code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A_ ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowerCAmelCase (self :Any , _UpperCamelCase :Optional[int] , _UpperCamelCase :int , _UpperCamelCase :str )-> int: __A = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def _lowerCAmelCase (self :int , _UpperCamelCase :Any , _UpperCamelCase :Optional[Any] )-> Dict: __A = generator('''Something there''' ) self.assertEqual(_a , [{'''generated_text''': ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __A = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{'''generated_text''': ANY(_a )}, {'''generated_text''': ANY(_a )}], [{'''generated_text''': ANY(_a )}, {'''generated_text''': ANY(_a )}], ] , ) __A = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{'''generated_text''': ANY(_a )}, {'''generated_text''': ANY(_a )}], [{'''generated_text''': ANY(_a )}, {'''generated_text''': ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def _lowerCAmelCase (self :Optional[int] )-> List[str]: __A = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility __A = generator('''Something there''' , do_sample=_a ) self.assertEqual(_a , [{'''generated_text''': ''''''}] ) __A = 3 __A = generator( '''Something there''' , num_return_sequences=_a , num_beams=_a , ) __A = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) __A = generator('''This is a test''' , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) __A = generator.model.config.eos_token_id __A = """<pad>""" __A = generator( ['''This is a test''', '''This is a second test'''] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowerCAmelCase (self :int )-> int: __A = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility __A = generator('''Something there''' , do_sample=_a ) self.assertEqual(_a , [{'''generated_text''': ''''''}] )
117
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
0
"""simple docstring""" import enum import shutil import sys _A , _A = shutil.get_terminal_size() _A = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _lowerCamelCase ( enum.Enum ): _lowerCamelCase :Tuple = 0 _lowerCamelCase :Any = 1 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="" ) -> int: sys.stdout.write(str(snake_case_ ) + end ) sys.stdout.flush() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" ) -> Optional[Any]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , snake_case_ ) def lowercase_ ( ) -> str: forceWrite("""\r""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def lowercase_ ( ) -> str: forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def lowercase_ ( ) -> int: reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class A_ ( UpperCamelCase__ ): '''simple docstring''' a__ = "fnet" def __init__(self , lowercase__=32_000 , lowercase__=768 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=512 , lowercase__=4 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=False , lowercase__=512 , lowercase__=3 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = type_vocab_size __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = use_tpu_fourier_optimizations __UpperCAmelCase = tpu_short_seq_length
333
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _A : Optional[int] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def a__ ( self ) -> Optional[Any]: _A : Tuple = None _A : int = None _A : Tuple = None _A : Union[str, Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _A : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A : Dict = dataset _A : int = name _A : Union[str, Any] = con _A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : str = num_proc _A : Optional[Any] = to_sql_kwargs def a__ ( self ) -> int: _A : Any = self.to_sql_kwargs.pop("""sql""" , _a ) _A : List[str] = self.to_sql_kwargs.pop("""con""" , _a ) _A : int = self.to_sql_kwargs.pop("""index""" , _a ) _A : List[str] = self._write(index=_a , **self.to_sql_kwargs ) return written def a__ ( self , _a ) -> Optional[int]: _A , _A , _A : List[str] = args _A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs _A : str = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _A : Tuple = batch.to_pandas() _A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def a__ ( self , _a , **_a ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _A , _A : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
26
0
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = len(snake_case_ ) UpperCAmelCase_ : int = len(snake_case_ ) UpperCAmelCase_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCAmelCase_ : list = [] for char_count in range(snake_case_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case_ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
61
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( UpperCamelCase__ ): _a = "fnet" def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : str = max_position_embeddings _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = intermediate_size _A : List[Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : List[str] = initializer_range _A : List[Any] = type_vocab_size _A : List[Any] = layer_norm_eps _A : List[str] = use_tpu_fourier_optimizations _A : str = tpu_short_seq_length
26
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ :str = logging.get_logger(__name__) a_ :Optional[int] = {"vocab_file": "vocab.txt"} a_ :Optional[Any] = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } a_ :Any = { "openbmb/cpm-ant-10b": 1_024, } def lowercase_ (A : int ): snake_case__ : Tuple = collections.OrderedDict() with open(snake_case_ , 'r' , encoding='utf-8' ) as reader: snake_case__ : str = reader.readlines() for index, token in enumerate(snake_case_ ): snake_case__ : Any = token.rstrip('\n' ) snake_case__ : List[str] = index return vocab class snake_case__ ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[str], _snake_case : Any, _snake_case : Dict="<unk>", _snake_case : Tuple=2_0_0 ) ->str: snake_case__ : Optional[Any] = vocab snake_case__ : str = unk_token snake_case__ : Optional[int] = max_input_chars_per_word def lowercase_ ( self : Optional[Any], _snake_case : str ) ->int: snake_case__ : Optional[int] = list(_a ) if len(_a ) > self.max_input_chars_per_word: return [self.unk_token] snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = [] while start < len(_a ): snake_case__ : int = len(_a ) snake_case__ : Any = None while start < end: snake_case__ : Optional[int] = """""".join(chars[start:end] ) if substr in self.vocab: snake_case__ : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_a ) snake_case__ : Any = end return sub_tokens class snake_case__ ( UpperCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE = False def __init__( self : List[str], _snake_case : Tuple, _snake_case : List[Any]="<d>", _snake_case : Tuple="</d>", _snake_case : str="<s>", _snake_case : Optional[Any]="</s>", _snake_case : Optional[Any]="<pad>", _snake_case : Dict="<unk>", _snake_case : Union[str, Any]="</n>", _snake_case : List[Any]="</_>", _snake_case : Tuple="left", **_snake_case : Dict, ) ->Tuple: requires_backends(self, ['jieba'] ) super().__init__( bod_token=_a, eod_token=_a, bos_token=_a, eos_token=_a, pad_token=_a, unk_token=_a, line_token=_a, space_token=_a, padding_side=_a, **_a, ) snake_case__ : List[Any] = bod_token snake_case__ : List[str] = eod_token snake_case__ : List[str] = load_vocab(_a ) snake_case__ : List[str] = self.encoder[space_token] snake_case__ : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case__ : Optional[int] = collections.OrderedDict(sorted(self.encoder.items(), key=lambda _snake_case : x[1] ) ) snake_case__ : str = {v: k for k, v in self.encoder.items()} snake_case__ : List[Any] = WordpieceTokenizer(vocab=self.encoder, unk_token=self.unk_token ) @property def lowercase_ ( self : Optional[Any] ) ->str: return self.encoder[self.bod_token] @property def lowercase_ ( self : Union[str, Any] ) ->int: return self.encoder[self.eod_token] @property def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: return self.encoder["\n"] @property def lowercase_ ( self : List[Any] ) ->int: return len(self.encoder ) def lowercase_ ( self : Tuple ) ->List[Any]: return dict(self.encoder, **self.added_tokens_encoder ) def lowercase_ ( self : Any, _snake_case : int ) ->Dict: snake_case__ : Optional[int] = [] for x in jieba.cut(_a, cut_all=_a ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_a ) ) return output_tokens def lowercase_ ( self : List[Any], _snake_case : Dict, **_snake_case : Optional[Any] ) ->str: snake_case__ : List[str] = [i for i in token_ids if i >= 0] snake_case__ : Dict = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_a, **_a ) def lowercase_ ( self : Any, _snake_case : Union[str, Any] ) ->Union[str, Any]: return token in self.encoder def lowercase_ ( self : Optional[Any], _snake_case : Union[str, Any] ) ->str: return "".join(_a ) def lowercase_ ( self : Optional[Any], _snake_case : str ) ->str: return self.encoder.get(_a, self.encoder.get(self.unk_token ) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[int] ) ->Tuple: return self.decoder.get(_a, self.unk_token ) def lowercase_ ( self : Union[str, Any], _snake_case : int, _snake_case : List[Any] = None ) ->Tuple[str]: if os.path.isdir(_a ): snake_case__ : List[Any] = os.path.join( _a, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: snake_case__ : Optional[int] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case__ : Dict = 0 if " " in self.encoder: snake_case__ : str = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case__ : Optional[int] = self.encoder["""\n"""] del self.encoder["\n"] snake_case__ : int = collections.OrderedDict(sorted(self.encoder.items(), key=lambda _snake_case : x[1] ) ) with open(_a, 'w', encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) snake_case__ : str = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def lowercase_ ( self : Dict, _snake_case : Dict, _snake_case : Any = None ) ->List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase_ ( self : Optional[int], _snake_case : List[Any], _snake_case : List[Any] = None, _snake_case : str = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a, token_ids_a=_a, already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) return [1] + ([0] * len(_a ))
277
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : Tuple = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
0
import unittest import numpy as np def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = np.shape(snake_case_ ) lowerCamelCase__ : Optional[Any] = np.shape(snake_case_ ) lowerCamelCase__ : Any = np.shape(snake_case_ ) if shape_a[0] != shape_b[0]: lowerCamelCase__ : List[Any] = ( """Expected the same number of rows for A and B. """ f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(snake_case_ ) if shape_b[1] != shape_c[1]: lowerCamelCase__ : List[Any] = ( """Expected the same number of columns for B and C. """ f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(snake_case_ ) lowerCamelCase__ : Dict = pseudo_inv if a_inv is None: try: lowerCamelCase__ : int = np.linalg.inv(snake_case_ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : str ) ->None: lowerCamelCase__ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : int = np.array([[2, 1], [6, 3]] ) lowerCamelCase__ : Tuple = schur_complement(_a , _a , _a ) lowerCamelCase__ : Union[str, Any] = np.block([[a, b], [b.T, c]] ) lowerCamelCase__ : Any = np.linalg.det(_a ) lowerCamelCase__ : Dict = np.linalg.det(_a ) lowerCamelCase__ : Tuple = np.linalg.det(_a ) self.assertAlmostEqual(_a , det_a * det_s ) def __lowerCamelCase ( self : int ) ->None: lowerCamelCase__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_a ): schur_complement(_a , _a , _a ) def __lowerCamelCase ( self : str ) ->None: lowerCamelCase__ : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_a ): schur_complement(_a , _a , _a ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
142
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
0
def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" if len(snake_case_ ) <= 1: return lst lowercase : int = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase : Tuple = 1 return lst if __name__ == "__main__": __a = input('''Enter numbers separated by a comma:\n''').strip() __a = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
337
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a_ = logging.get_logger(__name__) class _UpperCamelCase ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__( self : str , a : List[Any] = True , a : Optional[int] = None , a : Dict = PILImageResampling.BILINEAR , a : Dict = True , a : Optional[Any] = 1 / 255 , a : Any = True , a : List[str] = None , a : List[str] = True , **a : List[Any] , ) -> None: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} SCREAMING_SNAKE_CASE : int = get_size_dict(_a , default_to_square=_a ) SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} SCREAMING_SNAKE_CASE : str = get_size_dict(_a , param_name="crop_size" ) SCREAMING_SNAKE_CASE : List[Any] = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : Union[str, Any] = resample SCREAMING_SNAKE_CASE : int = do_rescale SCREAMING_SNAKE_CASE : Any = rescale_factor SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE : str = crop_size SCREAMING_SNAKE_CASE : Optional[int] = do_flip_channel_order def __UpperCamelCase ( self : int , a : Tuple , a : Dict , a : Dict = PIL.Image.BILINEAR , a : Optional[Any] = None , **a : Optional[Any] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE : Optional[Any] = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __UpperCamelCase ( self : Any , a : int , a : List[str] , a : int = None , **a : Optional[int] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def __UpperCamelCase ( self : List[Any] , a : Optional[Any] , a : Dict , a : List[Any] = None , **a : Optional[int] , ) -> List[Any]: """simple docstring""" return rescale(_a , scale=_a , data_format=_a , **_a ) def __UpperCamelCase ( self : Optional[int] , a : List[Any] , a : Union[str, Any] = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(_a , data_format=_a ) def __UpperCamelCase ( self : Dict , a : Tuple , a : List[Any] = None , a : List[Any] = None , a : Optional[int] = None , a : List[Any] = None , a : Optional[Any] = None , a : List[str] = None , a : Union[str, Any] = None , a : int = None , a : int = None , a : Union[str, Any] = ChannelDimension.FIRST , **a : List[str] , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE : int = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : List[str] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Any = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : List[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[str] = get_size_dict(_a , default_to_square=_a ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Dict = get_size_dict(_a , param_name="crop_size" ) SCREAMING_SNAKE_CASE : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[Any] = [to_numpy_array(_a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : str = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : List[Any] = [self.rescale(image=_a , scale=_a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE : Optional[Any] = [self.flip_channel_order(image=_a ) for image in images] SCREAMING_SNAKE_CASE : List[str] = [to_channel_dimension_format(_a , _a ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a ) def __UpperCamelCase ( self : Any , a : Optional[Any] , a : Tuple = None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): SCREAMING_SNAKE_CASE : Optional[int] = target_sizes.numpy() SCREAMING_SNAKE_CASE : Optional[Any] = [] for idx in range(len(_a ) ): SCREAMING_SNAKE_CASE : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) SCREAMING_SNAKE_CASE : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: SCREAMING_SNAKE_CASE : List[str] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
76
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,): _A : Dict = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ ) _A : Tuple = Path(snake_case_ ) _A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) _A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _A : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params _A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _A : int = num_return_sequences _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _A : Optional[int] = tokenizer.model_max_length if prefix is None: _A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """""" _A : Optional[int] = SeqaSeqDataset( snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ ) _A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn ) _A : Optional[Any] = [] for batch in tqdm(snake_case_ ): _A : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,) _A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) _A : Dict = batch["""ids"""] if num_return_sequences > 1: _A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_,snake_case_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",) parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" ) parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ ) parser.add_argument( """--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",) parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--debug""",action="""store_true""" ) _A : Union[str, Any] = time.time() _A , _A : List[str] = parser.parse_known_args() _A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _A : Dict = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _A : int = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _A : Any = {} if args.src_lang is not None: _A : int = args.src_lang if args.tgt_lang is not None: _A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _A , _A : str = eval_data_dir( args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,) if args.local_rank <= 0: _A : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout ) _A : Optional[int] = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_,snake_case_ ) return _A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _A : Dict = """translation""" in args.task _A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge _A : Tuple = """bleu""" if calc_bleu else """rouge""" _A : Dict = score_fn(snake_case_,snake_case_ ) _A : List[Any] = len(snake_case_ ) _A : Optional[int] = time.time() - start_time _A : Dict = round(runtime / metrics["""n_obs"""],4 ) _A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_,snake_case_,indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for partial_result in partial_results: records.extend(snake_case_ ) _A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] ) _A : List[str] = [x["""pred"""] for x in records] return preds def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # WAIT FOR lots of .json files _A : Optional[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _A : List[str] = None while (time.time() - start_wait) < timeout: _A : str = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _A : List[str] = lmap(snake_case_,snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__( UpperCamelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ['''image_processor''', '''tokenizer'''] UpperCAmelCase_ : Tuple = '''LayoutLMv3ImageProcessor''' UpperCAmelCase_ : Optional[Any] = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _a , ) lowerCAmelCase = kwargs.pop("""feature_extractor""") lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(_a , _a) def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""") # first, apply the image processor lowerCAmelCase = self.image_processor(images=_a , return_tensors=_a) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a): lowerCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase = features["""words"""] lowerCAmelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values lowerCAmelCase = features.pop("""pixel_values""") if return_overflowing_tokens is True: lowerCAmelCase = self.get_overflowing_images(_a , encoded_inputs["""overflow_to_sample_mapping"""]) lowerCAmelCase = images return encoded_inputs def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_a) != len(_a): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f" {len(_a)} and {len(_a)}") return images_with_overflow def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.batch_decode(*_a , **_a) def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.decode(*_a , **_a) @property def a_ ( self): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a_ ( self): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , ) return self.image_processor_class @property def a_ ( self): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _a , ) return self.image_processor
272
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() UpperCAmelCase__ : List[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
121
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A_ ( unittest.TestCase ): lowerCAmelCase__ = StableDiffusionLDMaDPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCAmelCase (self :Optional[Any] )-> List[str]: torch.manual_seed(0 ) __A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) __A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __A = CLIPTextModel(_a ) __A = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Dict , _UpperCamelCase :Tuple=0 )-> Tuple: if str(_a ).startswith('''mps''' ): __A = torch.manual_seed(_a ) else: __A = torch.Generator(device=_a ).manual_seed(_a ) __A = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCAmelCase (self :List[Any] )-> List[Any]: __A = """cpu""" # ensure determinism for the device-dependent torch.Generator __A = self.get_dummy_components() __A = StableDiffusionLDMaDPipeline(**_a ) __A = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) __A = self.get_dummy_inputs(_a ) __A = ldmad_pipe(**_a ) __A = output.rgb, output.depth __A = rgb[0, -3:, -3:, -1] __A = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __A = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) __A = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def _lowerCAmelCase (self :str )-> List[str]: __A = self.get_dummy_components() __A = StableDiffusionLDMaDPipeline(**_a ) __A = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) __A = self.get_dummy_inputs(_a ) __A = 3 * [inputs["""prompt"""]] # forward __A = ldmad_pipe(**_a ) __A = output.rgb, output.depth __A = rgb_slice_a[0, -3:, -3:, -1] __A = depth_slice_a[0, -3:, -1] __A = self.get_dummy_inputs(_a ) __A = 3 * [inputs.pop('''prompt''' )] __A = ldmad_pipe.tokenizer( _a , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors='''pt''' , ) __A = text_inputs["""input_ids"""].to(_a ) __A = ldmad_pipe.text_encoder(_a )[0] __A = prompt_embeds # forward __A = ldmad_pipe(**_a ) __A = output.rgb, output.depth __A = rgb_slice_a[0, -3:, -3:, -1] __A = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def _lowerCAmelCase (self :Optional[int] )-> Tuple: __A = """cpu""" # ensure determinism for the device-dependent torch.Generator __A = self.get_dummy_components() __A = PNDMScheduler(skip_prk_steps=_a ) __A = StableDiffusionLDMaDPipeline(**_a ) __A = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) __A = self.get_dummy_inputs(_a ) __A = """french fries""" __A = ldmad_pipe(**_a , negative_prompt=_a ) __A = output.rgb, output.depth __A = rgb[0, -3:, -3:, -1] __A = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __A = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) __A = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :int , _UpperCamelCase :Optional[int]="cpu" , _UpperCamelCase :Any=torch.floataa , _UpperCamelCase :List[str]=0 )-> Any: __A = torch.Generator(device=_a ).manual_seed(_a ) __A = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) __A = torch.from_numpy(_a ).to(device=_a , dtype=_a ) __A = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowerCAmelCase (self :int )-> str: __A = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) __A = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) __A = self.get_inputs(_a ) __A = ldmad_pipe(**_a ) __A = output.rgb, output.depth __A = rgb[0, -3:, -3:, -1].flatten() __A = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) __A = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) __A = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :int )-> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase (self :str , _UpperCamelCase :int , _UpperCamelCase :List[str]="cpu" , _UpperCamelCase :str=torch.floataa , _UpperCamelCase :Union[str, Any]=0 )-> Any: __A = torch.Generator(device=_a ).manual_seed(_a ) __A = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) __A = torch.from_numpy(_a ).to(device=_a , dtype=_a ) __A = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowerCAmelCase (self :Optional[Any] )-> Dict: __A = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) __A = self.get_inputs(_a ) __A = ldmad_pipe(**_a ) __A = output.rgb, output.depth __A = 0.4_9_5_5_8_6 __A = 0.3_3_7_9_5_5_1_5 __A = 1_1_2.4_8_5_1_8 __A = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def _lowerCAmelCase (self :List[Any] )-> Optional[int]: __A = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) __A = self.get_inputs(_a ) __A = ldmad_pipe(**_a ) __A = output.rgb, output.depth __A = 0.4_1_9_4_1_2_7 __A = 0.3_5_3_7_5_5_8_6 __A = 0.5_6_3_8_5_0_2 __A = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
117
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
0
"""simple docstring""" import os from collections.abc import Iterator def lowercase_ ( __UpperCAmelCase = "." ) -> Optional[int]: for dir_path, dir_names, filenames in os.walk(snake_case_ ): lowerCAmelCase__ : Any = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(snake_case_ )[1] in (".py", ".ipynb"): yield os.path.join(snake_case_ , snake_case_ ).lstrip("""./""" ) def lowercase_ ( __UpperCAmelCase ) -> List[str]: return f"""{i * ' '}*""" if i else "\n##" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(snake_case_ ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(snake_case_ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def lowercase_ ( __UpperCAmelCase = "." ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = """""" for filepath in sorted(good_file_paths(snake_case_ ) ): lowerCAmelCase__ : int = os.path.split(snake_case_ ) if filepath != old_path: lowerCAmelCase__ : List[str] = print_path(snake_case_ , snake_case_ ) lowerCAmelCase__ : List[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase__ : int = f"""{filepath}/{filename}""".replace(""" """ , """%20""" ) lowerCAmelCase__ : Dict = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"""{md_prefix(snake_case_ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
242
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE="." ): __UpperCAmelCase = [] for k, v in d.items(): __UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(snake_case_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_ , snake_case_ , sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) __UpperCAmelCase = argparse.Namespace() with open(snake_case_ , '''r''' ) as yaml_file: try: __UpperCAmelCase = yaml.load(snake_case_ , Loader=yaml.FullLoader ) __UpperCAmelCase = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_ , snake_case_ , snake_case_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(snake_case_ , str(snake_case_ ) ) ) return config def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = MobileViTVaConfig() __UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): __UpperCAmelCase = 1_0_0_0 if int(task_name.strip().split('''_''' )[-1] ) == 3_8_4: __UpperCAmelCase = 3_8_4 else: __UpperCAmelCase = 2_5_6 __UpperCAmelCase = """imagenet-1k-id2label.json""" elif task_name.startswith('''imagenet21k_to_1k_''' ): __UpperCAmelCase = 2_1_0_0_0 if int(task_name.strip().split('''_''' )[-1] ) == 3_8_4: __UpperCAmelCase = 3_8_4 else: __UpperCAmelCase = 2_5_6 __UpperCAmelCase = """imagenet-22k-id2label.json""" elif task_name.startswith('''ade20k_''' ): __UpperCAmelCase = 1_5_1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = """ade20k-id2label.json""" __UpperCAmelCase = True elif task_name.startswith('''voc_''' ): __UpperCAmelCase = 2_1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = """pascal-voc-id2label.json""" __UpperCAmelCase = True # orig_config __UpperCAmelCase = load_orig_config_file(snake_case_ ) assert getattr(snake_case_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __UpperCAmelCase = getattr(snake_case_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(snake_case_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __UpperCAmelCase = getattr(snake_case_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __UpperCAmelCase = getattr(snake_case_ , '''model.segmentation.output_stride''' , 1_6 ) if "_deeplabv3" in task_name: __UpperCAmelCase = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_rates''' , [1_2, 2_4, 3_6] ) __UpperCAmelCase = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 5_1_2 ) __UpperCAmelCase = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __UpperCAmelCase = """huggingface/label-files""" __UpperCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = dct.pop(snake_case_ ) __UpperCAmelCase = val def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> int: '''simple docstring''' if base_model: __UpperCAmelCase = """""" else: __UpperCAmelCase = """mobilevitv2.""" __UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": __UpperCAmelCase = k[8:] else: __UpperCAmelCase = k if ".block." in k: __UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __UpperCAmelCase = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: __UpperCAmelCase = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: __UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: __UpperCAmelCase = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: __UpperCAmelCase = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: __UpperCAmelCase = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: __UpperCAmelCase = [0, 1] elif i == 4: __UpperCAmelCase = [0, 1, 2, 3] elif i == 5: __UpperCAmelCase = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: __UpperCAmelCase = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: __UpperCAmelCase = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: __UpperCAmelCase = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: __UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __a ( SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_ , snake_case_ ) def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __UpperCAmelCase = get_mobilevitva_config(snake_case_ , snake_case_ ) # load original state_dict __UpperCAmelCase = torch.load(snake_case_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __UpperCAmelCase = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() __UpperCAmelCase = False else: __UpperCAmelCase = MobileViTVaForImageClassification(snake_case_ ).eval() __UpperCAmelCase = False # remove and rename some keys of load the original model __UpperCAmelCase = checkpoint remove_unused_keys(snake_case_ ) __UpperCAmelCase = create_rename_keys(snake_case_ , base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase = model(**snake_case_ ) # verify classification model if task_name.startswith('''imagenet''' ): __UpperCAmelCase = outputs.logits __UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __UpperCAmelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , snake_case_ , atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) A_ : Optional[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
333
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = checkpoint UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : str = vae_state_dict["""encoder.conv_in.weight"""] UpperCAmelCase_ : int = vae_state_dict["""encoder.conv_in.bias"""] UpperCAmelCase_ : Dict = vae_state_dict["""encoder.conv_out.weight"""] UpperCAmelCase_ : Tuple = vae_state_dict["""encoder.conv_out.bias"""] UpperCAmelCase_ : List[Any] = vae_state_dict["""encoder.norm_out.weight"""] UpperCAmelCase_ : Tuple = vae_state_dict["""encoder.norm_out.bias"""] UpperCAmelCase_ : Optional[int] = vae_state_dict["""decoder.conv_in.weight"""] UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.conv_in.bias"""] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["""decoder.conv_out.weight"""] UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.conv_out.bias"""] UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.norm_out.weight"""] UpperCAmelCase_ : List[str] = vae_state_dict["""decoder.norm_out.bias"""] UpperCAmelCase_ : Optional[int] = vae_state_dict["""quant_conv.weight"""] UpperCAmelCase_ : List[Any] = vae_state_dict["""quant_conv.bias"""] UpperCAmelCase_ : Optional[Any] = vae_state_dict["""post_quant_conv.weight"""] UpperCAmelCase_ : int = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : Any = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : Any = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ : int = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ : str = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Any = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ : List[str] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ : Optional[Any] = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ : str = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) UpperCAmelCase_ : List[str] = [key for key in vae_state_dict if """encoder.mid.block""" in key] UpperCAmelCase_ : Union[str, Any] = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : str = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ : str = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ : str = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) UpperCAmelCase_ : str = [key for key in vae_state_dict if """encoder.mid.attn""" in key] UpperCAmelCase_ : int = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ : List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ : List[str] = num_up_blocks - 1 - i UpperCAmelCase_ : List[str] = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Union[str, Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ : List[str] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ : str = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ : int = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) UpperCAmelCase_ : Tuple = [key for key in vae_state_dict if """decoder.mid.block""" in key] UpperCAmelCase_ : Tuple = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : int = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ : Any = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ : List[str] = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) UpperCAmelCase_ : Union[str, Any] = [key for key in vae_state_dict if """decoder.mid.attn""" in key] UpperCAmelCase_ : Any = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ : Optional[int] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def __a ( __lowerCamelCase, __lowerCamelCase, ): # Only support V1 UpperCAmelCase_ : Tuple = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ : Tuple = io.BytesIO(r.content ) UpperCAmelCase_ : List[Any] = OmegaConf.load(snake_case_ ) UpperCAmelCase_ : Optional[int] = 512 UpperCAmelCase_ : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ : Tuple = {} with safe_open(snake_case_, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ : int = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ : int = torch.load(snake_case_, map_location=snake_case_ )["""state_dict"""] # Convert the VAE model. UpperCAmelCase_ : List[str] = create_vae_diffusers_config(snake_case_, image_size=snake_case_ ) UpperCAmelCase_ : Any = custom_convert_ldm_vae_checkpoint(snake_case_, snake_case_ ) UpperCAmelCase_ : List[Any] = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
61
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _snake_case = { "google/fnet-base": 512, "google/fnet-large": 512, } _snake_case = "▁" class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "token_type_ids"] _a = FNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : int = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) _A : Optional[int] = do_lower_case _A : List[Any] = remove_space _A : str = keep_accents _A : int = vocab_file _A : int = False if not self.vocab_file else True def a__ ( self , _a , _a = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , _a , _a = None ) -> List[int]: _A : Any = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
26
0
a_ :Any = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" a_ :Tuple = [{"type": "code", "content": INSTALL_CONTENT}] a_ :Union[str, Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
277
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = (AXIS_A - AXIS_B) / AXIS_A _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[Any] = radians(snake_case_ ) _A : str = radians(snake_case_ ) # Equation _A : Dict = sin((phi_a - phi_a) / 2 ) _A : List[str] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
26
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) a__ : List[Any] = None a__ : List[Any] = { '''7B''': 11_008, '''13B''': 13_824, '''30B''': 17_920, '''65B''': 22_016, '''70B''': 28_672, } a__ : Any = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def UpperCAmelCase_( a__ , a__=1 , a__=256 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCAmelCase_( a__ ): """simple docstring""" with open(snake_case_ , '''r''' ) as f: return json.load(snake_case_ ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" with open(snake_case_ , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCAmelCase_( a__ , a__ , a__ , a__=True ): """simple docstring""" os.makedirs(snake_case_ , exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(snake_case_ , '''tmp''' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE : int = read_json(os.path.join(snake_case_ , '''params.json''' ) ) SCREAMING_SNAKE_CASE : Any = NUM_SHARDS[model_size] SCREAMING_SNAKE_CASE : Dict = params["""n_layers"""] SCREAMING_SNAKE_CASE : Optional[Any] = params["""n_heads"""] SCREAMING_SNAKE_CASE : Union[str, Any] = n_heads // num_shards SCREAMING_SNAKE_CASE : Dict = params["""dim"""] SCREAMING_SNAKE_CASE : Optional[Any] = dim // n_heads SCREAMING_SNAKE_CASE : List[Any] = 10_000.0 SCREAMING_SNAKE_CASE : List[str] = 1.0 / (base ** (torch.arange(0 , snake_case_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: SCREAMING_SNAKE_CASE : str = params["""n_kv_heads"""] # for GQA / MQA SCREAMING_SNAKE_CASE : List[Any] = n_heads_per_shard // num_key_value_heads SCREAMING_SNAKE_CASE : List[str] = dim // num_key_value_heads else: # compatibility with other checkpoints SCREAMING_SNAKE_CASE : Any = n_heads SCREAMING_SNAKE_CASE : Optional[int] = n_heads_per_shard SCREAMING_SNAKE_CASE : List[Any] = dim # permute for sliced rotary def permute(a__ , a__=n_heads , a__=dim , a__=dim ): return w.view(snake_case_ , dima // n_heads // 2 , 2 , snake_case_ ).transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) SCREAMING_SNAKE_CASE : str = torch.load(os.path.join(snake_case_ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded SCREAMING_SNAKE_CASE : int = [ torch.load(os.path.join(snake_case_ , F"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(snake_case_ ) ] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = {"""weight_map""": {}} for layer_i in range(snake_case_ ): SCREAMING_SNAKE_CASE : int = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE : Union[str, Any] = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. SCREAMING_SNAKE_CASE : Any = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } SCREAMING_SNAKE_CASE : Union[str, Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(snake_case_ , snake_case_ , snake_case_ ) for i in range(snake_case_ ) ] , dim=0 , ).reshape(snake_case_ , snake_case_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( snake_case_ , snake_case_ , snake_case_ ) for i in range(snake_case_ ) ] , dim=0 , ).reshape(snake_case_ , snake_case_ ) , snake_case_ , snake_case_ , snake_case_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( snake_case_ , snake_case_ , snake_case_ ) for i in range(snake_case_ ) ] , dim=0 , ).reshape(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : str = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(snake_case_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(snake_case_ )] , dim=0 ) SCREAMING_SNAKE_CASE : Dict = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(snake_case_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Any = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(snake_case_ )] , dim=0 ) SCREAMING_SNAKE_CASE : Any = inv_freq for k, v in state_dict.items(): SCREAMING_SNAKE_CASE : Dict = filename param_count += v.numel() torch.save(snake_case_ , os.path.join(snake_case_ , snake_case_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE : Optional[Any] = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: SCREAMING_SNAKE_CASE : Optional[int] = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(snake_case_ )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]['''output.weight'''] for i in range(snake_case_ )] , dim=0 ), } for k, v in state_dict.items(): SCREAMING_SNAKE_CASE : List[str] = filename param_count += v.numel() torch.save(snake_case_ , os.path.join(snake_case_ , snake_case_ ) ) # Write configs SCREAMING_SNAKE_CASE : Tuple = {"""total_size""": param_count * 2} write_json(snake_case_ , os.path.join(snake_case_ , '''pytorch_model.bin.index.json''' ) ) SCREAMING_SNAKE_CASE : Any = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 SCREAMING_SNAKE_CASE : int = params["""multiple_of"""] if """multiple_of""" in params else 256 SCREAMING_SNAKE_CASE : str = LlamaConfig( hidden_size=snake_case_ , intermediate_size=compute_intermediate_size(snake_case_ , snake_case_ , snake_case_ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=snake_case_ , ) config.save_pretrained(snake_case_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = LlamaForCausalLM.from_pretrained(snake_case_ , torch_dtype=torch.floataa , low_cpu_mem_usage=snake_case_ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(snake_case_ , safe_serialization=snake_case_ ) shutil.rmtree(snake_case_ ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_class(snake_case_ ) tokenizer.save_pretrained(snake_case_ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=snake_case_ , help='''Whether or not to save using `safetensors`.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) SCREAMING_SNAKE_CASE : int = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , snake_case_ ) if __name__ == "__main__": main()
313
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> Optional[int]: super().__init__(_a ) _A : Union[str, Any] = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> str: super().__init__(_a ) _A : Any = config.num_labels _A : Dict = config.num_hidden_layers _A : List[str] = DeeRobertaModel(_a ) _A : int = nn.Dropout(config.hidden_dropout_prob ) _A : int = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any: _A : Optional[int] = self.num_layers try: _A : List[str] = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) _A : List[str] = outputs[1] _A : List[str] = self.dropout(_a ) _A : Optional[Any] = self.classifier(_a ) _A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _A : List[Any] = e.message _A : Optional[int] = e.exit_layer _A : Optional[int] = outputs[0] if not self.training: _A : int = entropy(_a ) _A : int = [] _A : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression _A : Union[str, Any] = MSELoss() _A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _A : Optional[Any] = [] for highway_exit in outputs[-1]: _A : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _A : List[str] = MSELoss() _A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: _A : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _A : int = (loss,) + outputs if not self.training: _A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _A : Union[str, Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
26
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : str = 0 @slow def __lowerCamelCase ( self : Union[str, Any] ) ->Tuple: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_a ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_a ) , 0 ) def __lowerCamelCase ( self : List[str] ) ->List[str]: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def __lowerCamelCase ( self : Tuple ) ->str: lowerCamelCase__ : int = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) # Check that tokenizer_type ≠ model_type lowerCamelCase__ : int = AutoTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def __lowerCamelCase ( self : List[Any] ) ->Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_a , '''vocab.txt''' ) ) lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(_a , tokenizer_type='''bert''' , use_fast=_a ) self.assertIsInstance(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_a , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_a , '''merges.txt''' ) ) lowerCamelCase__ : str = AutoTokenizer.from_pretrained(_a , tokenizer_type='''gpt2''' , use_fast=_a ) self.assertIsInstance(_a , _a ) @require_tokenizers def __lowerCamelCase ( self : Any ) ->Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_a , '''vocab.txt''' ) ) lowerCamelCase__ : int = AutoTokenizer.from_pretrained(_a , tokenizer_type='''bert''' ) self.assertIsInstance(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_a , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_a , '''merges.txt''' ) ) lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(_a , tokenizer_type='''gpt2''' ) self.assertIsInstance(_a , _a ) def __lowerCamelCase ( self : List[Any] ) ->Tuple: with pytest.raises(_a ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCamelCase ( self : int ) ->List[str]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCamelCase__ : List[str] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) if isinstance(_a , _a ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _a ) else: self.assertEqual(tokenizer.do_lower_case , _a ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def __lowerCamelCase ( self : Any ) ->Union[str, Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _a , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCamelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCamelCase ( self : Any ) ->int: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCamelCase__ : Dict = TOKENIZER_MAPPING.values() lowerCamelCase__ : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_a ) @require_tokenizers def __lowerCamelCase ( self : Optional[Any] ) ->str: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_a ) , _a ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _a ) @require_tokenizers def __lowerCamelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_a ) lowerCamelCase__ : Optional[Any] = """Hello, world. How are you?""" lowerCamelCase__ : List[Any] = tokenizer.tokenize(_a ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCamelCase__ : str = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_a ) lowerCamelCase__ : Tuple = tokenizer.tokenize(_a ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCamelCase ( self : Dict ) ->Any: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_a ) , _a ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCamelCase ( self : Optional[Any] ) ->Tuple: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def __lowerCamelCase ( self : str ) ->Dict: lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_a , _a ) def __lowerCamelCase ( self : List[Any] ) ->Union[str, Any]: # Check we can load the tokenizer config of an online model. lowerCamelCase__ : List[str] = get_tokenizer_config('''bert-base-cased''' ) lowerCamelCase__ : Any = config.pop('''_commit_hash''' , _a ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_a , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCamelCase__ : Optional[int] = get_tokenizer_config(_a ) self.assertDictEqual(_a , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) lowerCamelCase__ : List[Any] = get_tokenizer_config(_a ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[int]: try: AutoConfig.register('''custom''' , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoTokenizer.register(_a , slow_tokenizer_class=_a ) lowerCamelCase__ : List[Any] = CustomTokenizer.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) lowerCamelCase__ : int = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self : str ) ->str: try: AutoConfig.register('''custom''' , _a ) # Can register in two steps AutoTokenizer.register(_a , slow_tokenizer_class=_a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_a , fast_tokenizer_class=_a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _a , slow_tokenizer_class=_a , fast_tokenizer_class=_a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoTokenizer.register(_a , fast_tokenizer_class=_a ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : str = BertTokenizerFast.from_pretrained(_a ) bert_tokenizer.save_pretrained(_a ) lowerCamelCase__ : Optional[Any] = CustomTokenizerFast.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(_a , use_fast=_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : str ) ->List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): lowerCamelCase__ : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a ) lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) lowerCamelCase__ : int = AutoTokenizer.from_pretrained(_a , trust_remote_code=_a ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCamelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a , use_fast=_a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_a ) lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(_a , trust_remote_code=_a , use_fast=_a ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCamelCase ( self : List[str] ) ->int: class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): _UpperCAmelCase : List[Any] = False class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): _UpperCAmelCase : Any = NewTokenizer _UpperCAmelCase : List[str] = False try: AutoConfig.register('''custom''' , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoTokenizer.register(_a , fast_tokenizer_class=_a ) # If remote code is not set, the default is to use local lowerCamelCase__ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_a ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a , use_fast=_a ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCamelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a , use_fast=_a ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_a ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCamelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_a , use_fast=_a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCamelCase ( self : Dict ) ->Tuple: with self.assertRaisesRegex( _a , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCamelCase ( self : List[str] ) ->str: with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_a , revision='''aaaaaa''' ) def __lowerCamelCase ( self : int ) ->str: # Make sure we have cached the tokenizer. lowerCamelCase__ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
142
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xmod" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Tuple = vocab_size _A : Union[str, Any] = hidden_size _A : Dict = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = hidden_act _A : Optional[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Any = type_vocab_size _A : List[Any] = initializer_range _A : int = layer_norm_eps _A : int = position_embedding_type _A : Any = use_cache _A : int = classifier_dropout _A : int = pre_norm _A : Optional[Any] = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[int] = adapter_reuse_layer_norm _A : Any = ln_before_adapter _A : Union[str, Any] = list(_a ) _A : List[Any] = default_language class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __lowercase ( _UpperCamelCase ) ->Any: """simple docstring""" return 1 / (1 + np.exp(-z )) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" return (-y * np.log(snake_case_ ) - (1 - y) * np.log(1 - h )).mean() def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : Optional[Any] = np.dot(snake_case_, snake_case_ ) return np.sum(y * scores - np.log(1 + np.exp(snake_case_ ) ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase=70000 ) ->Tuple: """simple docstring""" lowercase : Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(snake_case_ ): lowercase : Any = np.dot(snake_case_, snake_case_ ) lowercase : Optional[int] = sigmoid_function(snake_case_ ) lowercase : List[Any] = np.dot(x.T, h - y ) / y.size lowercase : Any = theta - alpha * gradient # updating the weights lowercase : List[Any] = np.dot(snake_case_, snake_case_ ) lowercase : List[Any] = sigmoid_function(snake_case_ ) lowercase : List[str] = cost_function(snake_case_, snake_case_ ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __a = datasets.load_iris() __a = iris.data[:, :2] __a = (iris.target != 0) * 1 __a = 0.1 __a = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('''theta: ''', theta) # printing the theta i.e our weights vector def __lowercase ( _UpperCamelCase ) ->Any: """simple docstring""" return sigmoid_function( np.dot(snake_case_, snake_case_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((__a) , (__a)) = (x[:, 0].min(), x[:, 0].max()) ((__a) , (__a)) = (x[:, 1].min(), x[:, 1].max()) ((__a) , (__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __a = np.c_[xxa.ravel(), xxa.ravel()] __a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
337
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) if n == 0: return 0 _A : Tuple = float("""-inf""" ) for i in range(1,n + 1 ): _A : str = max( snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) ) return max_revue def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) _A : Dict = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _A : List[str] = float("""-inf""" ) for i in range(1,n + 1 ): _A : Optional[Any] = max( snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),) _A : Tuple = max_revenue return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _A : Any = 0 for i in range(1,n + 1 ): _A : Optional[Any] = max_rev[i] for j in range(1,i + 1 ): _A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] ) _A : int = max_revenue_i return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): if n < 0: _A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case_ ) if n > len(snake_case_ ): _A : Any = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(snake_case_ )}''' ) raise ValueError(snake_case_ ) def lowerCAmelCase_ ( ): _A : Tuple = [6, 10, 12, 15, 20, 23] _A : List[Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _A : Any = 36 _A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ ) _A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ ) _A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
0
from collections.abc import Iterable from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : Any = None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = value SCREAMING_SNAKE_CASE : Node | None = None # Added in order to delete a node easier SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None def __repr__( self : List[Any] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"{self.value}": (self.left, self.right)} , indent=1 ) class _UpperCamelCase : '''simple docstring''' def __init__( self : int , a : Tuple = None ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = root def __str__( self : Optional[Any] ) -> str: """simple docstring""" return str(self.root ) def __UpperCamelCase ( self : List[Any] , a : List[Any] , a : List[Any] ) -> None: """simple docstring""" if new_children is not None: # reset its kids SCREAMING_SNAKE_CASE : Tuple = node.parent if node.parent is not None: # reset its parent if self.is_right(_a ): # If it is the right children SCREAMING_SNAKE_CASE : Dict = new_children else: SCREAMING_SNAKE_CASE : int = new_children else: SCREAMING_SNAKE_CASE : List[str] = new_children def __UpperCamelCase ( self : Optional[int] , a : List[str] ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCamelCase ( self : str ) -> bool: """simple docstring""" return self.root is None def __UpperCamelCase ( self : Union[str, Any] , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Node(_a ) # create a new Node if self.empty(): # if Tree is empty SCREAMING_SNAKE_CASE : Union[str, Any] = new_node # set its root else: # Tree is not empty SCREAMING_SNAKE_CASE : int = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: SCREAMING_SNAKE_CASE : List[Any] = new_node # We insert the new node in a leaf break else: SCREAMING_SNAKE_CASE : Union[str, Any] = parent_node.left else: if parent_node.right is None: SCREAMING_SNAKE_CASE : List[Any] = new_node break else: SCREAMING_SNAKE_CASE : int = parent_node.right SCREAMING_SNAKE_CASE : Optional[int] = parent_node def __UpperCamelCase ( self : Union[str, Any] , *a : Optional[int] ) -> None: """simple docstring""" for value in values: self.__insert(_a ) def __UpperCamelCase ( self : int , a : Tuple ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: SCREAMING_SNAKE_CASE : int = node.left if value < node.value else node.right return node def __UpperCamelCase ( self : str , a : List[str] = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None SCREAMING_SNAKE_CASE : Union[str, Any] = self.root if not self.empty(): while node.right is not None: SCREAMING_SNAKE_CASE : str = node.right return node def __UpperCamelCase ( self : List[Any] , a : Any = None ) -> Node | None: """simple docstring""" if node is None: SCREAMING_SNAKE_CASE : Dict = self.root if self.root is None: return None if not self.empty(): SCREAMING_SNAKE_CASE : str = self.root while node.left is not None: SCREAMING_SNAKE_CASE : int = node.left return node def __UpperCamelCase ( self : List[Any] , a : List[Any] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.search(_a ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_a , _a ) elif node.left is None: # Has only right children self.__reassign_nodes(_a , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_a , node.left ) else: SCREAMING_SNAKE_CASE : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore SCREAMING_SNAKE_CASE : Union[str, Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCamelCase ( self : Tuple , a : Optional[int] ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __UpperCamelCase ( self : Tuple , a : List[Any]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __UpperCamelCase ( self : Dict , a : List[Any] , a : Dict ) -> None: """simple docstring""" if node: self.inorder(_a , node.left ) arr.append(node.value ) self.inorder(_a , node.right ) def __UpperCamelCase ( self : int , a : Optional[Any] , a : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : list[int] = [] self.inorder(_a , _a ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = [] if curr_node is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = (8, 3, 6, 1, 10, 14, 13, 4, 7) SCREAMING_SNAKE_CASE : List[Any] = BinarySearchTree() for i in testlist: t.insert(snake_case_) # Prints all the elements of the list in order traversal print(snake_case_) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case_) print(snake_case_) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
76
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case_ = "AAPL" ): _A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" ) _A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""",class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
26
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
0
import itertools import math def lowerCamelCase__ ( a ) -> Optional[Any]: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( ) -> Union[str, Any]: _A: Dict = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def lowerCamelCase__ ( a = 1_00_01 ) -> Optional[Any]: return next(itertools.islice(prime_generator() , nth - 1 , snake_case_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
121
def lowerCAmelCase_ ( snake_case_,snake_case_ ): while b: _A , _A : List[str] = b, a % b return a def lowerCAmelCase_ ( snake_case_,snake_case_ ): return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b ) def lowerCAmelCase_ ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' ) if __name__ == "__main__": main()
26
0
def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] , lowerCamelCase: Tuple , lowerCamelCase: Tuple ) -> str: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: Dict , lowerCamelCase: Any ) -> List[Any]: '''simple docstring''' if curr_ind == len(snake_case_ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(snake_case_ ) ): if valid_connection(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): # Insert current vertex into path as next transition __A = next_ver # Validate created path if util_hamilton_cycle(snake_case_ , snake_case_ , curr_ind + 1 ): return True # Backtrack __A = -1 return False def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] = 0 ) -> Dict: '''simple docstring''' __A = [-1] * (len(snake_case_ ) + 1) # initialize start and end of path with starting index __A = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(snake_case_ , snake_case_ , 1 ) else []
117
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
from math import pi, sqrt def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 1_7_1.5: raise OverflowError('''math range error''' ) elif num - int(snake_case_ ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(snake_case_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __a ( ) -> Tuple: '''simple docstring''' assert gamma(0.5 ) == sqrt(snake_case_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() A_ : Any = 1.0 while num: A_ : List[Any] = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
333
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _A : Optional[int] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def a__ ( self ) -> Optional[Any]: _A : Tuple = None _A : int = None _A : Tuple = None _A : Union[str, Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _A : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A : Dict = dataset _A : int = name _A : Union[str, Any] = con _A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : str = num_proc _A : Optional[Any] = to_sql_kwargs def a__ ( self ) -> int: _A : Any = self.to_sql_kwargs.pop("""sql""" , _a ) _A : List[str] = self.to_sql_kwargs.pop("""con""" , _a ) _A : int = self.to_sql_kwargs.pop("""index""" , _a ) _A : List[str] = self._write(index=_a , **self.to_sql_kwargs ) return written def a__ ( self , _a ) -> Optional[int]: _A , _A , _A : List[str] = args _A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs _A : str = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _A : Tuple = batch.to_pandas() _A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def a__ ( self , _a , **_a ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _A , _A : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
26
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=18 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCAmelCase_ : Optional[int] = size if size is not None else {"""shortest_edge""": 18} UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Optional[Any] = min_resolution UpperCAmelCase_ : Any = max_resolution UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : Any = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : Union[str, Any] = do_normalize UpperCAmelCase_ : Any = image_mean UpperCAmelCase_ : Dict = image_std def UpperCamelCase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A_ (UpperCamelCase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "image_mean" ) ) self.assertTrue(hasattr(_a , "image_std" ) ) self.assertTrue(hasattr(_a , "do_normalize" ) ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "do_center_crop" ) ) self.assertTrue(hasattr(_a , "size" ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input UpperCAmelCase_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input UpperCAmelCase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : Tuple = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" # Initialize image_processing UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : Any = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
61
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( UpperCamelCase__ ): _a = "fnet" def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : str = max_position_embeddings _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = intermediate_size _A : List[Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : List[str] = initializer_range _A : List[Any] = type_vocab_size _A : List[Any] = layer_norm_eps _A : List[str] = use_tpu_fourier_optimizations _A : str = tpu_short_seq_length
26
0
def lowercase_ (A : str , A : str ): if digit_amount > 0: return round(number - int(snake_case_ ) , snake_case_ ) return number - int(snake_case_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
277
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase_( a__ ): """simple docstring""" if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : Any = version.parse(accelerate.__version__ ).base_version if version.parse(snake_case_ ) < version.parse('''0.17.0''' ): return method def wrapper(self , *a__ , **a__ ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *snake_case_ , **snake_case_ ) return wrapper
313
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): @slow @require_torch def __lowerCamelCase ( self : str ) ->Dict: lowerCamelCase__ : int = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) lowerCamelCase__ : Tuple = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowerCamelCase__ : Dict = bertabert.config.encoder.vocab_size lowerCamelCase__ : List[str] = tokenizer.sep_token_id lowerCamelCase__ : Dict = tokenizer.cls_token_id lowerCamelCase__ : List[Any] = 1_2_8 lowerCamelCase__ : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) lowerCamelCase__ : List[str] = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) lowerCamelCase__ : Union[str, Any] = train_dataset.select(range(3_2 ) ) lowerCamelCase__ : str = val_dataset.select(range(1_6 ) ) lowerCamelCase__ : Dict = 4 def _map_to_encoder_decoder_inputs(A : str ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCamelCase__ : List[Any] = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_a , max_length=5_1_2 ) lowerCamelCase__ : int = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_a , max_length=1_2_8 ) lowerCamelCase__ : Union[str, Any] = inputs.input_ids lowerCamelCase__ : List[Any] = inputs.attention_mask lowerCamelCase__ : Dict = outputs.input_ids lowerCamelCase__ : str = outputs.input_ids.copy() lowerCamelCase__ : Union[str, Any] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowerCamelCase__ : Dict = outputs.attention_mask assert all(len(_a ) == 5_1_2 for x in inputs.input_ids ) assert all(len(_a ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(A : Optional[Any] ): lowerCamelCase__ : int = pred.label_ids lowerCamelCase__ : str = pred.predictions # all unnecessary tokens are removed lowerCamelCase__ : Dict = tokenizer.batch_decode(_a , skip_special_tokens=_a ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(_a , skip_special_tokens=_a ) lowerCamelCase__ : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_a ) )] ) / len(_a ) return {"accuracy": accuracy} # map train dataset lowerCamelCase__ : Dict = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_a , batch_size=_a , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset lowerCamelCase__ : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_a , batch_size=_a , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) lowerCamelCase__ : Optional[int] = self.get_auto_remove_tmp_dir() lowerCamelCase__ : Any = SeqaSeqTrainingArguments( output_dir=_a , per_device_train_batch_size=_a , per_device_eval_batch_size=_a , predict_with_generate=_a , evaluation_strategy='''steps''' , do_train=_a , do_eval=_a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCamelCase__ : Optional[Any] = SeqaSeqTrainer( model=_a , args=_a , compute_metrics=_compute_metrics , train_dataset=_a , eval_dataset=_a , tokenizer=_a , ) # start training trainer.train()
142
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __a = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
337
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
0
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = [0 for i in range(len(snake_case_))] # initialize interval's left pointer and right pointer SCREAMING_SNAKE_CASE : Any = 0, 0 for i in range(1 , len(snake_case_)): # case when current index is inside the interval if i <= right_pointer: SCREAMING_SNAKE_CASE : str = min(right_pointer - i + 1 , z_result[i - left_pointer]) SCREAMING_SNAKE_CASE : Optional[int] = min_edge while go_next(snake_case_ , snake_case_ , snake_case_): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: SCREAMING_SNAKE_CASE : Tuple = i, i + z_result[i] - 1 return z_result def lowerCamelCase__ ( _a , _a , _a): return i + z_result[i] < len(snake_case_) and s[z_result[i]] == s[i + z_result[i]] def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string SCREAMING_SNAKE_CASE : Optional[Any] = z_function(pattern + input_str) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case_): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
76
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,): _A : Dict = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ ) _A : Tuple = Path(snake_case_ ) _A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) _A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _A : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params _A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _A : int = num_return_sequences _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _A : Optional[int] = tokenizer.model_max_length if prefix is None: _A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """""" _A : Optional[int] = SeqaSeqDataset( snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ ) _A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn ) _A : Optional[Any] = [] for batch in tqdm(snake_case_ ): _A : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,) _A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) _A : Dict = batch["""ids"""] if num_return_sequences > 1: _A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_,snake_case_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",) parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" ) parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ ) parser.add_argument( """--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",) parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--debug""",action="""store_true""" ) _A : Union[str, Any] = time.time() _A , _A : List[str] = parser.parse_known_args() _A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _A : Dict = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _A : int = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _A : Any = {} if args.src_lang is not None: _A : int = args.src_lang if args.tgt_lang is not None: _A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _A , _A : str = eval_data_dir( args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,) if args.local_rank <= 0: _A : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout ) _A : Optional[int] = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_,snake_case_ ) return _A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _A : Dict = """translation""" in args.task _A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge _A : Tuple = """bleu""" if calc_bleu else """rouge""" _A : Dict = score_fn(snake_case_,snake_case_ ) _A : List[Any] = len(snake_case_ ) _A : Optional[int] = time.time() - start_time _A : Dict = round(runtime / metrics["""n_obs"""],4 ) _A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_,snake_case_,indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for partial_result in partial_results: records.extend(snake_case_ ) _A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] ) _A : List[str] = [x["""pred"""] for x in records] return preds def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # WAIT FOR lots of .json files _A : Optional[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _A : List[str] = None while (time.time() - start_wait) < timeout: _A : str = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _A : List[str] = lmap(snake_case_,snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
0
'''simple docstring''' def snake_case__ ( _A: str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
272
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Tuple = 42 __UpperCamelCase : List[str] = None # Automatically constructed __UpperCamelCase : List[Any] = '''dict''' __UpperCamelCase : List[str] = None __UpperCamelCase : Optional[Any] = field(default='''Translation''' , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self : Dict ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __magic_name__ ( self : int ): """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : int = None __UpperCamelCase : str = None __UpperCamelCase : int = None # Automatically constructed __UpperCamelCase : str = '''dict''' __UpperCamelCase : Optional[Any] = None __UpperCamelCase : List[Any] = field(default='''TranslationVariableLanguages''' , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = sorted(set(self.languages ) ) if self.languages else None _A: Any = len(self.languages ) if self.languages else None def __call__( self : str ): """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = set(self.languages ) if self.languages and set(_a ) - lang_set: raise ValueError( F"""Some languages in example ({', '.join(sorted(set(_a ) - lang_set ) )}) are not in valid set ({', '.join(_a )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _A: Any = [] for lang, text in translation_dict.items(): if isinstance(_a , _a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _A: str = zip(*sorted(_a ) ) return {"language": languages, "translation": translations} def __magic_name__ ( self : Optional[Any] ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
121
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
0
def _a ( lowerCamelCase: Dict ) -> List[Any]: '''simple docstring''' if any(not isinstance(snake_case_ , snake_case_ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(snake_case_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(snake_case_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
117
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): _lowerCamelCase :Union[str, Any] = 1 @register_to_config def __init__( self : List[Any] , UpperCamelCase : Dict=20_00 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=20 , UpperCamelCase : Optional[int]=1E-3 ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Dict = None def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : int = None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : int=None ) -> Dict: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase__ : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase__ : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase__ : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase__ : List[Any] = std.unsqueeze(-1 ) lowerCAmelCase__ : int = -score / std # compute lowerCAmelCase__ : Tuple = -1.0 / len(self.timesteps ) lowerCAmelCase__ : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase__ : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase__ : Union[str, Any] = beta_t.unsqueeze(-1 ) lowerCAmelCase__ : Tuple = -0.5 * beta_t * x lowerCAmelCase__ : Tuple = torch.sqrt(_a ) lowerCAmelCase__ : Dict = drift - diffusion**2 * score lowerCAmelCase__ : Dict = x + drift * dt # add noise lowerCAmelCase__ : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) lowerCAmelCase__ : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Dict ) -> Optional[Any]: """simple docstring""" return self.config.num_train_timesteps
242
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
0
from __future__ import annotations from scipy.special import comb # type: ignore class A_ : '''simple docstring''' def __init__(self , lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __UpperCAmelCase = len(_a ) - 1 def lowerCAmelCase_ (self , lowercase__ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _a ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_a ) , 5 ) == 1 return output_values def lowerCAmelCase_ (self , lowercase__ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCAmelCase = self.basis_function(_a ) __UpperCAmelCase = 0.0 __UpperCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase_ (self , lowercase__ = 0.01 ) -> str: from matplotlib import pyplot as plt # type: ignore __UpperCAmelCase = [] # x coordinates of points to plot __UpperCAmelCase = [] # y coordinates of points to plot __UpperCAmelCase = 0.0 while t <= 1: __UpperCAmelCase = self.bezier_curve_function(_a ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __UpperCAmelCase = [i[0] for i in self.list_of_points] __UpperCAmelCase = [i[1] for i in self.list_of_points] plt.plot( _a , _a , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(_a , _a , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
333
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A_ (UpperCamelCase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE__ : List[str] = ["""image"""] SCREAMING_SNAKE_CASE__ : int = ["""image"""] SCREAMING_SNAKE_CASE__ : Dict = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE__ : Dict = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 8 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCAmelCase_ : List[Any] = CLIPVisionModel(_a ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCAmelCase_ : Optional[int] = PriorTransformer(**_a ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase_ : int = ShapERenderer(**_a ) return model def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.dummy_prior UpperCAmelCase_ : Tuple = self.dummy_image_encoder UpperCAmelCase_ : str = self.dummy_image_processor UpperCAmelCase_ : Any = self.dummy_renderer UpperCAmelCase_ : str = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) UpperCAmelCase_ : Union[str, Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" UpperCAmelCase_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("mps" ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_a ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_a ).manual_seed(_a ) UpperCAmelCase_ : List[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = """cpu""" UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_a ) UpperCAmelCase_ : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) UpperCAmelCase_ : Tuple = output.images[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase_ : Dict = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = torch_device == """cpu""" UpperCAmelCase_ : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_a ) UpperCAmelCase_ : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : str = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase_ : str = batch_size * [inputs[key]] UpperCAmelCase_ : Union[str, Any] = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCAmelCase_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCAmelCase_ : List[Any] = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_ : Tuple = torch.Generator(device=_a ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
61
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _snake_case = { "google/fnet-base": 512, "google/fnet-large": 512, } _snake_case = "▁" class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "token_type_ids"] _a = FNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : int = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) _A : Optional[int] = do_lower_case _A : List[Any] = remove_space _A : str = keep_accents _A : int = vocab_file _A : int = False if not self.vocab_file else True def a__ ( self , _a , _a = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , _a , _a = None ) -> List[int]: _A : Any = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
26
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ :Dict = logging.get_logger(__name__) class snake_case__ ( enum.Enum ): """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1 @add_end_docstrings(UpperCamelCase__ ) class snake_case__ ( UpperCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """generated""" def __init__( self : Optional[int], *_snake_case : Optional[Any], **_snake_case : str ) ->Optional[int]: super().__init__(*_a, **_a ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowercase_ ( self : Union[str, Any], _snake_case : int=None, _snake_case : Any=None, _snake_case : Any=None, _snake_case : str=None, _snake_case : Any=None, _snake_case : Tuple=None, **_snake_case : Any, ) ->str: snake_case__ : Dict = {} if truncation is not None: snake_case__ : Union[str, Any] = truncation snake_case__ : Optional[Any] = generate_kwargs snake_case__ : List[str] = {} if return_tensors is not None and return_type is None: snake_case__ : Any = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case__ : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: snake_case__ : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: snake_case__ : str = self.tokenizer.encode(_a, add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) snake_case__ : Any = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase_ ( self : Optional[Any], _snake_case : List[Any], _snake_case : Tuple, _snake_case : Optional[int] ) ->str: return True def lowercase_ ( self : str, *_snake_case : Optional[Any], _snake_case : Optional[int] ) ->List[Any]: snake_case__ : Dict = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0], _a ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) snake_case__ : Optional[int] = ([prefix + arg for arg in args[0]],) snake_case__ : Optional[Any] = True elif isinstance(args[0], _a ): snake_case__ : Any = (prefix + args[0],) snake_case__ : str = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) snake_case__ : Optional[Any] = self.tokenizer(*_a, padding=_a, truncation=_a, return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : int, *_snake_case : Optional[Any], **_snake_case : Tuple ) ->Optional[Any]: snake_case__ : int = super().__call__(*_a, **_a ) if ( isinstance(args[0], _a ) and all(isinstance(_a, _a ) for el in args[0] ) and all(len(_a ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowercase_ ( self : str, _snake_case : Dict, _snake_case : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE, **_snake_case : Any ) ->Tuple: snake_case__ : Optional[Any] = self._parse_and_tokenize(_a, truncation=_a, **_a ) return inputs def lowercase_ ( self : List[str], _snake_case : int, **_snake_case : List[str] ) ->Optional[int]: if self.framework == "pt": snake_case__ : Tuple = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case__ : Dict = tf.shape(model_inputs['input_ids'] ).numpy() snake_case__ : List[Any] = generate_kwargs.get('min_length', self.model.config.min_length ) snake_case__ : Union[str, Any] = generate_kwargs.get('max_length', self.model.config.max_length ) self.check_inputs(_a, generate_kwargs['min_length'], generate_kwargs['max_length'] ) snake_case__ : str = self.model.generate(**_a, **_a ) snake_case__ : Optional[int] = output_ids.shape[0] if self.framework == "pt": snake_case__ : Dict = output_ids.reshape(_a, out_b // in_b, *output_ids.shape[1:] ) elif self.framework == "tf": snake_case__ : List[str] = tf.reshape(_a, (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowercase_ ( self : Optional[int], _snake_case : Union[str, Any], _snake_case : Union[str, Any]=ReturnType.TEXT, _snake_case : Optional[Any]=False ) ->List[Any]: snake_case__ : Union[str, Any] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case__ : int = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: snake_case__ : Optional[int] = { F'''{self.return_name}_text''': self.tokenizer.decode( _a, skip_special_tokens=_a, clean_up_tokenization_spaces=_a, ) } records.append(_a ) return records @add_end_docstrings(UpperCamelCase__ ) class snake_case__ ( UpperCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """summary""" def __call__( self : Optional[Any], *_snake_case : Union[str, Any], **_snake_case : Tuple ) ->str: return super().__call__(*_a, **_a ) def lowercase_ ( self : Union[str, Any], _snake_case : Dict, _snake_case : Dict, _snake_case : Any ) ->bool: if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(UpperCamelCase__ ) class snake_case__ ( UpperCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """translation""" def lowercase_ ( self : Optional[Any], _snake_case : Any, _snake_case : str, _snake_case : Any ) ->Optional[int]: if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def lowercase_ ( self : int, *_snake_case : List[str], _snake_case : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE, _snake_case : List[str]=None, _snake_case : int=None ) ->Optional[int]: if getattr(self.tokenizer, '_build_translation_inputs', _a ): return self.tokenizer._build_translation_inputs( *_a, return_tensors=self.framework, truncation=_a, src_lang=_a, tgt_lang=_a ) else: return super()._parse_and_tokenize(*_a, truncation=_a ) def lowercase_ ( self : Optional[int], _snake_case : str=None, _snake_case : List[str]=None, **_snake_case : Optional[Any] ) ->List[Any]: snake_case__ : str = super()._sanitize_parameters(**_a ) if src_lang is not None: snake_case__ : Optional[Any] = src_lang if tgt_lang is not None: snake_case__ : Any = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case__ : Any = kwargs.get('task', self.task ) snake_case__ : Union[str, Any] = task.split('_' ) if task and len(_a ) == 4: # translation, XX, to YY snake_case__ : int = items[1] snake_case__ : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple, *_snake_case : Tuple, **_snake_case : int ) ->Union[str, Any]: return super().__call__(*_a, **_a )
277
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = (AXIS_A - AXIS_B) / AXIS_A _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[Any] = radians(snake_case_ ) _A : str = radians(snake_case_ ) # Equation _A : Dict = sin((phi_a - phi_a) / 2 ) _A : List[str] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
26
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class a_ ( UpperCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'dpt' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=384 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=[2, 5, 8, 11] , _lowerCamelCase="project" , _lowerCamelCase=[4, 2, 1, 0.5] , _lowerCamelCase=[96, 192, 384, 768] , _lowerCamelCase=256 , _lowerCamelCase=-1 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.4 , _lowerCamelCase=255 , _lowerCamelCase=0.1 , _lowerCamelCase=[1, 1024, 24, 24] , _lowerCamelCase=[0, 1] , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[Any]: super().__init__(**_a ) SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } SCREAMING_SNAKE_CASE : Union[str, Any] = BitConfig(**_a ) elif isinstance(_a , _a ): logger.info('''Initializing the config with a `BiT` backbone.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = BitConfig(**_a ) elif isinstance(_a , _a ): SCREAMING_SNAKE_CASE : Optional[Any] = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) SCREAMING_SNAKE_CASE : Any = backbone_featmap_shape SCREAMING_SNAKE_CASE : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : int = qkv_bias SCREAMING_SNAKE_CASE : Dict = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) SCREAMING_SNAKE_CASE : int = readout_type SCREAMING_SNAKE_CASE : List[str] = reassemble_factors SCREAMING_SNAKE_CASE : str = neck_hidden_sizes SCREAMING_SNAKE_CASE : Union[str, Any] = fusion_hidden_size SCREAMING_SNAKE_CASE : List[Any] = head_in_index SCREAMING_SNAKE_CASE : List[Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE : Tuple = use_auxiliary_head SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss_weight SCREAMING_SNAKE_CASE : Tuple = semantic_loss_ignore_index SCREAMING_SNAKE_CASE : List[Any] = semantic_classifier_dropout def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE : Tuple = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Tuple = self.__class__.model_type return output
313
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> Optional[int]: super().__init__(_a ) _A : Union[str, Any] = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> str: super().__init__(_a ) _A : Any = config.num_labels _A : Dict = config.num_hidden_layers _A : List[str] = DeeRobertaModel(_a ) _A : int = nn.Dropout(config.hidden_dropout_prob ) _A : int = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any: _A : Optional[int] = self.num_layers try: _A : List[str] = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) _A : List[str] = outputs[1] _A : List[str] = self.dropout(_a ) _A : Optional[Any] = self.classifier(_a ) _A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _A : List[Any] = e.message _A : Optional[int] = e.exit_layer _A : Optional[int] = outputs[0] if not self.training: _A : int = entropy(_a ) _A : int = [] _A : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression _A : Union[str, Any] = MSELoss() _A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _A : Optional[Any] = [] for highway_exit in outputs[-1]: _A : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _A : List[str] = MSELoss() _A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: _A : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _A : int = (loss,) + outputs if not self.training: _A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _A : Union[str, Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
26
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): def __init__( self : Optional[int] , A : List[Any] , A : Union[str, Any] , A : int , A : int , ) ->int: super().__init__() lowerCamelCase__ : List[Any] = value_function lowerCamelCase__ : Union[str, Any] = unet lowerCamelCase__ : str = scheduler lowerCamelCase__ : Union[str, Any] = env lowerCamelCase__ : Tuple = env.get_dataset() lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Any = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Union[str, Any] = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : str = env.observation_space.shape[0] lowerCamelCase__ : Union[str, Any] = env.action_space.shape[0] def __lowerCamelCase ( self : Optional[Any] , A : str , A : Any ) ->Union[str, Any]: return (x_in - self.means[key]) / self.stds[key] def __lowerCamelCase ( self : int , A : Tuple , A : Tuple ) ->Optional[int]: return x_in * self.stds[key] + self.means[key] def __lowerCamelCase ( self : Optional[int] , A : Union[str, Any] ) ->List[str]: if type(_a ) is dict: return {k: self.to_torch(_a ) for k, v in x_in.items()} elif torch.is_tensor(_a ): return x_in.to(self.unet.device ) return torch.tensor(_a , device=self.unet.device ) def __lowerCamelCase ( self : List[str] , A : Any , A : Dict , A : Dict ) ->Optional[Any]: for key, val in cond.items(): lowerCamelCase__ : int = val.clone() return x_in def __lowerCamelCase ( self : Optional[int] , A : Tuple , A : List[str] , A : int , A : Optional[int] ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = x.shape[0] lowerCamelCase__ : Any = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,) , _a , device=self.unet.device , dtype=torch.long ) for _ in range(_a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : List[Any] = self.value_function(x.permute(0 , 2 , 1 ) , _a ).sample lowerCamelCase__ : Optional[Any] = torch.autograd.grad([y.sum()] , [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(_a ) lowerCamelCase__ : List[Any] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = x.detach() lowerCamelCase__ : List[Any] = x + scale * grad lowerCamelCase__ : Any = self.reset_xa(_a , _a , self.action_dim ) lowerCamelCase__ : str = self.unet(x.permute(0 , 2 , 1 ) , _a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Dict = self.scheduler.step(_a , _a , _a , predict_epsilon=_a )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : str = self.reset_xa(_a , _a , self.action_dim ) lowerCamelCase__ : List[Any] = self.to_torch(_a ) return x, y def __call__( self : Tuple , A : int , A : Any=6_4 , A : Union[str, Any]=3_2 , A : Optional[Any]=2 , A : Optional[int]=0.1 ) ->Any: # normalize the observations and create batch dimension lowerCamelCase__ : Any = self.normalize(_a , '''observations''' ) lowerCamelCase__ : Optional[int] = obs[None].repeat(_a , axis=0 ) lowerCamelCase__ : List[str] = {0: self.to_torch(_a )} lowerCamelCase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : Optional[int] = randn_tensor(_a , device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(_a , _a , self.action_dim ) lowerCamelCase__ : int = self.to_torch(_a ) # run the diffusion process lowerCamelCase__ : List[Any] = self.run_diffusion(_a , _a , _a , _a ) # sort output trajectories by value lowerCamelCase__ : Optional[int] = y.argsort(0 , descending=_a ).squeeze() lowerCamelCase__ : Tuple = x[sorted_idx] lowerCamelCase__ : Optional[int] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Tuple = self.de_normalize(_a , key='''actions''' ) # select the action with the highest value if y is not None: lowerCamelCase__ : int = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0 , _a ) lowerCamelCase__ : Any = denorm_actions[selected_index, 0] return denorm_actions
142
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xmod" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Tuple = vocab_size _A : Union[str, Any] = hidden_size _A : Dict = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = hidden_act _A : Optional[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Any = type_vocab_size _A : List[Any] = initializer_range _A : int = layer_norm_eps _A : int = position_embedding_type _A : Any = use_cache _A : int = classifier_dropout _A : int = pre_norm _A : Optional[Any] = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[int] = adapter_reuse_layer_norm _A : Any = ln_before_adapter _A : Union[str, Any] = list(_a ) _A : List[Any] = default_language class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): A : Optional[Any] = 'levit' def __init__( self , SCREAMING_SNAKE_CASE__=224 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[128, 256, 384] , SCREAMING_SNAKE_CASE__=[4, 8, 12] , SCREAMING_SNAKE_CASE__=[4, 4, 4] , SCREAMING_SNAKE_CASE__=[16, 16, 16] , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=[2, 2, 2] , SCREAMING_SNAKE_CASE__=[2, 2, 2] , SCREAMING_SNAKE_CASE__=0.02 , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**_a ) lowercase : List[Any] = image_size lowercase : Union[str, Any] = num_channels lowercase : Optional[Any] = kernel_size lowercase : Optional[int] = stride lowercase : int = padding lowercase : Optional[int] = hidden_sizes lowercase : List[str] = num_attention_heads lowercase : Tuple = depths lowercase : Any = key_dim lowercase : Optional[Any] = drop_path_rate lowercase : Tuple = patch_size lowercase : Tuple = attention_ratio lowercase : int = mlp_ratio lowercase : Any = initializer_range lowercase : Tuple = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): A : Dict = version.parse('1.11' ) @property def __lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): return 1E-4
337
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) if n == 0: return 0 _A : Tuple = float("""-inf""" ) for i in range(1,n + 1 ): _A : str = max( snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) ) return max_revue def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) _A : Dict = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _A : List[str] = float("""-inf""" ) for i in range(1,n + 1 ): _A : Optional[Any] = max( snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),) _A : Tuple = max_revenue return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _A : Any = 0 for i in range(1,n + 1 ): _A : Optional[Any] = max_rev[i] for j in range(1,i + 1 ): _A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] ) _A : int = max_revenue_i return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): if n < 0: _A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case_ ) if n > len(snake_case_ ): _A : Any = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(snake_case_ )}''' ) raise ValueError(snake_case_ ) def lowerCAmelCase_ ( ): _A : Tuple = [6, 10, 12, 15, 20, 23] _A : List[Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _A : Any = 36 _A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ ) _A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ ) _A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = BertAbsConfig( temp_dir="." , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Optional[int] = torch.load(snake_case_ , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : Optional[int] = AbsSummarizer(snake_case_ , torch.device("cpu") , snake_case_) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(snake_case_ , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_))) SCREAMING_SNAKE_CASE : int = torch.tensor(snake_case_).unsqueeze(0) SCREAMING_SNAKE_CASE : Any = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_))) SCREAMING_SNAKE_CASE : List[str] = torch.tensor(snake_case_).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[str] = encoder_input_ids SCREAMING_SNAKE_CASE : int = decoder_input_ids SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : List[str] = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_)[0] SCREAMING_SNAKE_CASE : List[str] = original.generator(snake_case_) SCREAMING_SNAKE_CASE : str = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_)[0] SCREAMING_SNAKE_CASE : Optional[Any] = new_model.generator(snake_case_) SCREAMING_SNAKE_CASE : int = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(snake_case_)) SCREAMING_SNAKE_CASE : str = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(snake_case_)) SCREAMING_SNAKE_CASE : Optional[Any] = torch.allclose(snake_case_ , snake_case_ , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
76
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case_ = "AAPL" ): _A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" ) _A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""",class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
26
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case__ ( _A: Any=None ) -> int: '''simple docstring''' if subparsers is not None: lowerCAmelCase = subparsers.add_parser("""test""" ) else: lowerCAmelCase = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=snake_case_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def snake_case__ ( _A: Any ) -> int: '''simple docstring''' lowerCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: lowerCAmelCase = script_name else: lowerCAmelCase = f"--config_file={args.config_file} {script_name}" lowerCAmelCase = ["""accelerate-launch"""] + test_args.split() lowerCAmelCase = execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def snake_case__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase = test_command_parser() lowerCAmelCase = parser.parse_args() test_command(snake_case_ ) if __name__ == "__main__": main()
272
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
0
from math import sqrt def lowerCamelCase__ ( a ) -> str: _A: Any = 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def lowerCamelCase__ ( a = 1_00_00 ) -> Any: _A: List[Any] = sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
121
def lowerCAmelCase_ ( snake_case_,snake_case_ ): while b: _A , _A : List[str] = b, a % b return a def lowerCAmelCase_ ( snake_case_,snake_case_ ): return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b ) def lowerCAmelCase_ ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' ) if __name__ == "__main__": main()
26
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) snake_case__ : str = torch.device('cpu') def _a ( ) -> Dict: '''simple docstring''' __A = """http://images.cocodataset.org/val2017/000000039769.jpg""" __A = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im def _a ( lowerCamelCase: List[str] ) -> str: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def _a ( lowerCamelCase: Tuple , lowerCamelCase: Dict , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' __A = dct.pop(snake_case_ ) __A = val def _a ( lowerCamelCase: Tuple ) -> int: '''simple docstring''' __A = [] for k in state_dict.keys(): __A = k if ".pwconv" in k: __A = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: __A = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: __A = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: __A = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: __A = k_new.split('''.''' ) if ls[2].isdigit(): __A = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __A = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( lowerCamelCase: List[str] , lowerCamelCase: Optional[Any] , lowerCamelCase: List[Any] ) -> List[str]: '''simple docstring''' __A = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __A = 10_00 __A = """huggingface/label-files""" __A = """imagenet-1k-id2label.json""" __A = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __A = {int(snake_case_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __A = [3, 3, 6, 4] __A = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": __A = [3, 3, 9, 6] __A = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": __A = [4, 3, 10, 5] __A = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": __A = [4, 4, 12, 6] __A = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): __A = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' , check_hash=snake_case_ ) else: __A = torch.load(snake_case_ , map_location='''cpu''' ) __A = checkpoint __A = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model __A = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs __A = prepare_img() __A = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) __A = processor(images=snake_case_ , return_tensors='''pt''' ) # compare outputs from both models __A = get_expected_output(snake_case_ ) __A = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case_ , atol=1e-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') snake_case__ : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
117
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
0
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: # ===== initialization ===== lowerCAmelCase__ : List[str] = Mock() lowerCAmelCase__ : Optional[int] = conn, Mock() lowerCAmelCase__ : Union[str, Any] = iter([1, None] ) lowerCAmelCase__ : List[str] = lambda __UpperCAmelCase : next(snake_case_ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=snake_case_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __UpperCAmelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __UpperCAmelCase = model(_a )["""last_hidden_state"""] __UpperCAmelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. __UpperCAmelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
333
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _A : Optional[int] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def a__ ( self ) -> Optional[Any]: _A : Tuple = None _A : int = None _A : Tuple = None _A : Union[str, Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _A : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A : Dict = dataset _A : int = name _A : Union[str, Any] = con _A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : str = num_proc _A : Optional[Any] = to_sql_kwargs def a__ ( self ) -> int: _A : Any = self.to_sql_kwargs.pop("""sql""" , _a ) _A : List[str] = self.to_sql_kwargs.pop("""con""" , _a ) _A : int = self.to_sql_kwargs.pop("""index""" , _a ) _A : List[str] = self._write(index=_a , **self.to_sql_kwargs ) return written def a__ ( self , _a ) -> Optional[int]: _A , _A , _A : List[str] = args _A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs _A : str = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _A : Tuple = batch.to_pandas() _A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def a__ ( self , _a , **_a ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _A , _A : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
26
0
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) UpperCAmelCase_ : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case_ ) ) return round(snake_case_, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
61
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( UpperCamelCase__ ): _a = "fnet" def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : str = max_position_embeddings _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = intermediate_size _A : List[Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : List[str] = initializer_range _A : List[Any] = type_vocab_size _A : List[Any] = layer_norm_eps _A : List[str] = use_tpu_fourier_optimizations _A : str = tpu_short_seq_length
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ :Any = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = BlipImageProcessor() SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaProcessor(_a , _a ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def __lowerCAmelCase ( self ) ->Any: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) SCREAMING_SNAKE_CASE : List[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = BlipaProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(_a , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : str = BlipaProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE : Optional[Any] = """lower newer""" SCREAMING_SNAKE_CASE : Tuple = processor(text=_a ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Dict = BlipaProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE : int = """lower newer""" SCREAMING_SNAKE_CASE : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : str = BlipaProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : Tuple = processor.batch_decode(_a ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = BlipaProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE : Tuple = """lower newer""" SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Any = processor(text=_a , images=_a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
313
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
0
from __future__ import annotations def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> str: """simple docstring""" if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
142
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __lowercase ( _UpperCamelCase, _UpperCamelCase = 16 ) ->Optional[int]: """simple docstring""" lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase : Any = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase : int = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase : Dict = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : List[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase : Any = 16 elif accelerator.mixed_precision != "no": lowercase : int = 8 else: lowercase : str = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. lowercase : Dict = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) lowercase : str = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": lowercase : Optional[Any] = 2 # New Code # lowercase : str = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase : Dict = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=snake_case_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : int = config["""lr"""] lowercase : str = int(config['''num_epochs'''] ) lowercase : Tuple = int(config['''seed'''] ) lowercase : Optional[Any] = int(config['''batch_size'''] ) lowercase : int = evaluate.load('''glue''', '''mrpc''' ) set_seed(snake_case_ ) lowercase : Dict = get_dataloaders(snake_case_, snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowercase : Any = AdamW(params=model.parameters(), lr=snake_case_ ) # Instantiate scheduler lowercase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=100, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase : List[Any] = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case_ ): lowercase : List[Any] = model(**snake_case_ ) lowercase : Dict = output.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : Dict = model(**snake_case_ ) lowercase : Any = outputs.logits.argmax(dim=-1 ) lowercase : Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) def __lowercase ( ) ->Union[str, Any]: """simple docstring""" lowercase : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=snake_case_, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) lowercase : Tuple = parser.parse_args() lowercase : List[str] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
337
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ = 16 a_ = 32 def lowerCamelCase__ ( _a): return int(x / 2**20) class _UpperCamelCase : '''simple docstring''' def __enter__( self : Tuple ) -> Any: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero SCREAMING_SNAKE_CASE : Any = torch.cuda.memory_allocated() return self def __exit__( self : List[str] , *a : int ) -> List[str]: """simple docstring""" gc.collect() torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated() SCREAMING_SNAKE_CASE : str = bamb(self.end - self.begin ) SCREAMING_SNAKE_CASE : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase__ ( _a , _a = 16 , _a = "bert-base-cased" , _a = 320 , _a = 160 , ): SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(snake_case_) SCREAMING_SNAKE_CASE : List[str] = load_dataset( "glue" , "mrpc" , split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"}) def tokenize_function(_a): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE : List[Any] = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=snake_case_) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_a): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt") return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt") # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["train"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_) SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_) return train_dataloader, eval_dataloader def lowerCamelCase__ ( _a , _a): # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Optional[int] = config["""lr"""] SCREAMING_SNAKE_CASE : Tuple = int(config["num_epochs"]) SCREAMING_SNAKE_CASE : Any = int(config["seed"]) SCREAMING_SNAKE_CASE : Tuple = int(config["batch_size"]) SCREAMING_SNAKE_CASE : Any = args.model_name_or_path set_seed(snake_case_) SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_) # Instantiate optimizer SCREAMING_SNAKE_CASE : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE : Tuple = optimizer_cls(params=model.parameters() , lr=snake_case_) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : str = (len(snake_case_) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE : str = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE : Dict = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE : Optional[Any] = 0 # Now we train the model SCREAMING_SNAKE_CASE : Optional[Any] = {} for epoch in range(snake_case_ , snake_case_): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_): SCREAMING_SNAKE_CASE : Dict = model(**snake_case_) SCREAMING_SNAKE_CASE : Dict = outputs.loss SCREAMING_SNAKE_CASE : Dict = loss / gradient_accumulation_steps accelerator.backward(snake_case_) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin))) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used)) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin))) SCREAMING_SNAKE_CASE : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json") , "w") as f: json.dump(snake_case_ , snake_case_) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path" , type=snake_case_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--output_dir" , type=snake_case_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=snake_case_ , default=snake_case_ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=snake_case_ , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=snake_case_ , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=snake_case_ , default=1 , help="Number of train epochs." , ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_ , snake_case_) if __name__ == "__main__": main()
76
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,): _A : Dict = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ ) _A : Tuple = Path(snake_case_ ) _A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) _A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _A : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params _A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _A : int = num_return_sequences _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _A : Optional[int] = tokenizer.model_max_length if prefix is None: _A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """""" _A : Optional[int] = SeqaSeqDataset( snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ ) _A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn ) _A : Optional[Any] = [] for batch in tqdm(snake_case_ ): _A : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,) _A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) _A : Dict = batch["""ids"""] if num_return_sequences > 1: _A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_,snake_case_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",) parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" ) parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ ) parser.add_argument( """--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",) parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--debug""",action="""store_true""" ) _A : Union[str, Any] = time.time() _A , _A : List[str] = parser.parse_known_args() _A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _A : Dict = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _A : int = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _A : Any = {} if args.src_lang is not None: _A : int = args.src_lang if args.tgt_lang is not None: _A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _A , _A : str = eval_data_dir( args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,) if args.local_rank <= 0: _A : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout ) _A : Optional[int] = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_,snake_case_ ) return _A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _A : Dict = """translation""" in args.task _A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge _A : Tuple = """bleu""" if calc_bleu else """rouge""" _A : Dict = score_fn(snake_case_,snake_case_ ) _A : List[Any] = len(snake_case_ ) _A : Optional[int] = time.time() - start_time _A : Dict = round(runtime / metrics["""n_obs"""],4 ) _A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_,snake_case_,indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for partial_result in partial_results: records.extend(snake_case_ ) _A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] ) _A : List[str] = [x["""pred"""] for x in records] return preds def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # WAIT FOR lots of .json files _A : Optional[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _A : List[str] = None while (time.time() - start_wait) < timeout: _A : str = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _A : List[str] = lmap(snake_case_,snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } __lowercase = { '''google/fnet-base''': 5_1_2, '''google/fnet-large''': 5_1_2, } __lowercase = '''▁''' class a__( UpperCamelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[Any] = ['''input_ids''', '''token_type_ids'''] UpperCAmelCase_ : Tuple = FNetTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="<unk>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a) if isinstance(_a , _a) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" if not os.path.isdir(_a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return lowerCAmelCase = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_a): copyfile(self.vocab_file , _a) return (out_vocab_file,)
272
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' __UpperCamelCase : Dict = '''efficientnet''' def __init__( self : str , lowerCAmelCase_ : Any = 3 , lowerCAmelCase_ : Union[str, Any] = 6_0_0 , lowerCAmelCase_ : str = 2.0 , lowerCAmelCase_ : List[str] = 3.1 , lowerCAmelCase_ : Union[str, Any] = 8 , lowerCAmelCase_ : Union[str, Any] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase_ : Union[str, Any] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , lowerCAmelCase_ : Union[str, Any] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , lowerCAmelCase_ : str = [] , lowerCAmelCase_ : Tuple = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase_ : Any = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase_ : Dict = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : str = 0.25 , lowerCAmelCase_ : Union[str, Any] = "swish" , lowerCAmelCase_ : int = 2_5_6_0 , lowerCAmelCase_ : Any = "mean" , lowerCAmelCase_ : List[str] = 0.02 , lowerCAmelCase_ : str = 0.001 , lowerCAmelCase_ : str = 0.99 , lowerCAmelCase_ : Optional[int] = 0.5 , lowerCAmelCase_ : List[Any] = 0.2 , **lowerCAmelCase_ : Any , ): """simple docstring""" super().__init__(**_a ) _A: int = num_channels _A: Optional[Any] = image_size _A: int = width_coefficient _A: Tuple = depth_coefficient _A: Any = depth_divisor _A: Any = kernel_sizes _A: List[str] = in_channels _A: str = out_channels _A: str = depthwise_padding _A: int = strides _A: Optional[Any] = num_block_repeats _A: Optional[Any] = expand_ratios _A: List[str] = squeeze_expansion_ratio _A: str = hidden_act _A: Tuple = hidden_dim _A: Optional[int] = pooling_type _A: Any = initializer_range _A: Dict = batch_norm_eps _A: Tuple = batch_norm_momentum _A: Union[str, Any] = dropout_rate _A: Union[str, Any] = drop_connect_rate _A: Optional[int] = sum(_a ) * 4 class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' __UpperCamelCase : int = version.parse('''1.11''' ) @property def __magic_name__ ( self : List[Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-5
121
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ : Optional[Any] = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } snake_case__ : Tuple = { 'distilbert-base-uncased': 512, 'distilbert-base-uncased-distilled-squad': 512, 'distilbert-base-cased': 512, 'distilbert-base-cased-distilled-squad': 512, 'distilbert-base-german-cased': 512, 'distilbert-base-multilingual-cased': 512, } snake_case__ : List[Any] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class A_ ( UpperCamelCase__ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = DistilBertTokenizer def __init__(self :Dict , _UpperCamelCase :Optional[int]=None , _UpperCamelCase :List[Any]=None , _UpperCamelCase :Any=True , _UpperCamelCase :Optional[int]="[UNK]" , _UpperCamelCase :List[Any]="[SEP]" , _UpperCamelCase :str="[PAD]" , _UpperCamelCase :Optional[Any]="[CLS]" , _UpperCamelCase :List[Any]="[MASK]" , _UpperCamelCase :Optional[Any]=True , _UpperCamelCase :Dict=None , **_UpperCamelCase :Optional[Any] , )-> Tuple: super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): __A = getattr(_a , normalizer_state.pop('''type''' ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**_a ) __A = do_lower_case def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Any=None )-> Dict: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[int] = None )-> Tuple[str]: __A = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
117
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( UpperCamelCase__ ): _lowerCamelCase :List[Any] = (UnCLIPScheduler,) def _lowerCAmelCase ( self : Optional[int] , **UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_a ) return config def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowerCAmelCase__ : Optional[Any] = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(variance_type="""learned_range""" ) lowerCAmelCase__ : Optional[Any] = scheduler_class(**_a ) lowerCAmelCase__ : str = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : Any = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**_a ) lowerCAmelCase__ : Optional[int] = scheduler.timesteps lowerCAmelCase__ : Union[str, Any] = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter lowerCAmelCase__ : List[str] = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual lowerCAmelCase__ : Dict = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : List[Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample lowerCAmelCase__ : Any = pred_prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(_a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**_a ) scheduler.set_timesteps(25 ) lowerCAmelCase__ : List[str] = scheduler.timesteps lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase__ : str = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual lowerCAmelCase__ : List[Any] = model(_a , _a ) if i + 1 == timesteps.shape[0]: lowerCAmelCase__ : Dict = None else: lowerCAmelCase__ : Optional[Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : Any = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample lowerCAmelCase__ : int = pred_prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(_a ) ) lowerCAmelCase__ : int = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" pass def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass
242
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ : int = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 100, ): UpperCAmelCase_ : List[str] = x_start UpperCAmelCase_ : List[str] = fnc(snake_case_ ) UpperCAmelCase_ : Tuple = 0.0 for _ in range(snake_case_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCAmelCase_ : List[Any] = (x_end - x_start) / steps + xa UpperCAmelCase_ : Any = fnc(snake_case_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCAmelCase_ : Optional[Any] = xa UpperCAmelCase_ : Any = fxa return area if __name__ == "__main__": def __a ( __lowerCamelCase ): return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _a = 10 while i <= 100_000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
61
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _snake_case = { "google/fnet-base": 512, "google/fnet-large": 512, } _snake_case = "▁" class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "token_type_ids"] _a = FNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : int = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) _A : Optional[int] = do_lower_case _A : List[Any] = remove_space _A : str = keep_accents _A : int = vocab_file _A : int = False if not self.vocab_file else True def a__ ( self , _a , _a = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , _a , _a = None ) -> List[int]: _A : Any = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
26
0
from manim import * class snake_case__ ( UpperCamelCase__ ): """simple docstring""" def lowercase_ ( self : List[str] ) ->Dict: snake_case__ : List[Any] = Rectangle(height=0.5, width=0.5 ) snake_case__ : Optional[int] = Rectangle(height=0.4_6, width=0.4_6 ).set_stroke(width=0 ) snake_case__ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case__ : List[Any] = [mem.copy() for i in range(6 )] snake_case__ : Optional[Any] = VGroup(*_a ).arrange(_a, buff=0 ) snake_case__ : Any = VGroup(*_a ).arrange(_a, buff=0 ) snake_case__ : Optional[int] = VGroup(_a, _a ).arrange(_a, buff=0 ) snake_case__ : Optional[Any] = Text('CPU', font_size=2_4 ) snake_case__ : List[str] = Group(_a, _a ).arrange(_a, buff=0.5, aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) snake_case__ : Optional[Any] = [mem.copy() for i in range(4 )] snake_case__ : Optional[int] = VGroup(*_a ).arrange(_a, buff=0 ) snake_case__ : Optional[Any] = Text('GPU', font_size=2_4 ) snake_case__ : Union[str, Any] = Group(_a, _a ).arrange(_a, buff=0.5, aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) snake_case__ : str = [mem.copy() for i in range(6 )] snake_case__ : int = VGroup(*_a ).arrange(_a, buff=0 ) snake_case__ : str = Text('Model', font_size=2_4 ) snake_case__ : List[Any] = Group(_a, _a ).arrange(_a, buff=0.5, aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) snake_case__ : List[str] = [] for i, rect in enumerate(_a ): rect.set_stroke(_a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case__ : str = Rectangle(height=0.4_6 / 4, width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(_a, opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.0_2, direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0], direction=_a, buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1], direction=_a, buff=0.0 ) self.add(_a ) cpu_targs.append(_a ) snake_case__ : Union[str, Any] = [mem.copy() for i in range(6 )] snake_case__ : str = VGroup(*_a ).arrange(_a, buff=0 ) snake_case__ : List[str] = Text('Loaded Checkpoint', font_size=2_4 ) snake_case__ : Optional[int] = Group(_a, _a ).arrange(_a, aligned_edge=_a, buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case__ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case__ : int = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=1_8, ) key_text.move_to([-5, 2.4, 0] ) self.add(_a, _a ) snake_case__ : List[str] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''', font_size=1_8, ) blue_text.next_to(_a, DOWN * 2.4, aligned_edge=key_text.get_left() ) snake_case__ : Optional[int] = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''', font_size=2_4, ) step_a.move_to([2, 2, 0] ) self.play(Write(_a ), Write(_a ) ) self.play(Write(_a, run_time=1 ), Create(_a, run_time=1 ) ) snake_case__ : Optional[int] = [] snake_case__ : Dict = [] for i, rect in enumerate(_a ): snake_case__ : int = fill.copy().set_fill(_a, opacity=0.7 ) target.move_to(_a ) first_animations.append(GrowFromCenter(_a, run_time=1 ) ) snake_case__ : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_a, run_time=1.5 ) ) self.play(*_a ) self.play(*_a ) self.wait()
277
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = (AXIS_A - AXIS_B) / AXIS_A _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[Any] = radians(snake_case_ ) _A : str = radians(snake_case_ ) # Equation _A : Dict = sin((phi_a - phi_a) / 2 ) _A : List[str] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
26
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Union[str, Any] = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> Optional[int]: super().__init__(_a ) _A : Union[str, Any] = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> str: super().__init__(_a ) _A : Any = config.num_labels _A : Dict = config.num_hidden_layers _A : List[str] = DeeRobertaModel(_a ) _A : int = nn.Dropout(config.hidden_dropout_prob ) _A : int = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> Any: _A : Optional[int] = self.num_layers try: _A : List[str] = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) _A : List[str] = outputs[1] _A : List[str] = self.dropout(_a ) _A : Optional[Any] = self.classifier(_a ) _A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _A : List[Any] = e.message _A : Optional[int] = e.exit_layer _A : Optional[int] = outputs[0] if not self.training: _A : int = entropy(_a ) _A : int = [] _A : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression _A : Union[str, Any] = MSELoss() _A : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _A : Optional[Any] = [] for highway_exit in outputs[-1]: _A : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _A : List[str] = MSELoss() _A : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[Any] = CrossEntropyLoss() _A : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: _A : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _A : int = (loss,) + outputs if not self.training: _A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _A : Union[str, Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _A : Union[str, Any] = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xmod" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Tuple = vocab_size _A : Union[str, Any] = hidden_size _A : Dict = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = hidden_act _A : Optional[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Any = type_vocab_size _A : List[Any] = initializer_range _A : int = layer_norm_eps _A : int = position_embedding_type _A : Any = use_cache _A : int = classifier_dropout _A : int = pre_norm _A : Optional[Any] = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[int] = adapter_reuse_layer_norm _A : Any = ln_before_adapter _A : Union[str, Any] = list(_a ) _A : List[Any] = default_language class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" def run_func(_UpperCamelCase ): @wraps(snake_case_ ) def run_in_eager_mode(*_UpperCamelCase, **_UpperCamelCase ): return func(*snake_case_, **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*_UpperCamelCase, **_UpperCamelCase ): return func(*snake_case_, **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : List[Any] = random.Random() lowercase : Optional[int] = [rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_, shape=(batch_size, sequence_length), dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): A : Optional[int] = 42 A : Tuple = 42 A : int = 'TensorFlow' @property def __lowerCamelCase ( self ): return tf.__version__ def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # initialize GPU on separate process lowercase : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase : Optional[Any] = self._prepare_inference_func(_a , _a , _a ) return self._measure_speed(_inference ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase : Dict = self._prepare_train_func(_a , _a , _a ) return self._measure_speed(_train ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _a ) lowercase : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase : Dict = self._prepare_inference_func(_a , _a , _a ) return self._measure_memory(_inference ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _a ) lowercase : str = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowercase : str = self._prepare_train_func(_a , _a , _a ) return self._measure_memory(_train ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowercase : List[Any] = ( hasattr(_a , '''architectures''' ) and isinstance(config.architectures , _a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase : Dict = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase : Tuple = __import__('''transformers''' , fromlist=[model_class] ) lowercase : Tuple = getattr(_a , _a ) lowercase : Optional[int] = model_cls(_a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowercase : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](_a ) # encoder-decoder has vocab size saved differently lowercase : Any = config.vocab_size if hasattr(_a , '''vocab_size''' ) else config.encoder.vocab_size lowercase : Dict = random_input_ids(_a , _a , _a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_a , decoder_input_ids=_a , training=_a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_a , training=_a ) lowercase : str = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowercase : str = ( hasattr(_a , '''architectures''' ) and isinstance(config.architectures , _a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase : Union[str, Any] = __import__('''transformers''' , fromlist=[model_class] ) lowercase : Any = getattr(_a , _a ) lowercase : List[Any] = model_cls(_a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowercase : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_a ) # encoder-decoder has vocab size saved differently lowercase : str = config.vocab_size if hasattr(_a , '''vocab_size''' ) else config.encoder.vocab_size lowercase : Optional[int] = random_input_ids(_a , _a , _a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowercase : str = model(_a , decoder_input_ids=_a , labels=_a , training=_a )[0] lowercase : List[str] = tf.gradients(_a , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowercase : str = model(_a , labels=_a , training=_a )[0] lowercase : Tuple = tf.gradients(_a , model.trainable_variables ) return gradients lowercase : List[str] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(_a , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowercase : Union[str, Any] = timeit.repeat( _a , repeat=self.args.repeat , number=10 , ) return min(_a ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn\'t fit on GPU. {e}""" ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowercase : int = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowercase : List[str] = """N/A""" else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowercase : str = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowercase : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(_a ) lowercase : int = meminfo.used lowercase : Tuple = Memory(_a ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowercase : Optional[Any] = None else: lowercase : Tuple = measure_peak_memory_cpu(_a ) lowercase : int = Memory(_a ) if isinstance(_a , _a ) else memory_bytes if self.args.trace_memory_line_by_line: lowercase : Optional[int] = stop_memory_tracing(_a ) if memory is None: lowercase : Tuple = summary.total else: lowercase : Optional[Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn\'t fit on GPU. {e}""" ) return "N/A", None
337
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) if n == 0: return 0 _A : Tuple = float("""-inf""" ) for i in range(1,n + 1 ): _A : str = max( snake_case_,prices[i - 1] + naive_cut_rod_recursive(n - i,snake_case_ ) ) return max_revue def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) _A : Dict = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case_,snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _A : List[str] = float("""-inf""" ) for i in range(1,n + 1 ): _A : Optional[Any] = max( snake_case_,prices[i - 1] + _top_down_cut_rod_recursive(n - i,snake_case_,snake_case_ ),) _A : Tuple = max_revenue return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _enforce_args(snake_case_,snake_case_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _A : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _A : Any = 0 for i in range(1,n + 1 ): _A : Optional[Any] = max_rev[i] for j in range(1,i + 1 ): _A : int = max(snake_case_,prices[j - 1] + max_rev[i - j] ) _A : int = max_revenue_i return max_rev[n] def lowerCAmelCase_ ( snake_case_,snake_case_ ): if n < 0: _A : Optional[Any] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case_ ) if n > len(snake_case_ ): _A : Any = ( """Each integral piece of rod must have a corresponding price. """ f'''Got n = {n} but length of prices = {len(snake_case_ )}''' ) raise ValueError(snake_case_ ) def lowerCAmelCase_ ( ): _A : Tuple = [6, 10, 12, 15, 20, 23] _A : List[Any] = len(snake_case_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _A : Any = 36 _A : List[Any] = top_down_cut_rod(snake_case_,snake_case_ ) _A : List[Any] = bottom_up_cut_rod(snake_case_,snake_case_ ) _A : Dict = naive_cut_rod_recursive(snake_case_,snake_case_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase__ ( _a , _a , _a , _a): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys())}.") if tokenizer_name is None: SCREAMING_SNAKE_CASE : List[str] = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE : Union[str, Any] = {tokenizer_name: getattr(snake_case_ , tokenizer_name + "Fast")} logger.info(f"Loading tokenizer classes: {tokenizer_names}") for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE : Tuple = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE : Optional[int] = True if checkpoint_name is None: SCREAMING_SNAKE_CASE : int = list(tokenizer_class.max_model_input_sizes.keys()) else: SCREAMING_SNAKE_CASE : Dict = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}") for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}") # Load tokenizer SCREAMING_SNAKE_CASE : List[Any] = tokenizer_class.from_pretrained(snake_case_ , force_download=snake_case_) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}") # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE : Any = checkpoint.split("/") SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(snake_case_ , snake_case_) elif add_prefix: SCREAMING_SNAKE_CASE : Optional[int] = checkpoint SCREAMING_SNAKE_CASE : List[str] = dump_path else: SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : int = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}") if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]: SCREAMING_SNAKE_CASE : Tuple = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint] SCREAMING_SNAKE_CASE : List[Any] = file_path.split(snake_case_)[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(snake_case_ , snake_case_) SCREAMING_SNAKE_CASE : List[str] = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}") SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.save_pretrained( snake_case_ , legacy_format=snake_case_ , filename_prefix=snake_case_) logger.info(f"=> File names {file_names}") for file_name in file_names: if not file_name.endswith("tokenizer.json"): os.remove(snake_case_) logger.info(f"=> removing {file_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
76
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case_ = "AAPL" ): _A : str = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A : List[Any] = BeautifulSoup(requests.get(snake_case_ ).text,"""html.parser""" ) _A : Union[str, Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""",class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
26
0
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __lowercase = logging.getLogger(__name__) class a__: '''simple docstring''' def __init__( self): """simple docstring""" lowerCAmelCase = False def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if not self.initialized: lowerCAmelCase = RagRetriever( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) lowerCAmelCase = True def a_ ( self): """simple docstring""" self.retriever.index.init_index() def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.retriever._main_retrieve(_a , _a) return doc_ids, retrieved_doc_embeds class a__( UpperCamelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" if index is not None and index.is_initialized() and len(_a) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """) super().__init__( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) lowerCAmelCase = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(_a , _a , _a , _a) for worker in self.retrieval_workers ]) def a_ ( self): """simple docstring""" logger.info("""initializing retrieval""") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if len(self.retrieval_workers) > 0: # Select a random retrieval actor. lowerCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] lowerCAmelCase = ray.get(random_worker.retrieve.remote(_a , _a)) else: lowerCAmelCase = self._main_retrieve(_a , _a) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_a) @classmethod def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" return super(_a , cls).get_tokenizers(_a , _a , **_a) @classmethod def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = kwargs.pop("""config""" , _a) or RagConfig.from_pretrained(_a , **_a) lowerCAmelCase = RagTokenizer.from_pretrained(_a , config=_a) lowerCAmelCase = rag_tokenizer.question_encoder lowerCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: lowerCAmelCase = """custom""" lowerCAmelCase = CustomHFIndex(config.retrieval_vector_size , _a) else: lowerCAmelCase = cls._build_index(_a) return cls( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , retrieval_workers=_a , index=_a , )
272
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __get__( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]=None ): """simple docstring""" # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) _A: List[str] = """__cached_""" + self.fget.__name__ _A: Any = getattr(_a , _a , _a ) if cached is None: _A: Dict = self.fget(_a ) setattr(_a , _a , _a ) return cached def lowerCamelCase__ ( a ) -> List[str]: _A: Union[str, Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def lowerCamelCase__ ( a ) -> Optional[Any]: if is_torch_fx_proxy(snake_case_ ): return True if is_torch_available(): import torch if isinstance(snake_case_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(snake_case_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(snake_case_ , (jnp.ndarray, Tracer) ): return True return isinstance(snake_case_ , np.ndarray ) def lowerCamelCase__ ( a ) -> Optional[Any]: return isinstance(snake_case_ , np.ndarray ) def lowerCamelCase__ ( a ) -> int: return _is_numpy(snake_case_ ) def lowerCamelCase__ ( a ) -> Optional[Any]: import torch return isinstance(snake_case_ , torch.Tensor ) def lowerCamelCase__ ( a ) -> List[str]: return False if not is_torch_available() else _is_torch(snake_case_ ) def lowerCamelCase__ ( a ) -> List[Any]: import torch return isinstance(snake_case_ , torch.device ) def lowerCamelCase__ ( a ) -> Optional[int]: return False if not is_torch_available() else _is_torch_device(snake_case_ ) def lowerCamelCase__ ( a ) -> Optional[Any]: import torch if isinstance(snake_case_ , snake_case_ ): if hasattr(snake_case_ , snake_case_ ): _A: Optional[int] = getattr(snake_case_ , snake_case_ ) else: return False return isinstance(snake_case_ , torch.dtype ) def lowerCamelCase__ ( a ) -> Dict: return False if not is_torch_available() else _is_torch_dtype(snake_case_ ) def lowerCamelCase__ ( a ) -> str: import tensorflow as tf return isinstance(snake_case_ , tf.Tensor ) def lowerCamelCase__ ( a ) -> Dict: return False if not is_tf_available() else _is_tensorflow(snake_case_ ) def lowerCamelCase__ ( a ) -> Optional[Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(snake_case_ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(snake_case_ ) return type(snake_case_ ) == tf.Tensor def lowerCamelCase__ ( a ) -> Optional[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(snake_case_ ) def lowerCamelCase__ ( a ) -> Optional[Any]: import jax.numpy as jnp # noqa: F811 return isinstance(snake_case_ , jnp.ndarray ) def lowerCamelCase__ ( a ) -> Tuple: return False if not is_flax_available() else _is_jax(snake_case_ ) def lowerCamelCase__ ( a ) -> str: if isinstance(snake_case_ , (dict, UserDict) ): return {k: to_py_obj(snake_case_ ) for k, v in obj.items()} elif isinstance(snake_case_ , (list, tuple) ): return [to_py_obj(snake_case_ ) for o in obj] elif is_tf_tensor(snake_case_ ): return obj.numpy().tolist() elif is_torch_tensor(snake_case_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(snake_case_ ): return np.asarray(snake_case_ ).tolist() elif isinstance(snake_case_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase__ ( a ) -> Dict: if isinstance(snake_case_ , (dict, UserDict) ): return {k: to_numpy(snake_case_ ) for k, v in obj.items()} elif isinstance(snake_case_ , (list, tuple) ): return np.array(snake_case_ ) elif is_tf_tensor(snake_case_ ): return obj.numpy() elif is_torch_tensor(snake_case_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(snake_case_ ): return np.asarray(snake_case_ ) else: return obj class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: int = fields(self ) # Safety and consistency checks if not len(_a ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) _A: str = getattr(self , class_fields[0].name ) _A: str = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_a ): if isinstance(_a , _a ): _A: int = first_field.items() _A: Dict = True else: try: _A: List[Any] = iter(_a ) _A: List[Any] = True except TypeError: _A: Dict = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_a ): if ( not isinstance(_a , (list, tuple) ) or not len(_a ) == 2 or not isinstance(element[0] , _a ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _A: Dict = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _A: Any = element[1] elif first_field is not None: _A: List[str] = first_field else: for field in class_fields: _A: Any = getattr(self , field.name ) if v is not None: _A: int = v def __delitem__( self : Any , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : str ): """simple docstring""" raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __magic_name__ ( self : List[str] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ): """simple docstring""" raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __magic_name__ ( self : int , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Tuple ): """simple docstring""" raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __magic_name__ ( self : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Dict , lowerCAmelCase_ : List[Any] ): """simple docstring""" if isinstance(_a , _a ): _A: str = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_a , _a ) super().__setattr__(_a , _a ) def __setitem__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ): """simple docstring""" # Will raise a KeyException if needed super().__setitem__(_a , _a ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_a , _a ) def __magic_name__ ( self : str ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' @classmethod def __magic_name__ ( cls : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' __UpperCamelCase : Dict = '''longest''' __UpperCamelCase : Dict = '''max_length''' __UpperCamelCase : List[Any] = '''do_not_pad''' class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' __UpperCamelCase : Dict = '''pt''' __UpperCamelCase : int = '''tf''' __UpperCamelCase : Union[str, Any] = '''np''' __UpperCamelCase : str = '''jax''' class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: List[Any] = context_managers _A: List[Any] = ExitStack() def __enter__( self : int ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(_a ) def __exit__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" self.stack.__exit__(*_a , **_a ) def lowerCamelCase__ ( a ) -> Union[str, Any]: _A: List[Any] = infer_framework(snake_case_ ) if framework == "tf": _A: str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _A: Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: _A: int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase__ ( a ) -> Optional[Any]: _A: Dict = model_class.__name__ _A: Optional[Any] = infer_framework(snake_case_ ) if framework == "tf": _A: Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _A: Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _A: Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase__ ( a , a = "" , a = "." ) -> Any: def _flatten_dict(a , a="" , a="." ): for k, v in d.items(): _A: Dict = str(snake_case_ ) + delimiter + str(snake_case_ ) if parent_key else k if v and isinstance(snake_case_ , snake_case_ ): yield from flatten_dict(snake_case_ , snake_case_ , delimiter=snake_case_ ).items() else: yield key, v return dict(_flatten_dict(snake_case_ , snake_case_ , snake_case_ ) ) @contextmanager def lowerCamelCase__ ( a , a = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase__ ( a , a=None ) -> int: if is_numpy_array(snake_case_ ): return np.transpose(snake_case_ , axes=snake_case_ ) elif is_torch_tensor(snake_case_ ): return array.T if axes is None else array.permute(*snake_case_ ) elif is_tf_tensor(snake_case_ ): import tensorflow as tf return tf.transpose(snake_case_ , perm=snake_case_ ) elif is_jax_tensor(snake_case_ ): return jnp.transpose(snake_case_ , axes=snake_case_ ) else: raise ValueError(f"""Type not supported for transpose: {type(snake_case_ )}.""" ) def lowerCamelCase__ ( a , a ) -> Dict: if is_numpy_array(snake_case_ ): return np.reshape(snake_case_ , snake_case_ ) elif is_torch_tensor(snake_case_ ): return array.reshape(*snake_case_ ) elif is_tf_tensor(snake_case_ ): import tensorflow as tf return tf.reshape(snake_case_ , snake_case_ ) elif is_jax_tensor(snake_case_ ): return jnp.reshape(snake_case_ , snake_case_ ) else: raise ValueError(f"""Type not supported for reshape: {type(snake_case_ )}.""" ) def lowerCamelCase__ ( a , a=None ) -> Optional[int]: if is_numpy_array(snake_case_ ): return np.squeeze(snake_case_ , axis=snake_case_ ) elif is_torch_tensor(snake_case_ ): return array.squeeze() if axis is None else array.squeeze(dim=snake_case_ ) elif is_tf_tensor(snake_case_ ): import tensorflow as tf return tf.squeeze(snake_case_ , axis=snake_case_ ) elif is_jax_tensor(snake_case_ ): return jnp.squeeze(snake_case_ , axis=snake_case_ ) else: raise ValueError(f"""Type not supported for squeeze: {type(snake_case_ )}.""" ) def lowerCamelCase__ ( a , a ) -> Tuple: if is_numpy_array(snake_case_ ): return np.expand_dims(snake_case_ , snake_case_ ) elif is_torch_tensor(snake_case_ ): return array.unsqueeze(dim=snake_case_ ) elif is_tf_tensor(snake_case_ ): import tensorflow as tf return tf.expand_dims(snake_case_ , axis=snake_case_ ) elif is_jax_tensor(snake_case_ ): return jnp.expand_dims(snake_case_ , axis=snake_case_ ) else: raise ValueError(f"""Type not supported for expand_dims: {type(snake_case_ )}.""" ) def lowerCamelCase__ ( a ) -> List[str]: if is_numpy_array(snake_case_ ): return np.size(snake_case_ ) elif is_torch_tensor(snake_case_ ): return array.numel() elif is_tf_tensor(snake_case_ ): import tensorflow as tf return tf.size(snake_case_ ) elif is_jax_tensor(snake_case_ ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(snake_case_ )}.""" ) def lowerCamelCase__ ( a , a ) -> Tuple: for key, value in auto_map.items(): if isinstance(snake_case_ , (tuple, list) ): _A: int = [f"""{repo_id}--{v}""" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _A: List[str] = f"""{repo_id}--{value}""" return auto_map def lowerCamelCase__ ( a ) -> List[str]: for base_class in inspect.getmro(snake_case_ ): _A: Optional[Any] = base_class.__module__ _A: Tuple = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
121
def lowerCAmelCase_ ( snake_case_,snake_case_ ): while b: _A , _A : List[str] = b, a % b return a def lowerCAmelCase_ ( snake_case_,snake_case_ ): return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b ) def lowerCAmelCase_ ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' ) if __name__ == "__main__": main()
26
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) def _a ( lowerCamelCase: List[str] , lowerCamelCase: List[Any]=False ) -> Tuple: '''simple docstring''' __A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __A = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( lowerCamelCase: Dict , lowerCamelCase: str , lowerCamelCase: List[str]=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __A = """""" else: __A = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __A = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[ : config.hidden_size, : ] __A = in_proj_bias[: config.hidden_size] __A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A = in_proj_weight[ -config.hidden_size :, : ] __A = in_proj_bias[-config.hidden_size :] def _a ( lowerCamelCase: int ) -> str: '''simple docstring''' __A = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def _a ( lowerCamelCase: int , lowerCamelCase: Optional[Any] , lowerCamelCase: Optional[int] ) -> List[Any]: '''simple docstring''' __A = dct.pop(snake_case_ ) __A = val def _a ( ) -> Tuple: '''simple docstring''' __A = """http://images.cocodataset.org/val2017/000000039769.jpg""" __A = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def _a ( lowerCamelCase: Tuple , lowerCamelCase: Any , lowerCamelCase: List[str]=True ) -> Dict: '''simple docstring''' __A = ViTConfig() # patch_size if model_name[-1] == "8": __A = 8 # set labels if required if not base_model: __A = 10_00 __A = """huggingface/label-files""" __A = """imagenet-1k-id2label.json""" __A = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __A = {int(snake_case_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __A = 3_84 __A = 15_36 __A = 12 __A = 6 # load original model from torch hub __A = torch.hub.load('''facebookresearch/dino:main''' , snake_case_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __A = original_model.state_dict() if base_model: remove_classification_head_(snake_case_ ) __A = create_rename_keys(snake_case_ , base_model=snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model if base_model: __A = ViTModel(snake_case_ , add_pooling_layer=snake_case_ ).eval() else: __A = ViTForImageClassification(snake_case_ ).eval() model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by ViTImageProcessor __A = ViTImageProcessor() __A = image_processor(images=prepare_img() , return_tensors='''pt''' ) __A = encoding["""pixel_values"""] __A = model(snake_case_ ) if base_model: __A = original_model(snake_case_ ) assert torch.allclose(snake_case_ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: __A = original_model(snake_case_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(snake_case_ , outputs.logits , atol=1e-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ : int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
117
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
242
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( snake_case_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _A : str = k.replace(snake_case_,snake_case_ ) if k.startswith("""encoder""" ): _A : Optional[Any] = k.replace(""".attn""",""".self_attn""" ) _A : Dict = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Optional[Any] = k.replace("""norm2""","""final_layer_norm""" ) elif k.startswith("""decoder""" ): _A : str = k.replace("""norm1""","""self_attn_layer_norm""" ) _A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" ) _A : Optional[int] = k.replace("""norm3""","""final_layer_norm""" ) return k def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: _A : str = sd.pop(snake_case_ ) _A : Optional[int] = k.replace("""layernorm_embedding""","""layer_norm""" ) assert new_k not in sd _A : Optional[int] = v _snake_case = ["START"] @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) _A : List[Any] = model["""model"""] _A : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) _A : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) _A : Tuple = m.model.state_dict().keys() _A : Any = [] _A : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _A : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _A : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_,strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) _snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar A_ : Optional[Any] = TypeVar('T') class A_ ( Generic[T] ): '''simple docstring''' def __init__(self , lowercase__ ) -> str: __UpperCAmelCase = data __UpperCAmelCase = None def __str__(self ) -> str: return F'''{self.data}''' class A_ ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = None def __iter__(self ) -> Iterator[T]: __UpperCAmelCase = self.top while node: yield node.data __UpperCAmelCase = node.next def __str__(self ) -> str: return "->".join([str(_a ) for item in self] ) def __len__(self ) -> int: return len(tuple(iter(self ) ) ) def lowerCAmelCase_ (self ) -> bool: return self.top is None def lowerCAmelCase_ (self , lowercase__ ) -> None: __UpperCAmelCase = Node(_a ) if not self.is_empty(): __UpperCAmelCase = self.top __UpperCAmelCase = node def lowerCAmelCase_ (self ) -> T: if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , _a ) __UpperCAmelCase = self.top __UpperCAmelCase = self.top.next return pop_node.data def lowerCAmelCase_ (self ) -> T: if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def lowerCAmelCase_ (self ) -> None: __UpperCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
333
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) _A : Optional[int] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def a__ ( self ) -> Optional[Any]: _A : Tuple = None _A : int = None _A : Tuple = None _A : Union[str, Any] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits _A : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Union[str, Any]: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _A : Dict = dataset _A : int = name _A : Union[str, Any] = con _A : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _A : str = num_proc _A : Optional[Any] = to_sql_kwargs def a__ ( self ) -> int: _A : Any = self.to_sql_kwargs.pop("""sql""" , _a ) _A : List[str] = self.to_sql_kwargs.pop("""con""" , _a ) _A : int = self.to_sql_kwargs.pop("""index""" , _a ) _A : List[str] = self._write(index=_a , **self.to_sql_kwargs ) return written def a__ ( self , _a ) -> Optional[int]: _A , _A , _A : List[str] = args _A : int = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs _A : str = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) _A : Tuple = batch.to_pandas() _A : Union[str, Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def a__ ( self , _a , **_a ) -> int: _A : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _A , _A : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
26
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _a = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class A_ (unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" UpperCAmelCase_ : Optional[int] = TOKEN HfFolder.save_token(_a ) @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Dict = FlaxBertModel(_a ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id="test-model-flax" , push_to_hub=_a , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase_ : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=F"""{key} not identical""" ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : List[str] = FlaxBertModel(_a ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) UpperCAmelCase_ : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id="valid_org/test-model-flax-org" , push_to_hub=_a , use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=F"""{key} not identical""" ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) UpperCAmelCase_ : Optional[Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase_ : List[str] = False return models_are_equal @require_flax class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCAmelCase_ : Optional[int] = FlaxBertModel(_a ) UpperCAmelCase_ : List[str] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(_a ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCAmelCase_ : Any = FlaxBertModel(_a ) UpperCAmelCase_ : Optional[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size="10KB" ) with self.assertRaises(_a ): UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(_a ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = """bert""" UpperCAmelCase_ : List[Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(_a ): UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_a ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = """bert""" UpperCAmelCase_ : str = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(_a ): UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(_a ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
61
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( UpperCamelCase__ ): _a = "fnet" def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : str = max_position_embeddings _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = intermediate_size _A : List[Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : List[str] = initializer_range _A : List[Any] = type_vocab_size _A : List[Any] = layer_norm_eps _A : List[str] = use_tpu_fourier_optimizations _A : str = tpu_short_seq_length
26
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a_ :str = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a_ :Any = concatenate_datasets a_ :Optional[Any] = DownloadConfig a_ :int = DownloadManager a_ :Optional[Any] = DownloadMode a_ :Dict = DownloadConfig a_ :Any = DownloadMode a_ :Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
277
def lowerCAmelCase_ ( snake_case_ ): if n_term == "": return [] _A : list = [] for temp in range(int(snake_case_ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
26
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def UpperCAmelCase_( *a__ ): """simple docstring""" with open(snake_case_ , '''r''' ) as fh: fcntl.flock(snake_case_ , fcntl.LOCK_EX ) try: print(*snake_case_ ) finally: fcntl.flock(snake_case_ , fcntl.LOCK_UN ) a__ : Optional[int] = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) a__ : Dict = torch.device('''cuda''', local_rank) a__ : Tuple = socket.gethostname() a__ : Any = F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a__ : Optional[int] = dist.get_rank() a__ : List[Any] = dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
313
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _A : Optional[int] = 'bart' _A : Optional[Any] = True @st.cache(allow_output_mutation=snake_case_ ) def _a ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) lowerCamelCase__ : Tuple = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) lowerCamelCase__ : str = qar_model.eval() else: lowerCamelCase__ : Dict = (None, None) if MODEL_TYPE == "bart": lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) lowerCamelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) lowerCamelCase__ : int = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) lowerCamelCase__ : Tuple = sas_model.eval() else: lowerCamelCase__ : Optional[int] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def _a ( ) -> Optional[Any]: """simple docstring""" if LOAD_DENSE_INDEX: lowerCamelCase__ : int = faiss.StandardGpuResources() lowerCamelCase__ : int = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )["""train"""] lowerCamelCase__ : List[str] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) lowerCamelCase__ : Any = faiss.IndexFlatIP(128 ) lowerCamelCase__ : Union[str, Any] = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: lowerCamelCase__ : List[str] = (None, None) lowerCamelCase__ : List[str] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def _a ( ) -> List[str]: """simple docstring""" lowerCamelCase__ : Tuple = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) lowerCamelCase__ : Optional[int] = elia["""train_eli5"""] lowerCamelCase__ : int = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) lowerCamelCase__ : int = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) _A , _A , _A : Union[str, Any] = load_indexes() _A , _A , _A , _A : str = load_models() _A , _A : Optional[int] = load_train_data() def _a ( UpperCAmelCase , UpperCAmelCase=10 ) -> str: """simple docstring""" lowerCamelCase__ : Union[str, Any] = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) lowerCamelCase__ : Optional[Any] = eli5_train_q_index.search(snake_case_ , snake_case_ ) lowerCamelCase__ : int = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def _a ( UpperCAmelCase , UpperCAmelCase="wiki40b" , UpperCAmelCase="dense" , UpperCAmelCase=10 ) -> Union[str, Any]: """simple docstring""" if source == "none": lowerCamelCase__ : List[str] = (""" <P> """.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCamelCase__ : int = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: lowerCamelCase__ : Union[str, Any] = query_es_index( snake_case_ , snake_case_ , index_name='''english_wiki40b_snippets_100w''' , n_results=snake_case_ , ) lowerCamelCase__ : Tuple = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowerCamelCase__ : Dict = """question: {} context: {}""".format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCAmelCase : None), } ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=64 , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=0.95 , UpperCAmelCase=0.8 ) -> List[Any]: """simple docstring""" with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar _A : int = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' _A : Union[str, Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _A : List[Any] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) _A : Tuple = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] _A : Dict = st.sidebar.checkbox('Demo options') if demo_options: _A : str = st.sidebar.selectbox( '', action_list, index=3, ) _A : str = action_list.index(action_st) _A : Dict = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) _A : Dict = show_type == 'Show full text of passages' else: _A : Dict = 3 _A : Optional[Any] = True _A : Optional[Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: _A : Optional[int] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) _A : Optional[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) _A : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: _A : List[Any] = 'wiki40b' _A : Union[str, Any] = 'dense' _A : Optional[int] = 'beam' _A : Optional[Any] = 2 _A : List[str] = 64 _A : Union[str, Any] = 2_56 _A : List[Any] = None _A : Optional[int] = None _A : str = st.sidebar.checkbox('Generation options') if generate_options: _A : Optional[int] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) _A : Union[str, Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) _A : Optional[Any] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _A : str = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _A : List[str] = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _A : int = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _A : List[Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _A : List[str] = None # start main text _A : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] _A : int = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": _A : Union[str, Any] = st.text_input('Enter your question here:', '') else: _A : int = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": _A , _A : List[Any] = make_support(question, source=wiki_source, method='dense', n_results=10) _A , _A : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) _A : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _A : Tuple = support_list[:10] _A : Any = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: _A , _A : Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _A , _A : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): _A : Dict = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) _A : str = res[1].strip() if sec_titles == "": _A : Optional[int] = '[{}]({})'.format(res[0], wiki_url) else: _A : Optional[int] = sec_titles.split(' & ') _A : List[Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style=\"font-family:arial; font-size:10pt;\">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: _A : Optional[Any] = find_nearest_training(question) _A : str = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) _A : List[str] = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) _A : Optional[int] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
142
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=False , _a=True , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Dict: _A : str = parent _A : int = batch_size _A : Optional[int] = num_channels _A : List[Any] = image_size _A : int = min_resolution _A : Optional[int] = max_resolution _A : Any = do_resize _A : List[str] = size if size is not None else {"""height""": 18, """width""": 20} _A : Optional[int] = do_thumbnail _A : str = do_align_axis _A : List[Any] = do_pad _A : Optional[Any] = do_normalize _A : Tuple = image_mean _A : List[str] = image_std def a__ ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DonutImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : List[str] = DonutImageProcessingTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_thumbnail""" ) ) self.assertTrue(hasattr(_a , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def a__ ( self ) -> Union[str, Any]: pass @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Dict: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : str = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
26
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __lowercase ( _UpperCamelCase ) ->Any: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowercase : str = k.replace(snake_case_, snake_case_ ) if k.startswith('''encoder''' ): lowercase : Optional[Any] = k.replace('''.attn''', '''.self_attn''' ) lowercase : Dict = k.replace('''norm1''', '''self_attn_layer_norm''' ) lowercase : Optional[Any] = k.replace('''norm2''', '''final_layer_norm''' ) elif k.startswith('''decoder''' ): lowercase : str = k.replace('''norm1''', '''self_attn_layer_norm''' ) lowercase : Any = k.replace('''norm2''', '''encoder_attn_layer_norm''' ) lowercase : Optional[int] = k.replace('''norm3''', '''final_layer_norm''' ) return k def __lowercase ( _UpperCamelCase ) ->List[Any]: """simple docstring""" lowercase : List[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowercase : str = sd.pop(snake_case_ ) lowercase : Optional[int] = k.replace('''layernorm_embedding''', '''layer_norm''' ) assert new_k not in sd lowercase : Optional[int] = v __a = ['''START'''] @torch.no_grad() def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" lowercase : Tuple = torch.load(snake_case_, map_location='''cpu''' ) lowercase : List[Any] = model["""model"""] lowercase : Optional[Any] = BlenderbotConfig.from_json_file(snake_case_ ) lowercase : List[str] = BlenderbotForConditionalGeneration(snake_case_ ) lowercase : Tuple = m.model.state_dict().keys() lowercase : Any = [] lowercase : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowercase : Optional[int] = rename_state_dict_key(snake_case_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowercase : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case_ ) m.model.load_state_dict(snake_case_, strict=snake_case_ ) m.half() m.save_pretrained(snake_case_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) __a = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
337
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCamelCase ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , a : List[Any]=3 , a : Dict=3 , a : List[str]=("DownEncoderBlock2D",) , a : Union[str, Any]=(64,) , a : str=2 , a : List[str]=32 , a : Optional[int]="silu" , a : Union[str, Any]=True , ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : List[str] = layers_per_block SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.Convad( _a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : int = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0] for i, down_block_type in enumerate(_a ): SCREAMING_SNAKE_CASE : int = output_channel SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] SCREAMING_SNAKE_CASE : Optional[Any] = i == len(_a ) - 1 SCREAMING_SNAKE_CASE : Tuple = get_down_block( _a , num_layers=self.layers_per_block , in_channels=_a , out_channels=_a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , ) self.down_blocks.append(_a ) # mid SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_a , eps=1e-6 ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : List[str] = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , _a , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Any = False def __UpperCamelCase ( self : Dict , a : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = x SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_in(_a ) if self.training and self.gradient_checkpointing: def create_custom_forward(a : Any ): def custom_forward(*a : List[str] ): return module(*_a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : int = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , use_reentrant=_a ) # middle SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , use_reentrant=_a ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a ) # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _a ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : List[Any] = down_block(_a ) # middle SCREAMING_SNAKE_CASE : Dict = self.mid_block(_a ) # post-process SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(_a ) SCREAMING_SNAKE_CASE : List[str] = self.conv_act(_a ) SCREAMING_SNAKE_CASE : str = self.conv_out(_a ) return sample class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , a : Union[str, Any]=3 , a : Optional[Any]=3 , a : str=("UpDecoderBlock2D",) , a : str=(64,) , a : Any=2 , a : Union[str, Any]=32 , a : Dict="silu" , a : int="group" , ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Tuple = layers_per_block SCREAMING_SNAKE_CASE : Any = nn.Convad( _a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : str = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : Optional[int] = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE : List[str] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # up SCREAMING_SNAKE_CASE : List[str] = list(reversed(_a ) ) SCREAMING_SNAKE_CASE : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(_a ): SCREAMING_SNAKE_CASE : Any = output_channel SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Optional[Any] = i == len(_a ) - 1 SCREAMING_SNAKE_CASE : List[str] = get_up_block( _a , num_layers=self.layers_per_block + 1 , in_channels=_a , out_channels=_a , prev_output_channel=_a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , resnet_time_scale_shift=_a , ) self.up_blocks.append(_a ) SCREAMING_SNAKE_CASE : Optional[int] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : Dict = SpatialNorm(block_out_channels[0] , _a ) else: SCREAMING_SNAKE_CASE : List[str] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_a , eps=1e-6 ) SCREAMING_SNAKE_CASE : List[str] = nn.SiLU() SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , _a , 3 , padding=1 ) SCREAMING_SNAKE_CASE : int = False def __UpperCamelCase ( self : List[str] , a : List[str] , a : Any=None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = z SCREAMING_SNAKE_CASE : Dict = self.conv_in(_a ) SCREAMING_SNAKE_CASE : str = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a : Optional[Any] ): def custom_forward(*a : Optional[int] ): return module(*_a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a , use_reentrant=_a ) SCREAMING_SNAKE_CASE : Dict = sample.to(_a ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , _a , use_reentrant=_a ) else: # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a ) SCREAMING_SNAKE_CASE : Optional[int] = sample.to(_a ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a , _a ) else: # middle SCREAMING_SNAKE_CASE : Tuple = self.mid_block(_a , _a ) SCREAMING_SNAKE_CASE : Dict = sample.to(_a ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Dict = up_block(_a , _a ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : List[Any] = self.conv_norm_out(_a ) else: SCREAMING_SNAKE_CASE : int = self.conv_norm_out(_a , _a ) SCREAMING_SNAKE_CASE : Tuple = self.conv_act(_a ) SCREAMING_SNAKE_CASE : Tuple = self.conv_out(_a ) return sample class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , a : Any , a : int , a : Optional[Any] , a : int=None , a : Union[str, Any]="random" , a : str=False , a : Any=True ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : List[str] = n_e SCREAMING_SNAKE_CASE : List[str] = vq_embed_dim SCREAMING_SNAKE_CASE : int = beta SCREAMING_SNAKE_CASE : Optional[Any] = legacy SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : Tuple = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = self.used.shape[0] SCREAMING_SNAKE_CASE : Dict = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : List[str] = self.re_embed SCREAMING_SNAKE_CASE : str = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices." ) else: SCREAMING_SNAKE_CASE : Optional[Any] = n_e SCREAMING_SNAKE_CASE : str = sane_index_shape def __UpperCamelCase ( self : int , a : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = inds.shape assert len(_a ) > 1 SCREAMING_SNAKE_CASE : Dict = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Any = self.used.to(_a ) SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Optional[int] = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Dict = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Tuple = self.unknown_index return new.reshape(_a ) def __UpperCamelCase ( self : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = inds.shape assert len(_a ) > 1 SCREAMING_SNAKE_CASE : Union[str, Any] = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : List[Any] = self.used.to(_a ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE : int = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _a ) return back.reshape(_a ) def __UpperCamelCase ( self : Dict , a : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : Tuple = torch.argmin(torch.cdist(_a , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = self.embedding(_a ).view(z.shape ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Any = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : int = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : Dict = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(_a ) SCREAMING_SNAKE_CASE : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : List[Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self : Tuple , a : int , a : Tuple ) -> Dict: """simple docstring""" if self.remap is not None: SCREAMING_SNAKE_CASE : Optional[int] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : str = self.unmap_to_all(_a ) SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : Optional[int] = self.embedding(_a ) if shape is not None: SCREAMING_SNAKE_CASE : Tuple = z_q.view(_a ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _UpperCamelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , a : Optional[int] , a : Any=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = parameters SCREAMING_SNAKE_CASE : Dict = torch.chunk(_a , 2 , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : Optional[int] = deterministic SCREAMING_SNAKE_CASE : List[str] = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Dict = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : str = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self : List[Any] , a : List[Any] = None ) -> torch.FloatTensor: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( self.mean.shape , generator=_a , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample return x def __UpperCamelCase ( self : List[str] , a : Any=None ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self : List[str] , a : List[str] , a : Tuple=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : Dict = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_a ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" return self.mean
76
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _snake_case = getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = 1024,snake_case_="val",snake_case_=None,snake_case_=False,snake_case_="summarization",snake_case_=None,snake_case_=1,snake_case_ = None,snake_case_="",**snake_case_,): _A : Dict = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""",rank=snake_case_ ) _A : Tuple = Path(snake_case_ ) _A : List[Any] = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(snake_case_ ) _A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _A : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_,snake_case_ ) # update config with task specific params _A : str = generate_kwargs.pop("""num_beams""",model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _A : int = num_return_sequences _A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _A : Optional[int] = tokenizer.model_max_length if prefix is None: _A : Tuple = prefix or getattr(model.config,"""prefix""","""""" ) or """""" _A : Optional[int] = SeqaSeqDataset( snake_case_,snake_case_,snake_case_,max_target_length=1024,type_path=snake_case_,n_obs=snake_case_,prefix=snake_case_,**snake_case_,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _A : Optional[int] = ds.make_sortish_sampler(snake_case_,distributed=snake_case_,add_extra_examples=snake_case_,shuffle=snake_case_ ) _A : Dict = DataLoader(snake_case_,sampler=snake_case_,batch_size=snake_case_,collate_fn=ds.collate_fn ) _A : Optional[Any] = [] for batch in tqdm(snake_case_ ): _A : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ),attention_mask=batch["""attention_mask"""].to(model.device ),num_return_sequences=snake_case_,num_beams=snake_case_,**snake_case_,) _A : Any = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) _A : Dict = batch["""ids"""] if num_return_sequences > 1: _A : Any = chunks(snake_case_,snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_,snake_case_ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""",default="""sshleifer/distilbart-xsum-12-3""",) parser.add_argument("""--save_dir""",type=snake_case_,help="""where to save""",default="""tmp_gen""" ) parser.add_argument("""--max_source_length""",type=snake_case_,default=snake_case_ ) parser.add_argument( """--type_path""",type=snake_case_,default="""test""",help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--local_rank""",type=snake_case_,default=-1,required=snake_case_,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=snake_case_,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""",type=snake_case_,default=1,required=snake_case_,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""",type=snake_case_,default=600,required=snake_case_,help="""How long should master process wait for other processes to finish.""",) parser.add_argument("""--src_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument("""--tgt_lang""",type=snake_case_,default=snake_case_,required=snake_case_ ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--debug""",action="""store_true""" ) _A : Union[str, Any] = time.time() _A , _A : List[str] = parser.parse_known_args() _A : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) _A : Dict = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _A : int = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _A : Any = {} if args.src_lang is not None: _A : int = args.src_lang if args.tgt_lang is not None: _A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _A , _A : str = eval_data_dir( args.data_dir,snake_case_,args.model_name,type_path=args.type_path,bs=args.bs,fpaa=args.fpaa,task=args.task,local_rank=args.local_rank,n_obs=args.n_obs,max_source_length=args.max_source_length,num_return_sequences=args.num_return_sequences,prefix=args.prefix,dataset_kwargs=snake_case_,**snake_case_,) if args.local_rank <= 0: _A : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _A : Tuple = gather_results_from_each_node(snake_case_,snake_case_,args.sync_timeout ) _A : Optional[int] = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _A : Optional[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(snake_case_,snake_case_ ) return _A : List[str] = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _A : int = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _A : Dict = """translation""" in args.task _A : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge _A : Tuple = """bleu""" if calc_bleu else """rouge""" _A : Dict = score_fn(snake_case_,snake_case_ ) _A : List[Any] = len(snake_case_ ) _A : Optional[int] = time.time() - start_time _A : Dict = round(runtime / metrics["""n_obs"""],4 ) _A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics _A : Any = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(snake_case_,snake_case_,indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(snake_case_,save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for partial_result in partial_results: records.extend(snake_case_ ) _A : Optional[Any] = sorted(snake_case_,key=lambda snake_case_ : x["id"] ) _A : List[str] = [x["""pred"""] for x in records] return preds def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # WAIT FOR lots of .json files _A : Optional[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _A : List[str] = None while (time.time() - start_wait) < timeout: _A : str = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _A : List[str] = lmap(snake_case_,snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def snake_case__ ( _A: Any ) -> int: '''simple docstring''' if "cls_token" in name: lowerCAmelCase = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCAmelCase = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCAmelCase = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCAmelCase = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCAmelCase = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCAmelCase = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def snake_case__ ( _A: int , _A: Optional[int] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(snake_case_ ) if "qkv" in key: lowerCAmelCase = key.split(""".""" ) lowerCAmelCase = int(key_split[1] ) if "decoder_blocks" in key: lowerCAmelCase = config.decoder_hidden_size lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] elif "bias" in key: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] else: lowerCAmelCase = config.hidden_size lowerCAmelCase = """vit.encoder.layer.""" if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] elif "bias" in key: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] else: lowerCAmelCase = val return orig_state_dict def snake_case__ ( _A: int , _A: Any ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase = 1024 lowerCAmelCase = 4096 lowerCAmelCase = 24 lowerCAmelCase = 16 elif "huge" in checkpoint_url: lowerCAmelCase = 14 lowerCAmelCase = 1280 lowerCAmelCase = 5120 lowerCAmelCase = 32 lowerCAmelCase = 16 lowerCAmelCase = ViTMAEForPreTraining(snake_case_ ) lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" )["""model"""] lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() lowerCAmelCase = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase = model(**snake_case_ ) lowerCAmelCase = outputs.logits if "large" in checkpoint_url: lowerCAmelCase = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: lowerCAmelCase = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: lowerCAmelCase = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , snake_case_ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
272
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
0
import requests def lowerCamelCase__ ( a , a ) -> List[str]: _A: List[str] = {"""Content-Type""": """application/json"""} _A: str = requests.post(snake_case_ , json={'''text''': message_body} , headers=snake_case_ ) if response.status_code != 2_00: _A: Union[str, Any] = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
121
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Any = {'vocab_file': 'spiece.model'} snake_case__ : Tuple = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class A_ ( UpperCamelCase__ ): def __init__(self :int , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :List[Any]=False , _UpperCamelCase :Optional[Any]=True , _UpperCamelCase :List[str]=False , _UpperCamelCase :Dict="<s>" , _UpperCamelCase :List[Any]="</s>" , _UpperCamelCase :Optional[int]="<unk>" , _UpperCamelCase :List[str]="<sep>" , _UpperCamelCase :str="<pad>" , _UpperCamelCase :Tuple="<cls>" , _UpperCamelCase :Any="<mask>" , _UpperCamelCase :List[Any]=["<eop>", "<eod>"] , _UpperCamelCase :int = None , **_UpperCamelCase :str , )-> None: __A = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __A = 3 __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) __A = jieba __A = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCAmelCase (self :Tuple )-> List[Any]: return len(self.sp_model ) def _lowerCAmelCase (self :Optional[int] )-> Tuple: __A = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self :Dict )-> Tuple: __A = self.__dict__.copy() __A = None return state def __setstate__(self :List[str] , _UpperCamelCase :List[str] )-> Union[str, Any]: __A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase (self :Any , _UpperCamelCase :Dict )-> str: if self.remove_space: __A = """ """.join(inputs.strip().split() ) else: __A = inputs __A = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: __A = unicodedata.normalize('''NFKD''' , _a ) __A = """""".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: __A = outputs.lower() return outputs def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :str )-> List[str]: __A = self.preprocess_text(_a ) __A = self.sp_model.encode(_a , out_type=_a ) __A = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __A = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __A = cur_pieces[1:] else: __A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def _lowerCAmelCase (self :str , _UpperCamelCase :Tuple )-> Union[str, Any]: return self.sp_model.PieceToId(_a ) def _lowerCAmelCase (self :int , _UpperCamelCase :Optional[int] )-> Optional[Any]: return self.sp_model.IdToPiece(_a ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Optional[int] )-> int: __A = """""".join(_a ).replace(_a , ''' ''' ).strip() return out_string def _lowerCAmelCase (self :str , _UpperCamelCase :Tuple , _UpperCamelCase :Dict = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :List[str] = None , _UpperCamelCase :Dict = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Tuple = None )-> List[int]: __A = [self.sep_token_id] __A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase (self :Tuple , _UpperCamelCase :str , _UpperCamelCase :Optional[Any] = None )-> Tuple[str]: if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __A = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def _lowerCAmelCase (self :Any , *_UpperCamelCase :List[str] , **_UpperCamelCase :Optional[Any] )-> Optional[Any]: __A = super()._decode(*_a , **_a ) __A = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
117
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): _lowerCamelCase :List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_a ) ) lowerCAmelCase__ : Optional[Any] = np.random.RandomState(_a ) lowerCAmelCase__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : Any = self.get_dummy_inputs() lowerCAmelCase__ : List[str] = pipe(**_a ).images lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ : List[Any] = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase__ : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs() lowerCAmelCase__ : Union[str, Any] = pipe(**_a ).images lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ : Dict = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations lowerCAmelCase__ : List[Any] = pipe(**self.get_dummy_inputs() ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs() lowerCAmelCase__ : List[str] = pipe(**_a ).images lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ : Dict = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase__ : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : int = self.get_dummy_inputs() lowerCAmelCase__ : Tuple = pipe(**_a ).images lowerCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ : Any = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase__ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs() lowerCAmelCase__ : Tuple = pipe(**_a ).images lowerCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ : str = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs() lowerCAmelCase__ : List[str] = pipe(**_a ).images lowerCAmelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase__ : Optional[int] = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): @property def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ort.SessionOptions() lowerCAmelCase__ : List[str] = False return options def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase__ : Optional[Any] = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default lowerCAmelCase__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : str = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ : List[str] = np.random.RandomState(0 ) lowerCAmelCase__ : Dict = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" , ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : Optional[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) lowerCAmelCase__ : Optional[int] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase__ : Union[str, Any] = init_image.resize((7_68, 5_12) ) lowerCAmelCase__ : Any = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowerCAmelCase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : str = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ : int = np.random.RandomState(0 ) lowerCAmelCase__ : Optional[Any] = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type="""np""" , ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) lowerCAmelCase__ : List[Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
242
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return np.dot(snake_case_ , snake_case_ ) class A_ : '''simple docstring''' def __init__(self , *, lowercase__ = np.inf , lowercase__ = "linear" , lowercase__ = 0.0 , ) -> None: __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_a ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> float: return np.dot(_a , _a ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (__UpperCAmelCase ) = np.shape(_a ) def to_minimize(lowercase__ ) -> float: __UpperCAmelCase = 0 (__UpperCAmelCase ) = np.shape(_a ) for i in range(_a ): for j in range(_a ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_a ) __UpperCAmelCase = LinearConstraint(_a , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _a , np.ones(_a ) , bounds=_a , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_a ): for j in range(_a ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def lowerCAmelCase_ (self , lowercase__ ) -> int: __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _a ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
333
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) __a : str = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a : Dict = CLIPTextModel(__a ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) ) __a : Tuple = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : str = torch.Generator(device=__a ).manual_seed(__a ) __a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Union[str, Any] = StableDiffusionInpaintPipeline(**__a ) __a : List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __a : List[Any] = self.get_dummy_inputs(__a ) __a : Dict = sd_pipe(**__a ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) __a : Optional[int] = 'stabilityai/stable-diffusion-2-inpainting' __a : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : List[str] = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : int = torch.manual_seed(0 ) __a : Optional[Any] = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : Any = PNDMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : str = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : str = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type='np' , ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
27
'''simple docstring''' import os import sys __lowercase : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __lowercase : int = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : List[Any] ): return AutoConfig.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any ): return AutoTokenizer.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): return AutoModel.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : Optional[int] ): return AutoModelForCausalLM.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Union[str, Any] , **_SCREAMING_SNAKE_CASE : List[Any] ): return AutoModelForMaskedLM.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Any ): return AutoModelForSequenceClassification.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : List[str] ): return AutoModelForQuestionAnswering.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
27
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self , __a ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __a : List[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = 'sshleifer/tiny-gpt2' __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) __a : List[Any] = TensorFlowBenchmark(__a ) __a : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 'sgugger/tiny-distilbert-classification' __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) __a : Dict = TensorFlowBenchmark(__a ) __a : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'sshleifer/tiny-gpt2' __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : str = TensorFlowBenchmark(__a ) __a : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = 'sshleifer/tiny-gpt2' __a : Optional[Any] = AutoConfig.from_pretrained(__a ) __a : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) __a : Tuple = TensorFlowBenchmark(__a , [config] ) __a : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'sshleifer/tiny-gpt2' __a : Optional[int] = AutoConfig.from_pretrained(__a ) __a : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : Tuple = TensorFlowBenchmark(__a , [config] ) __a : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = 'sshleifer/tiny-gpt2' __a : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : Optional[Any] = TensorFlowBenchmark(__a ) __a : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 'sshleifer/tiny-gpt2' __a : Tuple = AutoConfig.from_pretrained(__a ) __a : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : Optional[Any] = TensorFlowBenchmark(__a , [config] ) __a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'patrickvonplaten/t5-tiny-random' __a : Optional[int] = AutoConfig.from_pretrained(__a ) __a : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __a : str = TensorFlowBenchmark(__a , configs=[config] ) __a : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'sshleifer/tiny-gpt2' __a : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) __a : int = TensorFlowBenchmark(__a ) __a : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __a : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) __a : int = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) __a : Any = TensorFlowBenchmark(__a ) __a : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
27
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = inspect.getfile(accelerate.test_utils ) __a : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a : Union[str, Any] = test_metrics @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCAmelCase ( self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __UpperCAmelCase ( self ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
27
1
'''simple docstring''' from typing import Any def lowerCamelCase (_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , ): _validation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) # Creates data structures and fill initial step __a : dict = {} __a : dict = {} for state in states_space: __a : List[Any] = observations_space[0] __a : str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a : List[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_SCREAMING_SNAKE_CASE ) ): __a : str = observations_space[o] __a : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a : Optional[Any] = '' __a : List[str] = -1 for k_state in states_space: __a : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a : List[Any] = probability __a : Dict = k_state # Update probabilities and pointers dicts __a : int = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a : Optional[Any] = arg_max # The final observation __a : List[Any] = observations_space[len(_SCREAMING_SNAKE_CASE ) - 1] # argmax for given final observation __a : str = '' __a : str = -1 for k_state in states_space: __a : Optional[int] = probabilities[(k_state, final_observation)] if probability > max_probability: __a : Dict = probability __a : Union[str, Any] = k_state __a : int = arg_max # Process pointers backwards __a : List[str] = last_state __a : Union[str, Any] = [] for o in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): result.append(_SCREAMING_SNAKE_CASE ) __a : str = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ): _validate_not_empty( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) _validate_lists(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _validate_dicts( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ): _validate_list(_SCREAMING_SNAKE_CASE , 'observations_space' ) _validate_list(_SCREAMING_SNAKE_CASE , 'states_space' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): if not isinstance(_object , _SCREAMING_SNAKE_CASE ): __a : Tuple = F"""{var_name} must be a list""" raise ValueError(_SCREAMING_SNAKE_CASE ) else: for x in _object: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Any = F"""{var_name} must be a list of strings""" raise ValueError(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ): _validate_dict(_SCREAMING_SNAKE_CASE , 'initial_probabilities' , _SCREAMING_SNAKE_CASE ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , 'transition_probabilities' ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , 'emission_probabilities' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): _validate_dict(_object , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values(): _validate_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : type , _SCREAMING_SNAKE_CASE : bool = False ): if not isinstance(_object , _SCREAMING_SNAKE_CASE ): __a : Any = F"""{var_name} must be a dict""" raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object ): __a : List[str] = F"""{var_name} all keys must be strings""" raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values() ): __a : str = 'nested dictionary ' if nested else '' __a : int = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
27
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): __a : Optional[Any] = tmp_path / 'file.csv' __a : Union[str, Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : str = tmp_path / 'malformed_file.csv' __a : int = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = tmp_path / 'csv_with_image.csv' __a : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Union[str, Any] = tmp_path / 'csv_with_label.csv' __a : Any = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Dict = tmp_path / 'csv_with_int_list.csv' __a : Tuple = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): __a : int = Csv() __a : str = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_SCREAMING_SNAKE_CASE , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(_SCREAMING_SNAKE_CASE ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Tuple = f.read().splitlines()[1] __a : Tuple = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) __a : Any = csv._generate_tables([[csv_file_with_image]] ) __a : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() __a : Any = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Tuple = f.read().splitlines()[1:] __a : Optional[int] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) __a : List[str] = csv._generate_tables([[csv_file_with_label]] ) __a : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() __a : int = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(_SCREAMING_SNAKE_CASE ) for label in labels] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda _SCREAMING_SNAKE_CASE : [int(_SCREAMING_SNAKE_CASE ) for i in x.split()]} ) __a : Any = csv._generate_tables([[csv_file_with_int_list]] ) __a : Any = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) __a : Tuple = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : str = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class __UpperCamelCase : A_ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "The column name of the images in the files."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "A folder containing the training data."} ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "A folder containing the validation data."} ) A_ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) A_ = field( default=lowerCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A_ = field( default=lowerCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = {} if self.train_dir is not None: __a : List[str] = self.train_dir if self.validation_dir is not None: __a : Union[str, Any] = self.validation_dir __a : Union[str, Any] = data_files if data_files else None @dataclass class __UpperCamelCase : A_ = field( default=lowerCAmelCase_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) A_ = field( default=lowerCAmelCase_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) A_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A_ = field(default=lowerCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} ) A_ = field( default=lowerCAmelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) A_ = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) A_ = field( default=lowerCAmelCase_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class __UpperCamelCase ( lowerCAmelCase_ ): A_ = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : Union[str, Any] = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a : Optional[Any] = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __a : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __a : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __a : str = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: __a : List[str] = ds['train'].train_test_split(data_args.train_val_split ) __a : str = split['train'] __a : List[Any] = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : int = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __a : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: __a : Optional[int] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: __a : str = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __a : Dict = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: __a : Optional[int] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: __a : Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: __a : Optional[int] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __a : Dict = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) if training_args.do_train: __a : str = ds['train'].column_names else: __a : str = ds['validation'].column_names if data_args.image_column_name is not None: __a : List[str] = data_args.image_column_name elif "image" in column_names: __a : Optional[Any] = 'image' elif "img" in column_names: __a : int = 'img' else: __a : List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __a : Tuple = image_processor.size['shortest_edge'] else: __a : Union[str, Any] = (image_processor.size['height'], image_processor.size['width']) __a : Dict = Compose( [ Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_SCREAMING_SNAKE_CASE : List[Any] ): __a : Optional[int] = [transforms(_SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __a : Any = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __a : Tuple = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_SCREAMING_SNAKE_CASE ) # Compute absolute learning rate __a : int = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __a : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __a : Dict = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __a : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: __a : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a : int = last_checkpoint __a : Optional[int] = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __a : Dict = trainer.evaluate() trainer.log_metrics('eval' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __a : List[str] = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
27
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self , __a , __a=2 , __a=3 , __a=4 , __a=2 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=36 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=6 , __a=6 , __a=3 , __a=4 , __a=None , __a=1000 , ): '''simple docstring''' __a : Optional[Any] = parent __a : int = batch_size __a : Any = num_channels __a : Optional[int] = image_size __a : Dict = patch_size __a : int = is_training __a : Union[str, Any] = use_input_mask __a : Optional[int] = use_token_type_ids __a : Dict = use_labels __a : str = vocab_size __a : List[Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : str = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Any = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : Any = type_sequence_label_size __a : Optional[int] = initializer_range __a : Any = coordinate_size __a : List[Any] = shape_size __a : Optional[int] = num_labels __a : Dict = num_choices __a : Union[str, Any] = scope __a : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __a : Optional[int] = text_seq_length __a : Any = (image_size // patch_size) ** 2 + 1 __a : Dict = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __a : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __a : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a : List[Any] = bbox[i, j, 3] __a : Tuple = bbox[i, j, 1] __a : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __a : int = bbox[i, j, 2] __a : Dict = bbox[i, j, 0] __a : int = tmp_coordinate __a : Optional[int] = tf.constant(__a ) __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_input_mask: __a : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __a : str = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __a : Optional[Any] = None __a : Optional[int] = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __a : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Dict = TFLayoutLMvaModel(config=__a ) # text + image __a : List[Any] = model(__a , pixel_values=__a , training=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , training=__a , ) __a : Optional[int] = model(__a , bbox=__a , pixel_values=__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __a : Any = model(__a , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __a : str = model({'pixel_values': pixel_values} , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Any = self.num_labels __a : Dict = TFLayoutLMvaForSequenceClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : str = self.num_labels __a : Optional[Any] = TFLayoutLMvaForTokenClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[Any] = 2 __a : Any = TFLayoutLMvaForQuestionAnswering(config=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , training=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Dict = config_and_inputs __a : Any = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) A_ = False A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' return True def __UpperCAmelCase ( self , __a , __a , __a=False ): '''simple docstring''' __a : str = copy.deepcopy(__a ) if model_class in get_values(__a ): __a : str = { k: tf.tile(tf.expand_dims(__a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __a : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __a : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = TFLayoutLMvaModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__a ) if getattr(__a , 'hf_compute_loss' , __a ): # The number of elements in the loss should be the same as the number of elements in the label __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__a )[0] ] __a : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : Dict = prepared_for_class.pop('input_ids' ) __a : Tuple = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __a : Union[str, Any] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __a : List[Any] = -100 __a : List[str] = tf.convert_to_tensor(__a ) __a : Any = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = model(__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __a : Tuple = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) # Get keys that were added with the _prepare_for_class function __a : Dict = prepared_for_class.keys() - inputs_dict.keys() __a : Any = inspect.signature(model.call ).parameters __a : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __a : List[Any] = {0: 'input_ids'} for label_key in label_keys: __a : List[Any] = signature_names.index(__a ) __a : Union[str, Any] = label_key __a : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __a : Union[str, Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __a : Optional[Any] = prepared_for_class[value] __a : str = tuple(__a ) # Send to model __a : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a : Any = type self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a , __a , __a , __a , __a , __a , __a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : List[Any] = TFLayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __a : Tuple = self.default_image_processor __a : List[Any] = prepare_img() __a : int = image_processor(images=__a , return_tensors='tf' ).pixel_values __a : Union[str, Any] = tf.constant([[1, 2]] ) __a : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __a : Tuple = model(input_ids=__a , bbox=__a , pixel_values=__a , training=__a ) # verify the logits __a : List[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __a ) __a : Optional[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
27
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase (_SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[int, Iterable[int]] , _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : int ): def constraint_to_multiple_of(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str=0 , _SCREAMING_SNAKE_CASE : Optional[int]=None ): __a : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: __a : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: __a : int = math.ceil(val / multiple ) * multiple return x __a : str = (output_size, output_size) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else output_size __a , __a : List[Any] = get_image_size(_SCREAMING_SNAKE_CASE ) __a , __a : List[Any] = output_size # determine new height and width __a : Optional[Any] = output_height / input_height __a : str = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __a : Optional[Any] = scale_width else: # fit height __a : List[Any] = scale_height __a : Any = constraint_to_multiple_of(scale_height * input_height , multiple=_SCREAMING_SNAKE_CASE ) __a : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_SCREAMING_SNAKE_CASE ) return (new_height, new_width) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = ["pixel_values"] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = False , __a = 1 , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Optional[Any] = size if size is not None else {'height': 384, 'width': 384} __a : Optional[int] = get_size_dict(__a ) __a : str = do_resize __a : Optional[Any] = size __a : Optional[int] = keep_aspect_ratio __a : int = ensure_multiple_of __a : List[str] = resample __a : str = do_rescale __a : int = rescale_factor __a : Optional[int] = do_normalize __a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self , __a , __a , __a = False , __a = 1 , __a = PILImageResampling.BICUBIC , __a = None , **__a , ): '''simple docstring''' __a : int = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __a : str = get_resize_output_image_size( __a , output_size=(size['height'], size['width']) , keep_aspect_ratio=__a , multiple=__a , ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ): '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): '''simple docstring''' __a : int = do_resize if do_resize is not None else self.do_resize __a : Union[str, Any] = size if size is not None else self.size __a : List[str] = get_size_dict(__a ) __a : Tuple = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __a : Tuple = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __a : int = resample if resample is not None else self.resample __a : Dict = do_rescale if do_rescale is not None else self.do_rescale __a : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Dict = do_normalize if do_normalize is not None else self.do_normalize __a : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __a : Optional[int] = image_std if image_std is not None else self.image_std __a : Any = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a : Optional[int] = [to_numpy_array(__a ) for image in images] if do_resize: __a : Optional[int] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_rescale: __a : List[str] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __a : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __a : List[Any] = [to_channel_dimension_format(__a , __a ) for image in images] __a : Dict = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a ) def __UpperCAmelCase ( self , __a , __a = None ): '''simple docstring''' __a : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__a ): __a : Tuple = target_sizes.numpy() __a : Optional[int] = [] for idx in range(len(__a ) ): __a : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__a ) __a : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: __a : int = logits.argmax(dim=1 ) __a : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
27
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) __a : Tuple = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __a : List[str] = components[:-1] + [test_fn.replace('.py' , '' )] __a : Optional[Any] = '.'.join(_SCREAMING_SNAKE_CASE ) return test_module_path def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = get_module_path(_SCREAMING_SNAKE_CASE ) __a : Dict = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = [] __a : List[str] = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : Any = [] __a : str = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): __a : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Tuple = test_class() if hasattr(_SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() __a : List[Any] = None if hasattr(_SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a : List[str] = test.model_tester.__class__ return model_tester def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[Any] = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [] for test_class in test_classes: __a : Any = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : str = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
27
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) __a : str = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a : Dict = CLIPTextModel(__a ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) ) __a : Tuple = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : str = torch.Generator(device=__a ).manual_seed(__a ) __a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Union[str, Any] = StableDiffusionInpaintPipeline(**__a ) __a : List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __a : List[Any] = self.get_dummy_inputs(__a ) __a : Dict = sd_pipe(**__a ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) __a : Optional[int] = 'stabilityai/stable-diffusion-2-inpainting' __a : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : List[str] = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : int = torch.manual_seed(0 ) __a : Optional[Any] = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : Any = PNDMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : str = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : str = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type='np' , ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
27
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "AAPL" ): __a : Union[str, Any] = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __a : List[str] = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) __a : Optional[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
27
'''simple docstring''' import requests __lowercase : Tuple = '' # <-- Put your OpenWeatherMap appid here! __lowercase : Tuple = 'https://api.openweathermap.org/data/2.5/' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Chicago" , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "Kolkata, India" , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def lowerCamelCase (_SCREAMING_SNAKE_CASE : float = 5_5.6_8 , _SCREAMING_SNAKE_CASE : float = 1_2.5_7 , _SCREAMING_SNAKE_CASE : str = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowercase : Dict = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
27
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus" ): __a : List[Any] = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) __a : Union[str, Any] = soup.findAll('h1' ) __a : int = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
27
'''simple docstring''' import torch from transformers import AutoModel class __UpperCamelCase ( torch.nn.Module ): def __init__( self , __a="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__a , self ).__init__() __a : Tuple = AutoModel.from_pretrained(__a , return_dict=__a ) __a : int = torch.nn.CosineSimilarity(3 , 1E-0_8 ) __a : Union[str, Any] = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return self.bert(**__a ).last_hidden_state def __UpperCAmelCase ( self , __a ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=__a ) def __UpperCAmelCase ( self , __a , __a , __a=1 ): '''simple docstring''' return self.softmax(T * self.cos(__a , __a ) ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : str = W_supports['sizes'].tolist() __a : Union[str, Any] = W_supports['start_token_id'].item() __a : Any = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Tuple = self.BERT(**__a ) __a : str = self.BERT(**__a ) __a : Any = None __a : Dict = None __a : Dict = W_supports['input_ids'] == start_token_id __a : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(__a ): if i == 0: __a : Optional[int] = 0 else: __a : Union[str, Any] = support_sizes[i - 1] __a : int = S[s : s + size][start_token_masks[s : s + size]] __a : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] __a : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Dict = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : str = torch.vstack((p_starts, p_start) ) __a : str = torch.vstack((p_ends, p_end) ) else: __a : List[str] = p_start __a : int = p_end return p_starts, p_ends
27
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = RoCBertTokenizer A_ = None A_ = False A_ = True A_ = filter_non_english def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __a : Tuple = {} __a : Tuple = {} for i, value in enumerate(__a ): __a : str = i __a : int = i __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __a : List[str] = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(__a , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __a : Union[str, Any] = {} for i, token in enumerate(__a ): __a : Any = i __a : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=__a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __UpperCAmelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __a : str = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def __UpperCAmelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __a : Optional[Any] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __a : Union[str, Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __a : Optional[Any] = tokenizer_r.do_lower_case if hasattr(__a , 'do_lower_case' ) else False __a : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = ['的', '人', '有'] __a : Optional[int] = ''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Optional[int] = True __a : Tuple = self.tokenizer_class.from_pretrained(__a , **__a ) __a : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __a : Optional[int] = tokenizer_p.encode(__a , add_special_tokens=__a ) __a : Optional[int] = tokenizer_r.encode(__a , add_special_tokens=__a ) __a : int = tokenizer_r.convert_ids_to_tokens(__a ) __a : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) __a : List[str] = False __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __a : Any = self.tokenizer_class.from_pretrained(__a , **__a ) __a : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) __a : Optional[int] = tokenizer_p.encode(__a , add_special_tokens=__a ) __a : int = tokenizer_r.convert_ids_to_tokens(__a ) __a : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". __a : Optional[int] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __a : List[str] = tokenizer.encode('你好' , add_special_tokens=__a ) __a : Optional[int] = tokenizer.encode('你是谁' , add_special_tokens=__a ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __a : Any = '你好,你是谁' __a : List[Any] = tokenizer.tokenize(__a ) __a : List[Any] = tokenizer.convert_tokens_to_ids(__a ) __a : Tuple = tokenizer.convert_tokens_to_shape_ids(__a ) __a : Optional[Any] = tokenizer.convert_tokens_to_pronunciation_ids(__a ) __a : List[Any] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) __a : str = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
27
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : Union[str, Any] = x_num * y_den + x_den * y_num __a : Optional[Any] = x_den * y_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 __a : int = x_num * y_num __a : Optional[Any] = x_den * y_num + x_num * y_den __a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : List[Any] = x_num * x_num * y_num * y_num __a : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
27
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "bridgetower_vision_model" def __init__( self , __a=768 , __a=12 , __a=3 , __a=16 , __a=288 , __a=1 , __a=1E-0_5 , __a=False , __a=True , __a=False , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Dict = hidden_size __a : Any = num_hidden_layers __a : Optional[int] = num_channels __a : int = patch_size __a : Any = image_size __a : Union[str, Any] = initializer_factor __a : Optional[int] = layer_norm_eps __a : Tuple = stop_gradient __a : int = share_layernorm __a : str = remove_last_layer @classmethod def __UpperCAmelCase ( cls , __a , **__a ): '''simple docstring''' __a , __a : Optional[int] = cls.get_config_dict(__a , **__a ) if config_dict.get('model_type' ) == "bridgetower": __a : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "bridgetower_text_model" def __init__( self , __a=5_0265 , __a=768 , __a=12 , __a=12 , __a=1 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=514 , __a=1 , __a=1E-0_5 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Union[str, Any] = vocab_size __a : Any = hidden_size __a : Optional[int] = num_hidden_layers __a : List[Any] = num_attention_heads __a : str = hidden_act __a : Optional[int] = initializer_factor __a : Optional[Any] = intermediate_size __a : Any = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Dict = max_position_embeddings __a : int = type_vocab_size __a : Any = layer_norm_eps __a : Union[str, Any] = position_embedding_type __a : Optional[int] = use_cache __a : Dict = pad_token_id __a : Tuple = bos_token_id __a : int = eos_token_id @classmethod def __UpperCAmelCase ( cls , __a , **__a ): '''simple docstring''' __a , __a : Union[str, Any] = cls.get_config_dict(__a , **__a ) if config_dict.get('model_type' ) == "bridgetower": __a : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "bridgetower" def __init__( self , __a=True , __a="gelu" , __a=768 , __a=1 , __a=1E-0_5 , __a=False , __a="add" , __a=12 , __a=6 , __a=False , __a=False , __a=None , __a=None , **__a , ): '''simple docstring''' __a : Dict = kwargs.pop('text_config_dict' , __a ) __a : Tuple = kwargs.pop('vision_config_dict' , __a ) super().__init__(**__a ) __a : int = share_cross_modal_transformer_layers __a : Any = hidden_act __a : str = hidden_size __a : int = initializer_factor __a : List[str] = layer_norm_eps __a : Optional[int] = share_link_tower_layers __a : List[Any] = link_tower_type __a : Union[str, Any] = num_attention_heads __a : Optional[Any] = num_hidden_layers __a : int = tie_word_embeddings __a : int = init_layernorm_from_vision_encoder if text_config is None: __a : Union[str, Any] = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: __a : Optional[Any] = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) __a : Optional[Any] = BridgeTowerTextConfig(**__a ) __a : Optional[int] = BridgeTowerVisionConfig(**__a ) @classmethod def __UpperCAmelCase ( cls , __a , __a , **__a ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = copy.deepcopy(self.__dict__ ) __a : Any = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : Union[str, Any] = self.__class__.model_type return output
27
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = ort.SessionOptions() __a : Dict = False return options def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __a : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __a : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) __a : Tuple = 'A red cat sitting on a park bench' __a : int = np.random.RandomState(0 ) __a : Tuple = pipe( prompt=__a , image=__a , mask_image=__a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__a , output_type='np' , ) __a : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
27
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase : Any = logging.get_logger(__name__) __lowercase : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __lowercase : Optional[Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __a : Optional[Any] = 'lm_head' __a : Any = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: __a : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Dict = value elif weight_type == "weight_g": __a : List[str] = value elif weight_type == "weight_v": __a : List[Any] = value elif weight_type == "bias": __a : Optional[int] = value else: __a : List[Any] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[str] = [] __a : Optional[Any] = fairseq_model.state_dict() __a : Dict = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __a : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __a : Tuple = True else: for key, mapped_key in MAPPING.items(): __a : int = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __a : str = True if "*" in mapped_key: __a : Dict = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __a : Optional[int] = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: __a : Any = 'weight_g' elif "weight_v" in name: __a : List[str] = 'weight_v' elif "bias" in name: __a : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : List[Any] = 'weight' else: __a : str = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] ): __a : Union[str, Any] = full_name.split('conv_layers.' )[-1] __a : Dict = name.split('.' ) __a : Any = int(items[0] ) __a : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : List[str]=True ): if config_path is not None: __a : str = UniSpeechConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: __a : Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: __a : List[str] = Dictionary.load_from_json(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : Dict = target_dict.bos_index __a : Tuple = target_dict.eos_index __a : int = len(target_dict.symbols ) __a : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) __a : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __a : List[str] = 42 __a : int = 43 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = WavaVecaPhonemeCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_SCREAMING_SNAKE_CASE , ) __a : List[str] = True if config.feat_extract_norm == 'layer' else False __a : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __a : Dict = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = UniSpeechForCTC(_SCREAMING_SNAKE_CASE ) else: __a : Tuple = UniSpeechForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: __a , __a , __a : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __a : int = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __lowercase : str = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
27
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase : Dict = 16 __lowercase : List[Any] = 32 def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): return int(x / 2**20 ) class __UpperCamelCase : def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __a : Optional[int] = torch.cuda.memory_allocated() return self def __exit__( self , *__a ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() __a : Dict = torch.cuda.memory_allocated() __a : List[Any] = torch.cuda.max_memory_allocated() __a : Tuple = bamb(self.end - self.begin ) __a : Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase (_SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : str = "bert-base-cased" , _SCREAMING_SNAKE_CASE : int = 320 , _SCREAMING_SNAKE_CASE : int = 160 , ): __a : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) __a : List[Any] = load_dataset( 'glue' , 'mrpc' , split={'train': F"""train[:{n_train}]""", 'validation': F"""validation[:{n_val}]"""} ) def tokenize_function(_SCREAMING_SNAKE_CASE : Tuple ): # max_length=None => use the model max length (it's actually the default) __a : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a : List[str] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_SCREAMING_SNAKE_CASE : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __a : int = DataLoader( tokenized_datasets['train'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __a : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Initialize accelerator __a : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Dict = config['lr'] __a : str = int(config['num_epochs'] ) __a : Optional[int] = int(config['seed'] ) __a : Any = int(config['batch_size'] ) __a : List[str] = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) __a , __a : int = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Optional[int] = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer __a : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __a : int = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __a : Union[str, Any] = 1 __a : Tuple = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a : str = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: __a : List[Any] = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Optional[Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __a : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly __a : Dict = 0 # Now we train the model __a : str = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): __a : List[Any] = model(**_SCREAMING_SNAKE_CASE ) __a : str = outputs.loss __a : str = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __a : List[Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_SCREAMING_SNAKE_CASE , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( '--output_dir' , type=_SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=_SCREAMING_SNAKE_CASE , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=_SCREAMING_SNAKE_CASE , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of train epochs.' , ) __a : List[str] = parser.parse_args() __a : List[Any] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = tempfile.mkdtemp() __a : Dict = 8 # DPR tok __a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__a , exist_ok=__a ) __a : List[str] = os.path.join(__a , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __a : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Any = {'unk_token': '<unk>'} __a : int = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__a , exist_ok=__a ) __a : str = os.path.join(__a , BART_VOCAB_FILES_NAMES['vocab_file'] ) __a : List[str] = os.path.join(__a , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def __UpperCAmelCase ( self ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_dummy_dataset() __a : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: __a : Union[str, Any] = dataset __a : Dict = RagRetriever( __a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Optional[int] = self.get_dummy_dataset() __a : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: __a : Any = os.path.join(self.tmpdirname , 'dataset' ) __a : Union[str, Any] = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset __a : int = RagRetriever( __a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __a : List[Any] = RagRetriever( __a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __a ) , ) return retriever def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) __a : Optional[Any] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) __a : Dict = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) __a : Union[str, Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__a , open(__a , 'wb' ) ) __a : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) __a : Optional[Any] = RagRetriever( __a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = 1 __a : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() __a : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a , __a , __a : Union[str, Any] = retriever.retrieve(__a , n_docs=__a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __a ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: __a : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__a ) __a : List[str] = RagRetriever.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __a : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a : Optional[Any] = retriever.retrieve(__a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = 1 __a : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__a ) __a : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a , __a , __a : str = retriever.retrieve(__a , n_docs=__a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __a ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.get_dummy_custom_hf_index_retriever(from_disk=__a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__a ) __a : Dict = RagRetriever.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __a : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a : List[str] = retriever.retrieve(__a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 1 __a : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__a ) __a : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a , __a , __a : Any = retriever.retrieve(__a , n_docs=__a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __a ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__a ) __a : int = RagRetriever.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __a : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a : Optional[Any] = retriever.retrieve(__a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 1 __a : str = self.get_dummy_legacy_index_retriever() __a : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a , __a , __a : int = retriever.retrieve(__a , n_docs=__a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , __a ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__a ) __a : Any = RagRetriever.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __a : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a : Dict = retriever.retrieve(__a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCAmelCase ( self ): '''simple docstring''' import torch __a : Optional[int] = 1 __a : Any = self.get_dummy_canonical_hf_index_retriever() __a : Optional[int] = [[5, 7], [10, 11]] __a : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a : List[str] = retriever(__a , __a , prefix=retriever.config.generator.prefix , n_docs=__a ) __a , __a , __a : Dict = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__a , __a ) self.assertIsInstance(__a , __a ) self.assertIsInstance(__a , np.ndarray ) __a : int = retriever( __a , __a , prefix=retriever.config.generator.prefix , n_docs=__a , return_tensors='pt' , ) __a , __a , __a , __a : List[str] = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__a , torch.Tensor ) self.assertIsInstance(__a , torch.Tensor ) self.assertIsInstance(__a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.get_dpr_ctx_encoder_tokenizer() __a : Optional[int] = 1 __a : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__a ) retriever.set_ctx_encoder_tokenizer(__a ) __a : int = [[5, 7], [10, 11]] __a : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __a : Optional[Any] = retriever(__a , __a , prefix=retriever.config.generator.prefix , n_docs=__a ) self.assertEqual( len(__a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , __a ) # check for doc token related keys in dictionary.
27
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a : List[str] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(__a ) , torch_builtin(__a ) ) ) self.assertFalse(torch.allclose(gelu_python(__a ) , gelu_new(__a ) ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a : Union[str, Any] = get_activation('gelu' ) __a : List[str] = get_activation('gelu_10' ) __a : Optional[Any] = torch_builtin(__a ) __a : str = geluaa(__a ) __a : Tuple = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __UpperCAmelCase ( self ): '''simple docstring''' get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(__a ): get_activation('bogus' ) with self.assertRaises(__a ): get_activation(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = get_activation('gelu' ) __a : int = 1 __a : List[str] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__a ): __a : Tuple = acta.a
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Tuple = logging.get_logger(__name__) __lowercase : List[Any] = torch.device('cpu') def lowerCamelCase (): __a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : int = dct.pop(_SCREAMING_SNAKE_CASE ) __a : Tuple = val def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Dict = [] for k in state_dict.keys(): __a : List[Any] = k if ".pwconv" in k: __a : List[Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __a : Optional[int] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __a : List[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __a : Union[str, Any] = k_new.split('.' ) if ls[2].isdigit(): __a : Union[str, Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __a : Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __a : List[str] = 1_000 __a : Tuple = 'huggingface/label-files' __a : str = 'imagenet-1k-id2label.json' __a : Dict = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __a : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a : Any = idalabel __a : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __a : Dict = [3, 3, 6, 4] __a : int = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __a : Dict = [3, 3, 9, 6] __a : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __a : Dict = [4, 3, 10, 5] __a : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __a : Tuple = [4, 4, 12, 6] __a : Dict = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __a : List[Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=_SCREAMING_SNAKE_CASE ) else: __a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) __a : Optional[Any] = checkpoint __a : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model __a : Tuple = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs __a : Tuple = prepare_img() __a : str = ViTImageProcessor.from_pretrained('preprocessor_config' ) __a : Tuple = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models __a : List[Any] = get_expected_output(_SCREAMING_SNAKE_CASE ) __a : Dict = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') __lowercase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
27
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): __a , __a : Tuple = [], [] while len(_SCREAMING_SNAKE_CASE ) > 1: __a , __a : Tuple = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) start.append(_SCREAMING_SNAKE_CASE ) end.append(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) collection.remove(_SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": __lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() __lowercase : Tuple = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
27
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __lowercase : Dict = logging.get_logger(__name__) __lowercase : Optional[Any] = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "umt5" A_ = ["past_key_values"] def __init__( self , __a=25_0112 , __a=512 , __a=64 , __a=1024 , __a=8 , __a=None , __a=6 , __a=32 , __a=128 , __a=0.1 , __a=1E-6 , __a=1.0 , __a="gated-gelu" , __a=True , __a=True , __a="T5Tokenizer" , __a=True , __a=0 , __a=1 , __a=0 , **__a , ): '''simple docstring''' super().__init__( is_encoder_decoder=__a , tokenizer_class=__a , tie_word_embeddings=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , ) __a : Any = vocab_size __a : Any = d_model __a : str = d_kv __a : Dict = d_ff __a : Union[str, Any] = num_layers __a : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a : Optional[int] = num_heads __a : Tuple = relative_attention_num_buckets __a : Optional[Any] = relative_attention_max_distance __a : Optional[int] = dropout_rate __a : List[Any] = layer_norm_epsilon __a : int = initializer_factor __a : Union[str, Any] = feed_forward_proj __a : Any = use_cache __a : List[Any] = self.feed_forward_proj.split('-' ) __a : Dict = act_info[-1] __a : Dict = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __a : Optional[int] = 'gelu_new' @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.d_model @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.num_heads @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.num_layers class __UpperCamelCase ( lowerCAmelCase_ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __a : Dict = 'past_encoder_sequence + sequence' __a : Tuple = {0: 'batch'} __a : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __a : List[Any] = {0: 'batch', 1: 'decoder_sequence'} __a : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCAmelCase ( self ): '''simple docstring''' return 13 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 5E-4
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : List[Any] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus" ): __a : List[Any] = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) __a : Union[str, Any] = soup.findAll('h1' ) __a : int = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
27
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __lowercase : Any = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a ): '''simple docstring''' super().__init__() __a : str = nn.ModuleList(__a ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a = None , __a = None , __a = None , __a = None , __a = False , __a = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__a , __a , self.nets ) ): __a , __a : Any = controlnet( __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) # merge samples if i == 0: __a , __a : Optional[int] = down_samples, mid_sample else: __a : Dict = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__a , __a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __UpperCAmelCase ( self , __a , __a = True , __a = None , __a = False , __a = None , ): '''simple docstring''' __a : List[Any] = 0 __a : List[Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( __a , is_main_process=__a , save_function=__a , safe_serialization=__a , variant=__a , ) idx += 1 __a : List[str] = model_path_to_save + f"""_{idx}""" @classmethod def __UpperCAmelCase ( cls , __a , **__a ): '''simple docstring''' __a : List[str] = 0 __a : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __a : Union[str, Any] = pretrained_model_path while os.path.isdir(__a ): __a : Any = ControlNetModel.from_pretrained(__a , **__a ) controlnets.append(__a ) idx += 1 __a : str = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(__a )} controlnets loaded from {pretrained_model_path}.""" ) if len(__a ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(__a )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(__a )
27
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , 'embed_dim' ) ) self.parent.assertTrue(hasattr(__a , 'num_heads' ) ) class __UpperCamelCase : def __init__( self , __a , __a=13 , __a=64 , __a=3 , __a=[16, 48, 96] , __a=[1, 3, 6] , __a=[1, 2, 10] , __a=[7, 3, 3] , __a=[4, 2, 2] , __a=[2, 1, 1] , __a=[2, 2, 2] , __a=[False, False, True] , __a=[0.0, 0.0, 0.0] , __a=0.02 , __a=1E-1_2 , __a=True , __a=True , __a=2 , ): '''simple docstring''' __a : str = parent __a : List[Any] = batch_size __a : Optional[int] = image_size __a : List[str] = patch_sizes __a : str = patch_stride __a : Any = patch_padding __a : Dict = is_training __a : Union[str, Any] = use_labels __a : Dict = num_labels __a : List[Any] = num_channels __a : Any = embed_dim __a : int = num_heads __a : Optional[int] = stride_kv __a : Dict = depth __a : List[str] = cls_token __a : List[Any] = attention_drop_rate __a : Tuple = initializer_range __a : int = layer_norm_eps def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Dict = None if self.use_labels: # create a random int32 tensor of given shape __a : str = ids_tensor([self.batch_size] , self.num_labels ) __a : str = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = TFCvtModel(config=__a ) __a : Dict = model(__a , training=__a ) __a : Any = (self.image_size, self.image_size) __a , __a : Dict = image_size[0], image_size[1] for i in range(len(self.depth ) ): __a : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __a : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : List[Any] = self.num_labels __a : Optional[int] = TFCvtForImageClassification(__a ) __a : Dict = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = TFCvtModelTester(self ) __a : List[Any] = TFCvtConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = tf.keras.mixed_precision.Policy('mixed_float16' ) tf.keras.mixed_precision.set_global_policy(__a ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__a ) __a : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__a , __a , __a ): __a : List[str] = model_class(__a ) __a : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __a : Any = outputs.hidden_states __a : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(__a ) , __a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Optional[Any] = True check_hidden_states_output(__a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Optional[Any] = TFCvtModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a : Tuple = self.default_image_processor __a : Any = prepare_img() __a : int = image_processor(images=__a , return_tensors='tf' ) # forward pass __a : Any = model(**__a ) # verify the logits __a : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __a : Optional[Any] = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __a , atol=1E-4 ) )
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Optional[Any] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __lowercase : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): for attribute in key.split('.' ): __a : Any = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: __a : List[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: __a : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Tuple = value elif weight_type == "weight_g": __a : str = value elif weight_type == "weight_v": __a : Optional[Any] = value elif weight_type == "bias": __a : Union[str, Any] = value else: __a : List[Any] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : int = [] __a : List[str] = fairseq_model.state_dict() __a : Tuple = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __a : int = None for name, value in fairseq_dict.items(): __a : List[str] = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __a : List[str] = True elif name.split('.' )[0] == "proj": __a : Tuple = fairseq_model.proj __a : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __a : List[Any] = True if "*" in mapped_key: __a : str = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __a : int = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: __a : List[Any] = 'weight_g' elif "weight_v" in name: __a : List[Any] = 'weight_v' elif "bias" in name: __a : Optional[Any] = 'bias' elif "weight" in name: __a : Tuple = 'weight' else: __a : Optional[Any] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : List[str] = full_name.split('conv_layers.' )[-1] __a : Any = name.split('.' ) __a : List[str] = int(items[0] ) __a : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a , __a : List[str] = emb.weight.shape __a : str = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) __a : Optional[int] = emb.weight.data return lin_layer def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __a : Union[str, Any] = f.readlines() __a : Tuple = [line.split(' ' )[0] for line in lines] __a : int = len(_SCREAMING_SNAKE_CASE ) __a : List[Any] = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(_SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , ): __a : Optional[int] = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __a : Any = SpeechaTextaConfig.from_pretrained( _SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE , decoder_layers=_SCREAMING_SNAKE_CASE , do_stable_layer_norm=_SCREAMING_SNAKE_CASE ) __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __a , __a , __a : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __a : Optional[int] = model[0].eval() # set weights for wav2vec2 encoder __a : Tuple = WavaVecaModel(_SCREAMING_SNAKE_CASE ) __a : int = recursively_load_weights_wavaveca(model.encoder , _SCREAMING_SNAKE_CASE ) __a : Dict = SpeechaTextaForCausalLM(_SCREAMING_SNAKE_CASE ) __a , __a : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __a : Optional[Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __a : Tuple = SpeechEncoderDecoderModel(encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) __a : int = False # add projection layer __a : str = nn.Parameter(projection_layer.weight ) __a : Any = nn.Parameter(projection_layer.bias ) __a : str = create_vocab_dict(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Optional[Any] = SpeechaTextaTokenizer(os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = hf_wavavec.config.to_dict() __a : Tuple = tokenizer.pad_token_id __a : Optional[int] = tokenizer.bos_token_id __a : Union[str, Any] = tokenizer.eos_token_id __a : Tuple = 'speech_to_text_2' __a : Tuple = 'wav2vec2' __a : List[str] = SpeechEncoderDecoderConfig.from_dict(_SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') __lowercase : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
27
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : List[str] = 0 # if input_string is "aba" than new_input_string become "a|b|a" __a : int = '' __a : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __a , __a : Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i __a : int = [1 for i in range(len(_SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string __a : Optional[int] = 0 for j in range(len(_SCREAMING_SNAKE_CASE ) ): __a : List[str] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __a : List[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __a : List[Any] = j - k + 1 # noqa: E741 __a : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: __a : Tuple = length[j] __a : List[str] = j # create that string __a : Optional[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
27
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCamelCase (*_SCREAMING_SNAKE_CASE : int ): with open(_SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*_SCREAMING_SNAKE_CASE ) finally: fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __lowercase : Dict = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) __lowercase : Tuple = torch.device('cuda', local_rank) __lowercase : Optional[int] = socket.gethostname() __lowercase : List[str] = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowercase : str = dist.get_rank() __lowercase : Union[str, Any] = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
27
1
'''simple docstring''' from math import ceil def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): __a : str = list(range(0 , _SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __a : int = [] for i in device_map_blocks: if device_map_blocks.count(_SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_SCREAMING_SNAKE_CASE ) # Missing blocks __a : int = [i for i in blocks if i not in device_map_blocks] __a : List[Any] = [i for i in device_map_blocks if i not in blocks] if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_SCREAMING_SNAKE_CASE ) ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] ): __a : Union[str, Any] = list(range(_SCREAMING_SNAKE_CASE ) ) __a : Tuple = int(ceil(n_layers / len(_SCREAMING_SNAKE_CASE ) ) ) __a : Dict = [layers[i : i + n_blocks] for i in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : str = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __lowercase : Tuple = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __lowercase : Dict = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __lowercase : Optional[Any] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
1