys and values (in that order) to the state dict
snake_case__ : str = kv_weight[
: config.hidden_sizes[i], :
]
snake_case__ : List[str] = kv_bias[: config.hidden_sizes[i]]
snake_case__ : Union[str, Any] = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case__ : List[str] = kv_bias[config.hidden_sizes[i] :]
def __snake_case( ) -> Optional[Any]:
snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return image
@torch.no_grad()
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=None ) -> Optional[int]:
snake_case__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
snake_case__ : Optional[Any] = GLPNImageProcessor()
# prepare image
snake_case__ : Optional[int] = prepare_img()
snake_case__ : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
logger.info("""Converting model...""" )
# load original state dict
snake_case__ : List[Any] = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) )
# rename keys
snake_case__ : str = rename_keys(_lowerCAmelCase )
# key and value matrices need special treatment
read_in_k_v(_lowerCAmelCase , _lowerCAmelCase )
# create HuggingFace model and load state dict
snake_case__ : int = GLPNForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# forward pass
snake_case__ : int = model(_lowerCAmelCase )
snake_case__ : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
snake_case__ : Dict = torch.tensor(
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] )
elif "kitti" in model_name:
snake_case__ : Optional[int] = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] )
else:
raise ValueError(f"Unknown model name: {model_name}" )
snake_case__ : List[str] = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , _lowerCAmelCase , atol=1e-4 )
print("""Looks ok!""" )
# finally, push to hub if required
if push_to_hub:
logger.info("""Pushing model and image processor to the hub...""" )
model.push_to_hub(
repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
default=None,
type=str,
help="Path to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
parser.add_argument(
"--model_name",
default="glpn-kitti",
type=str,
help="Name of the model in case you're pushing to the hub.",
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 35 |
def lowerCAmelCase_ ( snake_case_ ):
if n_term == "":
return []
_A : list = []
for temp in range(int(snake_case_ ) ):
series.append(f'''1/{temp + 1}''' if series else """1""" )
return series
if __name__ == "__main__":
_snake_case = input("Enter the last number (nth term) of the Harmonic Series")
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
print(harmonic_series(nth_term))
| 26 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_snake_case = logging.get_logger(__name__)
class UpperCAmelCase_ ( a):
lowerCamelCase__ = ['pixel_values']
def __init__( self, __a = True, __a = None, __a = PILImageResampling.BICUBIC, __a = True, __a = True, __a = 1 / 255, __a = None, __a = True, __a = None, __a = None, **__a, ):
'''simple docstring'''
super().__init__(**__a)
_lowerCAmelCase : Optional[int] = size if size is not None else {"height": 224, "width": 224}
_lowerCAmelCase : Optional[Any] = get_size_dict(__a)
_lowerCAmelCase : str = crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowerCAmelCase : Tuple = get_size_dict(__a, default_to_square=__a, param_name="crop_size")
_lowerCAmelCase : Optional[int] = do_resize
_lowerCAmelCase : Optional[int] = do_rescale
_lowerCAmelCase : List[str] = do_normalize
_lowerCAmelCase : int = do_center_crop
_lowerCAmelCase : int = crop_size
_lowerCAmelCase : List[Any] = size
_lowerCAmelCase : Union[str, Any] = resample
_lowerCAmelCase : Union[str, Any] = rescale_factor
_lowerCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def snake_case__ ( self, __a, __a, __a = PILImageResampling.BILINEAR, __a = None, **__a, ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = get_size_dict(__a)
if "shortest_edge" in size:
_lowerCAmelCase : Dict = get_resize_output_image_size(__a, size=size["shortest_edge"], default_to_square=__a)
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_lowerCAmelCase : int = (size["height"], size["width"])
else:
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}")
return resize(__a, size=__a, resample=__a, data_format=__a, **__a)
def snake_case__ ( self, __a, __a, __a = None, **__a, ):
'''simple docstring'''
_lowerCAmelCase : Tuple = get_size_dict(__a)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
return center_crop(__a, size=(size["height"], size["width"]), data_format=__a, **__a)
def snake_case__ ( self, __a, __a, __a = None, **__a):
'''simple docstring'''
return rescale(__a, scale=__a, data_format=__a, **__a)
def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ):
'''simple docstring'''
return normalize(__a, mean=__a, std=__a, data_format=__a, **__a)
def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ):
'''simple docstring'''
_lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase : Union[str, Any] = get_size_dict(__a, param_name="crop_size", default_to_square=__a)
_lowerCAmelCase : int = resample if resample is not None else self.resample
_lowerCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase : str = image_std if image_std is not None else self.image_std
_lowerCAmelCase : str = size if size is not None else self.size
_lowerCAmelCase : Union[str, Any] = get_size_dict(__a)
if not is_batched(__a):
_lowerCAmelCase : int = [images]
if not valid_images(__a):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray.")
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
_lowerCAmelCase : str = [to_numpy_array(__a) for image in images]
if do_resize:
_lowerCAmelCase : Union[str, Any] = [self.resize(image=__a, size=__a, resample=__a) for image in images]
if do_center_crop:
_lowerCAmelCase : Optional[int] = [self.center_crop(image=__a, size=__a) for image in images]
if do_rescale:
_lowerCAmelCase : Dict = [self.rescale(image=__a, scale=__a) for image in images]
if do_normalize:
_lowerCAmelCase : Optional[int] = [self.normalize(image=__a, mean=__a, std=__a) for image in images]
_lowerCAmelCase : str = [to_channel_dimension_format(__a, __a) for image in images]
_lowerCAmelCase : str = {"pixel_values": images}
return BatchFeature(data=__a, tensor_type=__a)
| 36 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26 | 0 |
'''simple docstring'''
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , ):
"""simple docstring"""
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError("""You cannot supply more or less than 2 values""" )
elif electron_conc < 0:
raise ValueError("""Electron concentration cannot be negative in a semiconductor""" )
elif hole_conc < 0:
raise ValueError("""Hole concentration cannot be negative in a semiconductor""" )
elif intrinsic_conc < 0:
raise ValueError(
"""Intrinsic concentration cannot be negative in a semiconductor""" )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict:
_A : str = parent
_A : int = batch_size
_A : Optional[int] = num_channels
_A : List[Any] = image_size
_A : int = min_resolution
_A : Optional[int] = max_resolution
_A : Any = do_resize
_A : List[str] = size if size is not None else {"""height""": 18, """width""": 20}
_A : Optional[int] = do_thumbnail
_A : str = do_align_axis
_A : List[Any] = do_pad
_A : Optional[Any] = do_normalize
_A : Tuple = image_mean
_A : List[str] = image_std
def a__ ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DonutImageProcessor if is_vision_available() else None
def a__ ( self ) -> Optional[int]:
_A : List[str] = DonutImageProcessingTester(self )
@property
def a__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """do_thumbnail""" ) )
self.assertTrue(hasattr(_a , """do_align_long_axis""" ) )
self.assertTrue(hasattr(_a , """do_pad""" ) )
self.assertTrue(hasattr(_a , """do_normalize""" ) )
self.assertTrue(hasattr(_a , """image_mean""" ) )
self.assertTrue(hasattr(_a , """image_std""" ) )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
_A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
_A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def a__ ( self ) -> Union[str, Any]:
pass
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Dict:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def a__ ( self ) -> Optional[int]:
# Initialize image_processing
_A : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 26 | 0 |
from sklearn.metrics import recall_score
import datasets
UpperCAmelCase_ : Dict = '''
Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:
Recall = TP / (TP + FN)
Where TP is the true positives and FN is the false negatives.
'''
UpperCAmelCase_ : List[Any] = '''
Args:
- **predictions** (`list` of `int`): The predicted labels.
- **references** (`list` of `int`): The ground truth labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.
- `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.
- `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.
- `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.
- `0`: If there is a zero division, the return value is `0`.
- `1`: If there is a zero division, the return value is `1`.
Returns:
- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.
Examples:
Example 1-A simple example with some errors
>>> recall_metric = datasets.load_metric(\'recall\')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])
>>> print(results)
{\'recall\': 0.6666666666666666}
Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.
>>> recall_metric = datasets.load_metric(\'recall\')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)
>>> print(results)
{\'recall\': 0.5}
Example 3-The same example as Example 1, but with `sample_weight` included.
>>> recall_metric = datasets.load_metric(\'recall\')
>>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)
>>> print(results)
{\'recall\': 0.55}
Example 4-A multiclass example, using different averages.
>>> recall_metric = datasets.load_metric(\'recall\')
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')
>>> print(results)
{\'recall\': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')
>>> print(results)
{\'recall\': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')
>>> print(results)
{\'recall\': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'recall\': array([1., 0., 0.])}
'''
UpperCAmelCase_ : Union[str, Any] = '''
@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _A ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , )
def _A ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=1 , __lowerCamelCase : Union[str, Any]="binary" , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple="warn" , ):
UpperCamelCase :Tuple = recall_score(
__lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , )
return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
| 38 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.maximum(0,snake_case_ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 26 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_a = logging.get_logger(__name__)
_a = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCamelCase ( snake_case__ , snake_case__):
"""simple docstring"""
UpperCamelCase__ = "nat"
UpperCamelCase__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=64 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 16] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ):
"""simple docstring"""
super().__init__(**UpperCAmelCase )
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = depths
_UpperCAmelCase = len(UpperCAmelCase )
_UpperCAmelCase = num_heads
_UpperCAmelCase = kernel_size
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = qkv_bias
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = hidden_act
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_UpperCAmelCase = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) )
_UpperCAmelCase = layer_scale_init_value
_UpperCAmelCase = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase ) + 1 )]
_UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
| 39 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_snake_case = getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,):
_A : Dict = str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ )
_A : Tuple = Path(snake_case_ )
_A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(snake_case_ )
_A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
_A : Any = model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params
_A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_A : int = num_return_sequences
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_A : Optional[int] = tokenizer.model_max_length
if prefix is None:
_A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """"""
_A : Optional[int] = SeqaSeqDataset(
snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,)
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ )
_A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn )
_A : Optional[Any] = []
for batch in tqdm(snake_case_ ):
_A : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,)
_A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
_A : Dict = batch["""ids"""]
if num_return_sequences > 1:
_A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(snake_case_,snake_case_ )
return results, sampler.num_replicas
def lowerCAmelCase_ ( ):
_A : Tuple = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",)
parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" )
parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ )
parser.add_argument(
"""--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" )
parser.add_argument(
"""--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",)
parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ )
parser.add_argument(
"""--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""",action="""store_true""" )
parser.add_argument("""--debug""",action="""store_true""" )
_A : Union[str, Any] = time.time()
_A , _A : List[str] = parser.parse_known_args()
_A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(f'''parsed the following generate kwargs: {generate_kwargs}''' )
_A : Dict = Path(args.save_dir + """_tmp""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
_A : int = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_A : Any = {}
if args.src_lang is not None:
_A : int = args.src_lang
if args.tgt_lang is not None:
_A : Dict = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
_A , _A : str = eval_data_dir(
args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,)
if args.local_rank <= 0:
_A : List[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
_A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout )
_A : Optional[int] = combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
_A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" )
print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(snake_case_,snake_case_ )
return
_A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(snake_case_ ) as f:
_A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
_A : Dict = """translation""" in args.task
_A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge
_A : Tuple = """bleu""" if calc_bleu else """rouge"""
_A : Dict = score_fn(snake_case_,snake_case_ )
_A : List[Any] = len(snake_case_ )
_A : Optional[int] = time.time() - start_time
_A : Dict = round(runtime / metrics["""n_obs"""],4 )
_A : Dict = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' )
save_json(snake_case_,snake_case_,indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) )
else:
shutil.rmtree(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for partial_result in partial_results:
records.extend(snake_case_ )
_A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] )
_A : List[str] = [x["""pred"""] for x in records]
return preds
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# WAIT FOR lots of .json files
_A : Optional[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_A : List[str] = None
while (time.time() - start_wait) < timeout:
_A : str = list(save_dir.glob("""rank_*.json""" ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_A : List[str] = lmap(snake_case_,snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 26 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__lowercase = logging.get_logger(__name__)
class _A ( _a ,_a ):
"""simple docstring"""
UpperCAmelCase : Optional[Any] = """maskformer-swin"""
UpperCAmelCase : Optional[int] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Any , __UpperCAmelCase : List[Any]=224 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : int=3 , __UpperCAmelCase : int=96 , __UpperCAmelCase : Any=[2, 2, 6, 2] , __UpperCAmelCase : Tuple=[3, 6, 12, 24] , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : Dict=4.0 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Any=False , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=None , **__UpperCAmelCase : List[str] , ):
super().__init__(**__UpperCAmelCase)
a : int = image_size
a : str = patch_size
a : Optional[int] = num_channels
a : str = embed_dim
a : int = depths
a : Dict = len(__UpperCAmelCase)
a : Dict = num_heads
a : Union[str, Any] = window_size
a : Optional[Any] = mlp_ratio
a : Any = qkv_bias
a : str = hidden_dropout_prob
a : List[str] = attention_probs_dropout_prob
a : Optional[int] = drop_path_rate
a : List[str] = hidden_act
a : int = use_absolute_embeddings
a : int = layer_norm_eps
a : List[str] = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a : Dict = int(embed_dim * 2 ** (len(__UpperCAmelCase) - 1))
a : List[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__UpperCAmelCase) + 1)]
a , a : int = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names)
| 40 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Any:
_A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
_A : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_A : List[str] = model(_a )["""last_hidden_state"""]
_A : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
_A : List[Any] = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 26 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.