code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'nielsr/canine-s': 2_048,
}
# Unicode defines 1,114,112 total “codepoints”
_a = 1_114_112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_a = 0
_a = 0xe000
_a = 0xe001
_a = 0xe002
_a = 0xe003
_a = 0xe004
# Maps special codepoints to human-readable names.
_a = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_a = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=False , lowercase_=2048 , **lowercase_ , ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token
UpperCAmelCase_ : Union[str, Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token
UpperCAmelCase_ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token
UpperCAmelCase_ : Any = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token
UpperCAmelCase_ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , model_max_length=lowercase_ , **lowercase_ , )
# Creates a mapping for looking up the IDs of special symbols.
UpperCAmelCase_ : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
UpperCAmelCase_ : Union[str, Any] = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
UpperCAmelCase_ : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
UpperCAmelCase_ : str = UNICODE_VOCAB_SIZE
UpperCAmelCase_ : Optional[int] = len(self._special_codepoints )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._unicode_vocab_size
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return list(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
try:
return ord(lowercase_ )
except TypeError:
raise ValueError(F"""invalid token: '{token}'""" )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(lowercase_ )
except TypeError:
raise ValueError(F"""invalid id: {index}""" )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
return "".join(lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
UpperCAmelCase_ : Any = [1] + ([0] * len(lowercase_ )) + [1]
if token_ids_a is not None:
result += ([0] * len(lowercase_ )) + [1]
return result
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
UpperCAmelCase_ : Union[str, Any] = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ):
"""simple docstring"""
return ()
| 61 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 0 |
import os
import time
import numpy as np
import onnxruntime as ort
_A = '1'
_A = '0'
_A = '1'
_A = ort.SessionOptions()
_A = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print('Create inference session...')
_A = ['TensorrtExecutionProvider', 'CUDAExecutionProvider']
_A = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider)
_A = ort.RunOptions()
_A = 128
_A = 1
_A = np.ones((batch, sequence), dtype=np.intaa)
_A = np.ones((batch, sequence), dtype=np.intaa)
_A = np.ones((batch, sequence), dtype=np.intaa)
print('Warm up phase...')
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print('Start inference...')
_A = time.time()
_A = 2000
_A = {}
for iter in range(max_iters):
_A = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
| 62 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
'''simple docstring'''
from math import factorial
lowerCAmelCase_ : Optional[int] = {str(d): factorial(d) for d in range(10)}
def _lowerCamelCase ( lowercase : int ) -> int:
return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) )
def _lowerCamelCase ( ) -> int:
_a = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 63 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''',
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class lowercase( __a ):
'''simple docstring'''
lowercase__ = "biogpt"
def __init__( self: Dict, a_: List[Any]=42_384, a_: int=1_024, a_: Optional[int]=24, a_: List[str]=16, a_: Optional[Any]=4_096, a_: int="gelu", a_: int=0.1, a_: List[Any]=0.1, a_: Any=1_024, a_: Optional[Any]=0.02, a_: Dict=1E-12, a_: Tuple=True, a_: Any=True, a_: Tuple=0.0, a_: str=0.0, a_: int=1, a_: Any=0, a_: List[str]=2, **a_: Optional[int], ):
'''simple docstring'''
_snake_case : Dict = vocab_size
_snake_case : int = max_position_embeddings
_snake_case : Optional[int] = hidden_size
_snake_case : Any = num_hidden_layers
_snake_case : List[str] = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : Dict = hidden_act
_snake_case : Tuple = hidden_dropout_prob
_snake_case : Tuple = attention_probs_dropout_prob
_snake_case : Optional[Any] = initializer_range
_snake_case : List[str] = layer_norm_eps
_snake_case : List[str] = scale_embedding
_snake_case : Dict = use_cache
_snake_case : Optional[int] = layerdrop
_snake_case : Any = activation_dropout
super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
| 64 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
UpperCamelCase__ = namedtuple('covid_data', 'cases deaths recovered')
def lowerCAmelCase_ ( __A = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
'''simple docstring'''
UpperCAmelCase__ = "//div[@class = \"maincounter-number\"]/span/text()"
return covid_data(*html.fromstring(requests.get(__A ).content ).xpath(__A ) )
UpperCamelCase__ = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}'
print(fmt.format(*covid_stats()))
| 65 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]:
snake_case_ :Union[str, Any] = tempfile.mkdtemp()
snake_case_ :Any = SamImageProcessor()
snake_case_ :Tuple = SamProcessor(snake_case )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self: Any , **snake_case: Optional[Any] ) -> Tuple:
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor
def lowerCAmelCase_ ( self: Dict ) -> int:
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase_ ( self: List[Any] ) -> Tuple:
snake_case_ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ :List[str] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]:
snake_case_ :Optional[int] = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ :Optional[int] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 )
snake_case_ :Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case )
def lowerCAmelCase_ ( self: Tuple ) -> List[str]:
snake_case_ :Dict = self.get_image_processor()
snake_case_ :List[Any] = SamProcessor(image_processor=snake_case )
snake_case_ :int = self.prepare_image_inputs()
snake_case_ :Dict = image_processor(snake_case , return_tensors="""np""" )
snake_case_ :Optional[Any] = processor(images=snake_case , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]:
snake_case_ :str = self.get_image_processor()
snake_case_ :str = SamProcessor(image_processor=snake_case )
snake_case_ :Dict = [torch.ones((1, 3, 5, 5) )]
snake_case_ :int = [[1_764, 2_646]]
snake_case_ :Optional[Any] = [[683, 1_024]]
snake_case_ :Any = processor.post_process_masks(snake_case , snake_case , snake_case )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ :Dict = processor.post_process_masks(
snake_case , torch.tensor(snake_case ) , torch.tensor(snake_case ) )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
# should also work with np
snake_case_ :str = [np.ones((1, 3, 5, 5) )]
snake_case_ :Union[str, Any] = processor.post_process_masks(snake_case , np.array(snake_case ) , np.array(snake_case ) )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ :List[str] = [[1, 0], [0, 1]]
with self.assertRaises(snake_case ):
snake_case_ :int = processor.post_process_masks(snake_case , np.array(snake_case ) , np.array(snake_case ) )
@require_vision
@require_tf
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self: List[Any] ) -> str:
snake_case_ :Dict = tempfile.mkdtemp()
snake_case_ :Dict = SamImageProcessor()
snake_case_ :int = SamProcessor(snake_case )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self: Optional[Any] , **snake_case: Tuple ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor
def lowerCAmelCase_ ( self: str ) -> List[Any]:
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]:
snake_case_ :List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ :Optional[Any] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase_ ( self: List[Any] ) -> int:
snake_case_ :Optional[int] = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case_ :Optional[int] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 )
snake_case_ :Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case )
def lowerCAmelCase_ ( self: int ) -> Optional[int]:
snake_case_ :Any = self.get_image_processor()
snake_case_ :int = SamProcessor(image_processor=snake_case )
snake_case_ :List[Any] = self.prepare_image_inputs()
snake_case_ :Optional[Any] = image_processor(snake_case , return_tensors="""np""" )
snake_case_ :List[str] = processor(images=snake_case , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]:
snake_case_ :Dict = self.get_image_processor()
snake_case_ :Any = SamProcessor(image_processor=snake_case )
snake_case_ :Optional[int] = [tf.ones((1, 3, 5, 5) )]
snake_case_ :Dict = [[1_764, 2_646]]
snake_case_ :Dict = [[683, 1_024]]
snake_case_ :Union[str, Any] = processor.post_process_masks(snake_case , snake_case , snake_case , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ :List[str] = processor.post_process_masks(
snake_case , tf.convert_to_tensor(snake_case ) , tf.convert_to_tensor(snake_case ) , return_tensors="""tf""" , )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
# should also work with np
snake_case_ :Dict = [np.ones((1, 3, 5, 5) )]
snake_case_ :str = processor.post_process_masks(
snake_case , np.array(snake_case ) , np.array(snake_case ) , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) )
snake_case_ :Optional[Any] = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
snake_case_ :List[str] = processor.post_process_masks(
snake_case , np.array(snake_case ) , np.array(snake_case ) , return_tensors="""tf""" )
@require_vision
@require_torchvision
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self: Union[str, Any] ) -> str:
snake_case_ :int = tempfile.mkdtemp()
snake_case_ :str = SamImageProcessor()
snake_case_ :Optional[int] = SamProcessor(snake_case )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self: str , **snake_case: int ) -> List[str]:
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor
def lowerCAmelCase_ ( self: str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase_ ( self: Union[str, Any] ) -> str:
snake_case_ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ :str = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple:
snake_case_ :int = self.get_image_processor()
snake_case_ :Optional[Any] = SamProcessor(image_processor=snake_case )
snake_case_ :Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
snake_case_ :Optional[int] = [tf.convert_to_tensor(snake_case )]
snake_case_ :Optional[int] = [torch.tensor(snake_case )]
snake_case_ :Dict = [[1_764, 2_646]]
snake_case_ :Optional[Any] = [[683, 1_024]]
snake_case_ :List[str] = processor.post_process_masks(
snake_case , snake_case , snake_case , return_tensors="""tf""" )
snake_case_ :Union[str, Any] = processor.post_process_masks(
snake_case , snake_case , snake_case , return_tensors="""pt""" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def lowerCAmelCase_ ( self: List[str] ) -> int:
snake_case_ :Optional[Any] = self.get_image_processor()
snake_case_ :Any = SamProcessor(image_processor=snake_case )
snake_case_ :Union[str, Any] = self.prepare_image_inputs()
snake_case_ :Optional[Any] = image_processor(snake_case , return_tensors="""pt""" )["""pixel_values"""].numpy()
snake_case_ :Dict = processor(images=snake_case , return_tensors="""pt""" )["""pixel_values"""].numpy()
snake_case_ :int = image_processor(snake_case , return_tensors="""tf""" )["""pixel_values"""].numpy()
snake_case_ :Optional[Any] = processor(images=snake_case , return_tensors="""tf""" )["""pixel_values"""].numpy()
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertTrue(np.allclose(snake_case , snake_case ) )
| 66 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
lowerCamelCase : Optional[Any] =StableDiffusionSAGPipeline
lowerCamelCase : List[str] =TEXT_TO_IMAGE_PARAMS
lowerCamelCase : List[Any] =TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase : List[str] =TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase : Tuple =TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase : Optional[int] =False
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__lowerCamelCase = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=a , set_alpha_to_one=a , )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__lowerCamelCase = CLIPTextModel(a )
__lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowerCamelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str , a : str=0 ):
"""simple docstring"""
if str(a ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(a )
else:
__lowerCamelCase = torch.Generator(device=a ).manual_seed(a )
__lowerCamelCase = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
__lowerCamelCase = sag_pipe.to(a )
sag_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = '''.'''
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sag_pipe(
[prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
__lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__lowerCamelCase = sag_pipe.to(a )
sag_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = '''.'''
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sag_pipe(
[prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
__lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__lowerCamelCase = sag_pipe.to(a )
sag_pipe.set_progress_bar_config(disable=a )
__lowerCamelCase = '''.'''
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sag_pipe(
[prompt] , width=7_68 , height=5_12 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
__lowerCamelCase = output.images
assert image.shape == (1, 5_12, 7_68, 3)
| 67 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 0 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=False , ) -> List[Any]:
'''simple docstring'''
A__ = size if size is not None else {"height": 20, "width": 20}
A__ = crop_size if crop_size is not None else {"height": 18, "width": 18}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = image_size
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_center_crop
A__ = crop_size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_reduce_labels
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def lowerCAmelCase__ ( ) -> List[Any]:
'''simple docstring'''
A__ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
A__ = Image.open(dataset[0]["file"] )
A__ = Image.open(dataset[1]["file"] )
return image, map
def lowerCAmelCase__ ( ) -> int:
'''simple docstring'''
A__ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
A__ = Image.open(ds[0]["file"] )
A__ = Image.open(ds[1]["file"] )
A__ = Image.open(ds[2]["file"] )
A__ = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class a__ ( snake_case , unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = BeitImageProcessingTester(self )
@property
def UpperCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase , "do_resize" ) )
self.assertTrue(hasattr(lowercase , "size" ) )
self.assertTrue(hasattr(lowercase , "do_center_crop" ) )
self.assertTrue(hasattr(lowercase , "center_crop" ) )
self.assertTrue(hasattr(lowercase , "do_normalize" ) )
self.assertTrue(hasattr(lowercase , "image_mean" ) )
self.assertTrue(hasattr(lowercase , "image_std" ) )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels , lowercase )
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels , lowercase )
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
pass
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , np.ndarray )
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , torch.Tensor )
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase )
A__ = []
for image in image_inputs:
self.assertIsInstance(lowercase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
A__ = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched
A__ = image_processing(lowercase , lowercase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test not batched input (PIL images)
A__ , A__ = prepare_semantic_single_inputs()
A__ = image_processing(lowercase , lowercase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched input (PIL images)
A__ , A__ = prepare_semantic_batch_inputs()
A__ = image_processing(lowercase , lowercase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
A__ , A__ = prepare_semantic_single_inputs()
A__ = image_processing(lowercase , lowercase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 150 )
A__ = True
A__ = image_processing(lowercase , lowercase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
| 68 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 0 |
"""simple docstring"""
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
__UpperCamelCase = logging.getLogger()
def UpperCAmelCase ( ) -> List[str]:
snake_case_ = argparse.ArgumentParser()
parser.add_argument('-f' )
snake_case_ = parser.parse_args()
return args.f
def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]:
snake_case_ = {}
snake_case_ = os.path.join(UpperCAmelCase , 'all_results.json' )
if os.path.exists(UpperCAmelCase ):
with open(UpperCAmelCase , 'r' ) as f:
snake_case_ = json.load(UpperCAmelCase )
else:
raise ValueError(f'can\'t find {path}' )
return results
def UpperCAmelCase ( ) -> Tuple:
snake_case_ = torch.cuda.is_available() and torch_device == 'cuda'
return is_using_cuda and is_apex_available()
__UpperCamelCase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCamelCase ( lowerCAmelCase__ ):
@classmethod
def a_ ( cls) -> Optional[int]:
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
snake_case_ = tempfile.mkdtemp()
snake_case_ = os.path.join(cls.tmpdir, 'default_config.yml')
write_basic_config(save_location=cls.configPath)
snake_case_ = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def a_ ( cls) -> Optional[int]:
shutil.rmtree(cls.tmpdir)
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> Union[str, Any]:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split()
if is_cuda_and_apex_available():
testargs.append('--fp16')
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertGreaterEqual(result['eval_accuracy'], 0.75)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'glue_no_trainer')))
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> Union[str, Any]:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertLess(result['perplexity'], 100)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'clm_no_trainer')))
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> List[Any]:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertLess(result['perplexity'], 42)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'mlm_no_trainer')))
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> List[Any]:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
snake_case_ = 7 if get_gpu_count() > 1 else 2
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertGreaterEqual(result['eval_accuracy'], 0.75)
self.assertLess(result['train_loss'], 0.5)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'ner_no_trainer')))
@unittest.skip(reason='Fix me @muellerzr')
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> Optional[int]:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['eval_f1'], 28)
self.assertGreaterEqual(result['eval_exact'], 28)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'qa_no_trainer')))
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> Union[str, Any]:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertGreaterEqual(result['eval_accuracy'], 0.8)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'swag_no_trainer')))
@slow
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> Any:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertGreaterEqual(result['eval_rouge1'], 10)
self.assertGreaterEqual(result['eval_rouge2'], 2)
self.assertGreaterEqual(result['eval_rougeL'], 7)
self.assertGreaterEqual(result['eval_rougeLsum'], 7)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'summarization_no_trainer')))
@slow
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> str:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertGreaterEqual(result['eval_bleu'], 30)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'translation_no_trainer')))
@slow
def a_ ( self) -> Optional[Any]:
snake_case_ = logging.StreamHandler(sys.stdout)
logger.addHandler(lowerCAmelCase__)
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split()
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
self.assertGreaterEqual(result['eval_overall_accuracy'], 0.10)
@mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'})
def a_ ( self) -> List[Any]:
snake_case_ = self.get_auto_remove_tmp_dir()
snake_case_ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split()
if is_cuda_and_apex_available():
testargs.append('--fp16')
run_command(self._launch_args + testargs)
snake_case_ = get_results(lowerCAmelCase__)
# The base model scores a 25%
self.assertGreaterEqual(result['eval_accuracy'], 0.6)
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'step_1')))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'image_classification_no_trainer')))
| 69 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 0 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A__ : Union[str, Any] =logging.get_logger(__name__)
A__ : Optional[Any] ='''▁'''
A__ : List[str] ={
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
A__ : Tuple ={
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
A__ : List[Any] ={
'''facebook/s2t-small-librispeech-asr''': 10_24,
}
A__ : Optional[int] =['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
A__ : Tuple ={'''mustc''': MUSTC_LANGS}
class UpperCAmelCase ( snake_case_ ):
_lowercase: Union[str, Any] = VOCAB_FILES_NAMES
_lowercase: str = PRETRAINED_VOCAB_FILES_MAP
_lowercase: str = MAX_MODEL_INPUT_SIZES
_lowercase: int = ['''input_ids''', '''attention_mask''']
_lowercase: List[int] = []
def __init__( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : Union[str, Any]="<s>" , __snake_case : Any="</s>" , __snake_case : List[str]="<pad>" , __snake_case : Optional[int]="<unk>" , __snake_case : Optional[Any]=False , __snake_case : Any=False , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : List[str] , ) -> None:
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
_lowerCAmelCase = do_upper_case
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = load_json(__snake_case )
_lowerCAmelCase = {v: k for k, v in self.encoder.items()}
_lowerCAmelCase = spm_file
_lowerCAmelCase = load_spm(__snake_case , self.sp_model_kwargs )
if lang_codes is not None:
_lowerCAmelCase = lang_codes
_lowerCAmelCase = LANGUAGES[lang_codes]
_lowerCAmelCase = [f"<lang:{lang}>" for lang in self.langs]
_lowerCAmelCase = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs}
_lowerCAmelCase = self.lang_tokens
_lowerCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
_lowerCAmelCase = {}
@property
def lowercase__ ( self : str ) -> int:
return len(self.encoder )
@property
def lowercase__ ( self : Optional[int] ) -> str:
return self._tgt_lang
@tgt_lang.setter
def lowercase__ ( self : Tuple , __snake_case : int ) -> None:
_lowerCAmelCase = new_tgt_lang
self.set_tgt_lang_special_tokens(__snake_case )
def lowercase__ ( self : Optional[Any] , __snake_case : str ) -> None:
_lowerCAmelCase = self.lang_code_to_id[tgt_lang]
_lowerCAmelCase = [lang_code_id]
def lowercase__ ( self : Optional[Any] , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def lowercase__ ( self : Any , __snake_case : int ) -> List[str]:
return self.encoder.get(__snake_case , self.encoder[self.unk_token] )
def lowercase__ ( self : Union[str, Any] , __snake_case : int ) -> str:
return self.decoder.get(__snake_case , self.unk_token )
def lowercase__ ( self : Any , __snake_case : List[str] ) -> str:
_lowerCAmelCase = []
_lowerCAmelCase = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
_lowerCAmelCase = self.sp_model.decode(__snake_case )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
_lowerCAmelCase = []
else:
current_sub_tokens.append(__snake_case )
_lowerCAmelCase = self.sp_model.decode(__snake_case )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def lowercase__ ( self : str , __snake_case : Optional[int] , __snake_case : Any=None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def lowercase__ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
_lowerCAmelCase = [1] * len(self.prefix_tokens )
_lowerCAmelCase = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__snake_case )) + suffix_ones
return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones
def lowercase__ ( self : Optional[Any] ) -> Dict:
_lowerCAmelCase = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ) -> Dict:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self : Tuple , __snake_case : Dict ) -> None:
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase = {}
_lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs )
def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
_lowerCAmelCase = Path(__snake_case )
assert save_dir.is_dir(), f"{save_directory} should be a directory"
_lowerCAmelCase = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
_lowerCAmelCase = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , __snake_case )
if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __snake_case )
elif not os.path.isfile(self.spm_file ):
with open(__snake_case , """wb""" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (str(__snake_case ), str(__snake_case ))
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = sentencepiece.SentencePieceProcessor(**lowerCAmelCase )
spm.Load(str(lowerCAmelCase ) )
return spm
def UpperCamelCase__ ( lowerCAmelCase ):
"""simple docstring"""
with open(lowerCAmelCase , """r""" ) as f:
return json.load(lowerCAmelCase )
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
with open(lowerCAmelCase , """w""" ) as f:
json.dump(lowerCAmelCase , lowerCAmelCase , indent=2 )
| 70 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
A_ :Optional[int] = None
A_ :Any = logging.get_logger(__name__)
A_ :List[str] = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
A_ :Any = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
A_ :int = {
'''google/rembert''': 256,
}
A_ :Tuple = '''▁'''
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : str =VOCAB_FILES_NAMES
UpperCamelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ : List[str] =RemBertTokenizer
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="[CLS]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , **lowerCamelCase__ , ):
"""simple docstring"""
__UpperCamelCase : List[str] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token
super().__init__(
lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , )
__UpperCamelCase : str =do_lower_case
__UpperCamelCase : List[str] =remove_space
__UpperCamelCase : Dict =keep_accents
__UpperCamelCase : Tuple =vocab_file
__UpperCamelCase : Optional[int] =False if not self.vocab_file else True
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ):
"""simple docstring"""
__UpperCamelCase : List[Any] =[self.sep_token_id]
__UpperCamelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1]
return [1] + ([0] * len(lowerCamelCase__ )) + [1]
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ):
"""simple docstring"""
__UpperCamelCase : List[Any] =[self.sep_token_id]
__UpperCamelCase : Optional[Any] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ):
"""simple docstring"""
if not os.path.isdir(lowerCamelCase__ ):
logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase__ ) )
return
__UpperCamelCase : List[str] =os.path.join(
lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ):
copyfile(self.vocab_file , lowerCamelCase__ )
return (out_vocab_file,)
| 71 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 0 |
"""simple docstring"""
def snake_case_ ( A_ : list[int], A_ : str ):
'''simple docstring'''
_lowerCamelCase : Tuple = int(A_ )
# Initialize Result
_lowerCamelCase : Dict = []
# Traverse through all denomination
for denomination in reversed(A_ ):
# Find denominations
while int(A_ ) >= int(A_ ):
total_value -= int(A_ )
answer.append(A_ ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
lowerCAmelCase__ = []
lowerCAmelCase__ = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
lowerCAmelCase__ = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
lowerCAmelCase__ = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
lowerCAmelCase__ = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
lowerCAmelCase__ = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F"""Following is minimal change for {value}: """)
lowerCAmelCase__ = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 72 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a =logging.get_logger(__name__)
class A_ ( SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : Dict = ['''pixel_values''']
def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : Tuple ,):
super().__init__(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = size if size is not None else {'shortest_edge': 3_8_4}
__lowerCamelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Any = do_resize
__lowerCamelCase : Optional[Any] = size
# Default value set here for backwards compatibility where the value in config is None
__lowerCamelCase : Optional[int] = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6
__lowerCamelCase : str = resample
__lowerCamelCase : Optional[int] = do_rescale
__lowerCamelCase : int = rescale_factor
__lowerCamelCase : Union[str, Any] = do_normalize
__lowerCamelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowerCamelCase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : float ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,):
__lowerCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__)
if "shortest_edge" not in size:
raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}")
__lowerCamelCase : List[str] = size['shortest_edge']
if shortest_edge < 3_8_4:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__lowerCamelCase : Tuple = int(shortest_edge / crop_pct)
__lowerCamelCase : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,):
return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,):
return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__)
def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : Any ,):
__lowerCamelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase : str = crop_pct if crop_pct is not None else self.crop_pct
__lowerCamelCase : int = resample if resample is not None else self.resample
__lowerCamelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase : str = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase : Any = image_std if image_std is not None else self.image_std
__lowerCamelCase : List[Any] = size if size is not None else self.size
__lowerCamelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE__)
if not valid_images(SCREAMING_SNAKE_CASE__):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# All transformations expect numpy arrays.
__lowerCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE__) for image in images]
if do_resize:
__lowerCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__) for image in images]
if do_rescale:
__lowerCamelCase : List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__) for image in images]
if do_normalize:
__lowerCamelCase : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__) for image in images]
__lowerCamelCase : List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) for image in images]
__lowerCamelCase : Tuple = {'pixel_values': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__)
| 73 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 0 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class lowerCAmelCase_ ( logging.LoggerAdapter ):
'''simple docstring'''
@staticmethod
def _SCREAMING_SNAKE_CASE ( A_ : Optional[int] ) -> str:
A = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ,A_ : Optional[int] ,*A_ : int ,**A_ : str ) -> Union[str, Any]:
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
A = kwargs.pop('main_process_only' ,A_ )
A = kwargs.pop('in_order' ,A_ )
if self.isEnabledFor(A_ ):
if self._should_log(A_ ):
A , A = self.process(A_ ,A_ )
self.logger.log(A_ ,A_ ,*A_ ,**A_ )
elif in_order:
A = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
A , A = self.process(A_ ,A_ )
self.logger.log(A_ ,A_ ,*A_ ,**A_ )
state.wait_for_everyone()
def _snake_case ( snake_case__ : str , snake_case__ : str = None ):
if log_level is None:
A = os.environ.get('ACCELERATE_LOG_LEVEL' , snake_case__ )
A = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__ , {} )
| 74 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 0 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __UpperCamelCase :
def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, ):
"""simple docstring"""
lowerCamelCase_ =parent
lowerCamelCase_ =13
lowerCamelCase_ =7
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =99
lowerCamelCase_ =384
lowerCamelCase_ =2
lowerCamelCase_ =4
lowerCamelCase_ =37
lowerCamelCase_ ='''gelu'''
lowerCamelCase_ =0.1
lowerCamelCase_ =0.1
lowerCamelCase_ =512
lowerCamelCase_ =16
lowerCamelCase_ =2
lowerCamelCase_ =0.0_2
lowerCamelCase_ =3
lowerCamelCase_ =4
lowerCamelCase_ =128
lowerCamelCase_ =2
lowerCamelCase_ =9
lowerCamelCase_ =1
lowerCamelCase_ =None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowerCamelCase_ =None
if self.use_input_mask:
lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ =None
if self.use_token_type_ids:
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =None
if self.use_labels:
lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size )
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels )
lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices )
lowerCamelCase_ =ConvBertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCAmelCase, )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModel(config=lowerCAmelCase )
lowerCamelCase_ ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowerCamelCase_ =[input_ids, input_mask]
lowerCamelCase_ =model(lowerCAmelCase )
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertForMaskedLM(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =TFConvBertForSequenceClassification(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.num_choices
lowerCamelCase_ =TFConvBertForMultipleChoice(config=lowerCAmelCase )
lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) )
lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) )
lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) )
lowerCamelCase_ ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =TFConvBertForTokenClassification(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertForQuestionAnswering(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
(
(
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
),
) =config_and_inputs
lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase : List[str] =(
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase : int =False
lowercase : List[Any] =False
lowercase : Dict =False
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModelTester(self )
lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 )
def lowercase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ =True
lowerCamelCase_ =True
if hasattr(lowerCAmelCase, '''use_cache''' ):
lowerCamelCase_ =True
lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length )
lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =len(model(lowerCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase, saved_model=lowerCAmelCase )
lowerCamelCase_ =os.path.join(lowerCAmelCase, '''saved_model''', '''1''' )
lowerCamelCase_ =tf.keras.models.load_model(lowerCAmelCase )
lowerCamelCase_ =model(lowerCAmelCase )
if self.is_encoder_decoder:
lowerCamelCase_ =outputs['''encoder_hidden_states''']
lowerCamelCase_ =outputs['''encoder_attentions''']
else:
lowerCamelCase_ =outputs['''hidden_states''']
lowerCamelCase_ =outputs['''attentions''']
self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase )
lowerCamelCase_ =getattr(
self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], )
self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
self.assertIsNotNone(lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ =True
lowerCamelCase_ =getattr(self.model_tester, '''decoder_seq_length''', self.model_tester.seq_length )
lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length )
lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase )
lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase )
def check_decoder_attentions_output(lowerCAmelCase ):
lowerCamelCase_ =len(lowerCAmelCase )
self.assertEqual(out_len % 2, 0 )
lowerCamelCase_ =outputs.decoder_attentions
self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], )
def check_encoder_attentions_output(lowerCAmelCase ):
lowerCamelCase_ =[
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], )
for model_class in self.all_model_classes:
lowerCamelCase_ =True
lowerCamelCase_ =False
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
lowerCamelCase_ =len(lowerCAmelCase )
self.assertEqual(config.output_hidden_states, lowerCAmelCase )
check_encoder_attentions_output(lowerCAmelCase )
if self.is_encoder_decoder:
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
self.assertEqual(config.output_hidden_states, lowerCAmelCase )
check_decoder_attentions_output(lowerCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowerCamelCase_ =True
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
self.assertEqual(config.output_hidden_states, lowerCAmelCase )
check_encoder_attentions_output(lowerCAmelCase )
# Check attention is always last and order is fine
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCAmelCase ) )
self.assertEqual(model.config.output_hidden_states, lowerCAmelCase )
check_encoder_attentions_output(lowerCAmelCase )
@require_tf
class __UpperCamelCase ( unittest.TestCase ):
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
lowerCamelCase_ =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ =model(lowerCAmelCase )[0]
lowerCamelCase_ =[1, 6, 768]
self.assertEqual(output.shape, lowerCAmelCase )
lowerCamelCase_ =tf.constant(
[
[
[-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2],
[0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4],
[0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase, atol=1e-4 )
| 75 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['XGLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['XGLMTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XGLMForCausalLM',
'XGLMModel',
'XGLMPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'FlaxXGLMForCausalLM',
'FlaxXGLMModel',
'FlaxXGLMPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXGLMForCausalLM',
'TFXGLMModel',
'TFXGLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 76 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 0 |
"""simple docstring"""
def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ):
'''simple docstring'''
lowercase__ : Optional[Any] = len(_lowerCAmelCase )
lowercase__ : Any = len(_lowerCAmelCase )
lowercase__ : Optional[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
lowercase__ : Any = True
for i in range(_lowerCAmelCase ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
lowercase__ : Tuple = True
if a[i].islower():
lowercase__ : Optional[int] = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 77 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def _lowerCAmelCase ( lowercase_ ):
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError('Undefined for non-integers' )
elif precision < 1:
raise ValueError('Undefined for non-natural numbers' )
UpperCAmelCase = precision
UpperCAmelCase = ceil(precision / 14 )
UpperCAmelCase = 426880 * Decimal(10005 ).sqrt()
UpperCAmelCase = 1
UpperCAmelCase = 13591409
UpperCAmelCase = Decimal(lowercase_ )
for k in range(1 , lowercase_ ):
UpperCAmelCase = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase_ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
snake_case_ = 50
print(f'''The first {n} digits of pi is: {pi(n)}''')
| 78 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 0 |
'''simple docstring'''
from math import factorial
lowerCamelCase_ = {str(digit): factorial(digit) for digit in range(10)}
def __lowercase ( __lowercase ) -> int:
'''simple docstring'''
if not isinstance(__lowercase , __lowercase ):
raise TypeError("Parameter number must be int" )
if number < 0:
raise ValueError("Parameter number must be greater than or equal to 0" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowercase ) )
def __lowercase ( __lowercase = 60 , __lowercase = 100_0000 ) -> int:
'''simple docstring'''
if not isinstance(__lowercase , __lowercase ) or not isinstance(__lowercase , __lowercase ):
raise TypeError("Parameters chain_length and number_limit must be int" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"Parameters chain_length and number_limit must be greater than 0" )
# the counter for the chains with the exact desired length
_A = 0
# the cached sizes of the previous chains
_A = {}
for start_chain_element in range(1 , __lowercase ):
# The temporary set will contain the elements of the chain
_A = set()
_A = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
_A = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowercase )
chain_set_length += 1
_A = digit_factorial_sum(__lowercase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
_A = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution()}""")
| 79 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Any = logging.get_logger(__name__)
a__ : Union[str, Any] = '▁'
a__ : Tuple = {'vocab_file': 'spiece.model'}
a__ : Optional[Any] = {
'vocab_file': {
'google/reformer-crime-and-punishment': (
'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model'
)
}
}
a__ : List[Any] = {
'google/reformer-crime-and-punishment': 5_2_4_2_8_8,
}
class lowercase_ ( a__ ):
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['input_ids', 'attention_mask']
def __init__( self , a , a="</s>" , a="<unk>" , a=[] , a = None , **a , ):
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=a , unk_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(a )
@property
def __a ( self ):
return self.sp_model.get_piece_size()
def __a ( self ):
UpperCamelCase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , a ):
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __a ( self , a ):
return self.sp_model.encode(a , out_type=a )
def __a ( self , a ):
return self.sp_model.piece_to_id(a )
def __a ( self , a ):
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(a )
return token
def __a ( self , a ):
UpperCamelCase__ = []
UpperCamelCase__ = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(a ) + token
UpperCamelCase__ = []
else:
current_sub_tokens.append(a )
out_string += self.sp_model.decode(a )
return out_string.strip()
def __a ( self , a , a = None ):
if not os.path.isdir(a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase__ = os.path.join(
a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , a )
elif not os.path.isfile(self.vocab_file ):
with open(a , "wb" ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(a )
return (out_vocab_file,)
| 80 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 0 |
"""simple docstring"""
def _A ( lowercase ):
"""simple docstring"""
if not head:
return True
# split the list to two parts
a , a =head.next, head
while fast and fast.next:
a =fast.next.next
a =slow.next
a =slow.next
a =None # Don't forget here! But forget still works!
# reverse the second part
a =None
while second:
a =second.next
a =node
a =second
a =nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
a =node.next
a =head.next
return True
def _A ( lowercase ):
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
a =a =a =head
while fast and fast.next:
a , a =fast.next.next, slow.next
# 2. Push the second half into the stack
a =[slow.val]
while slow.next:
a =slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
a =cur.next
return True
def _A ( lowercase ):
"""simple docstring"""
if not head or not head.next:
return True
a ={}
a =0
while head:
if head.val in d:
d[head.val].append(lowercase )
else:
a =[pos]
a =head.next
pos += 1
a =pos - 1
a =0
for v in d.values():
if len(lowercase ) % 2 != 0:
middle += 1
else:
a =0
for i in range(0 , len(lowercase ) ):
if v[i] + v[len(lowercase ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 81 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 0 |
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
A__ = logging.get_logger(__name__)
class __lowerCAmelCase ( lowerCamelCase__ ):
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__()
_lowerCAmelCase = nn.ModuleList(_snake_case )
def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = True , ):
"""simple docstring"""
for i, (image, scale, controlnet) in enumerate(zip(_snake_case , _snake_case , self.nets ) ):
_lowerCAmelCase , _lowerCAmelCase = controlnet(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , )
# merge samples
if i == 0:
_lowerCAmelCase , _lowerCAmelCase = down_samples, mid_sample
else:
_lowerCAmelCase = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(_snake_case , _snake_case )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def snake_case ( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
_snake_case , is_main_process=_snake_case , save_function=_snake_case , safe_serialization=_snake_case , variant=_snake_case , )
idx += 1
_lowerCAmelCase = model_path_to_save + F'_{idx}'
@classmethod
def snake_case ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
_lowerCAmelCase = 0
_lowerCAmelCase = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCAmelCase = pretrained_model_path
while os.path.isdir(_snake_case ):
_lowerCAmelCase = ControlNetModel.from_pretrained(_snake_case , **_snake_case )
controlnets.append(_snake_case )
idx += 1
_lowerCAmelCase = pretrained_model_path + F'_{idx}'
logger.info(F'{len(_snake_case )} controlnets loaded from {pretrained_model_path}.' )
if len(_snake_case ) == 0:
raise ValueError(
F'No ControlNets found under {os.path.dirname(_snake_case )}. Expected at least {pretrained_model_path + "_0"}.' )
return cls(_snake_case )
| 82 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 0 |
'''simple docstring'''
def A__ ( UpperCAmelCase_ ):
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
_UpperCamelCase : Tuple = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
_UpperCamelCase : Optional[Any] = 1
if upper_limit > 0:
_UpperCamelCase : Optional[Any] = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(UpperCAmelCase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print('\n********* Catalan Numbers Using Dynamic Programming ************\n')
print('\n*** Enter -1 at any time to quit ***')
print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='')
try:
while True:
snake_case_ : Optional[Any] = int(input().strip())
if N < 0:
print('\n********* Goodbye!! ************')
break
else:
print(F"""The Catalan numbers from 0 through {N} are:""")
print(catalan_numbers(N))
print('Try another upper limit for the sequence: ', end='')
except (NameError, ValueError):
print('\n********* Invalid input, goodbye! ************\n')
import doctest
doctest.testmod()
| 83 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 0 |
"""simple docstring"""
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def _snake_case ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ :Optional[Any] = multiprocessing.Manager()
lowerCAmelCase_ :Union[str, Any] = manager.list()
lowerCAmelCase_ :Any = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append("""timed out""" )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def _snake_case ( lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple ) -> List[str]:
'''simple docstring'''
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
lowerCAmelCase_ :Union[str, Any] = shutil.rmtree
lowerCAmelCase_ :str = os.rmdir
lowerCAmelCase_ :Any = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
lowerCAmelCase_ :Any = {}
with swallow_io():
with time_limit(lowercase__ ):
exec(lowercase__ , lowercase__ )
result.append("""passed""" )
except TimeoutException:
result.append("""timed out""" )
except BaseException as e:
result.append(f"""failed: {e}""" )
# Needed for cleaning up.
lowerCAmelCase_ :Dict = rmtree
lowerCAmelCase_ :List[str] = rmdir
lowerCAmelCase_ :int = chdir
@contextlib.contextmanager
def _snake_case ( lowercase__ : Tuple ) -> Optional[int]:
'''simple docstring'''
def signal_handler(lowercase__ : List[Any] , lowercase__ : Dict ):
raise TimeoutException("""Timed out!""" )
signal.setitimer(signal.ITIMER_REAL , lowercase__ )
signal.signal(signal.SIGALRM , lowercase__ )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def _snake_case ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ :List[str] = WriteOnlyStringIO()
with contextlib.redirect_stdout(lowercase__ ):
with contextlib.redirect_stderr(lowercase__ ):
with redirect_stdin(lowercase__ ):
yield
@contextlib.contextmanager
def _snake_case ( ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as dirname:
with chdir(lowercase__ ):
yield dirname
class _SCREAMING_SNAKE_CASE ( A__ ):
pass
class _SCREAMING_SNAKE_CASE ( io.StringIO ):
def __lowerCAmelCase ( self , *__A , **__A ) -> List[str]:
raise OSError
def __lowerCAmelCase ( self , *__A , **__A ) -> Optional[int]:
raise OSError
def __lowerCAmelCase ( self , *__A , **__A ) -> List[Any]:
raise OSError
def __lowerCAmelCase ( self , *__A , **__A ) -> Dict:
return False
class _SCREAMING_SNAKE_CASE ( contextlib._RedirectStream ): # type: ignore
UpperCAmelCase_ :Union[str, Any] = "stdin"
@contextlib.contextmanager
def _snake_case ( lowercase__ : Dict ) -> Dict:
'''simple docstring'''
if root == ".":
yield
return
lowerCAmelCase_ :List[Any] = os.getcwd()
os.chdir(lowercase__ )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(lowercase__ )
def _snake_case ( lowercase__ : List[str]=None ) -> List[str]:
'''simple docstring'''
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
lowerCAmelCase_ :Any = None
lowerCAmelCase_ :Optional[int] = None
import os
lowerCAmelCase_ :List[str] = """1"""
lowerCAmelCase_ :Tuple = None
lowerCAmelCase_ :Union[str, Any] = None
lowerCAmelCase_ :Dict = None
lowerCAmelCase_ :Dict = None
lowerCAmelCase_ :Any = None
lowerCAmelCase_ :Dict = None
lowerCAmelCase_ :Union[str, Any] = None
lowerCAmelCase_ :List[Any] = None
lowerCAmelCase_ :Optional[Any] = None
lowerCAmelCase_ :Dict = None
lowerCAmelCase_ :Any = None
lowerCAmelCase_ :str = None
lowerCAmelCase_ :Optional[Any] = None
lowerCAmelCase_ :Optional[int] = None
lowerCAmelCase_ :int = None
lowerCAmelCase_ :List[str] = None
lowerCAmelCase_ :Union[str, Any] = None
lowerCAmelCase_ :List[str] = None
lowerCAmelCase_ :Optional[int] = None
lowerCAmelCase_ :Any = None
lowerCAmelCase_ :Optional[Any] = None
lowerCAmelCase_ :Dict = None
lowerCAmelCase_ :List[str] = None
lowerCAmelCase_ :Optional[Any] = None
lowerCAmelCase_ :List[str] = None
lowerCAmelCase_ :Optional[int] = None
lowerCAmelCase_ :Dict = None
import shutil
lowerCAmelCase_ :Union[str, Any] = None
lowerCAmelCase_ :int = None
lowerCAmelCase_ :int = None
import subprocess
lowerCAmelCase_ :Dict = None # type: ignore
lowerCAmelCase_ :Dict = None
import sys
lowerCAmelCase_ :Tuple = None
lowerCAmelCase_ :int = None
lowerCAmelCase_ :Optional[int] = None
lowerCAmelCase_ :Union[str, Any] = None
lowerCAmelCase_ :Optional[Any] = None
| 84 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
'''simple docstring'''
def UpperCamelCase_( snake_case : int ):
'''simple docstring'''
snake_case_ = len(snake_case )
while cur > 1:
# Find the maximum number in arr
snake_case_ = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
snake_case_ = arr[mi::-1] + arr[mi + 1 : len(snake_case )]
# Reverse whole list
snake_case_ = arr[cur - 1 :: -1] + arr[cur : len(snake_case )]
cur -= 1
return arr
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : str = input("Enter numbers separated by a comma:\n").strip()
_SCREAMING_SNAKE_CASE : int = [int(item) for item in user_input.split(",")]
print(pancake_sort(unsorted))
| 85 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 0 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A__ :
@staticmethod
def __lowerCamelCase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class A__ ( unittest.TestCase):
A_ : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : Optional[int] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : Dict = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 )
self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 )
for detected_object in outputs:
self.assertEqual(
_SCREAMING_SNAKE_CASE , {
'score': ANY(_SCREAMING_SNAKE_CASE ),
'label': ANY(_SCREAMING_SNAKE_CASE ),
'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )},
} , )
import datasets
__lowerCAmelCase : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' )
__lowerCAmelCase : int = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__lowerCAmelCase : Union[str, Any] = object_detector(_SCREAMING_SNAKE_CASE , threshold=0.0 )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for outputs in batch_outputs:
self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 )
for detected_object in outputs:
self.assertEqual(
_SCREAMING_SNAKE_CASE , {
'score': ANY(_SCREAMING_SNAKE_CASE ),
'label': ANY(_SCREAMING_SNAKE_CASE ),
'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )},
} , )
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def __lowerCamelCase ( self ):
pass
@require_torch
def __lowerCamelCase ( self ):
__lowerCAmelCase : Tuple = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
] , )
__lowerCAmelCase : Dict = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
],
[
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
{'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
],
] , )
@require_torch
@slow
def __lowerCamelCase ( self ):
__lowerCAmelCase : Any = 'facebook/detr-resnet-50'
__lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : int = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
] , )
__lowerCAmelCase : Any = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
] , )
@require_torch
@slow
def __lowerCamelCase ( self ):
__lowerCAmelCase : Optional[Any] = 'facebook/detr-resnet-50'
__lowerCAmelCase : Any = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
] , )
__lowerCAmelCase : List[Any] = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
[
{'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
] , )
@require_torch
@slow
def __lowerCamelCase ( self ):
__lowerCAmelCase : int = 0.9985
__lowerCAmelCase : List[str] = 'facebook/detr-resnet-50'
__lowerCAmelCase : Tuple = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def __lowerCamelCase ( self ):
__lowerCAmelCase : Optional[Any] = 'Narsil/layoutlmv3-finetuned-funsd'
__lowerCAmelCase : Optional[Any] = 0.9993
__lowerCAmelCase : Tuple = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : List[Any] = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}},
{'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}},
] , )
| 86 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class snake_case_ ( __A ):
__A : Dict = "M-CLIP"
def __init__( self : Union[str, Any] , lowercase_ : Optional[Any]=10_24 , lowercase_ : Optional[int]=7_68 , **lowercase_ : Tuple ) -> Optional[int]:
lowercase__ : Tuple = transformerDimSize
lowercase__ : Union[str, Any] = imageDimSize
super().__init__(**lowercase_ )
class snake_case_ ( __A ):
__A : int = MCLIPConfig
def __init__( self : int , lowercase_ : Any , *lowercase_ : Dict , **lowercase_ : Dict ) -> Any:
super().__init__(lowercase_ , *lowercase_ , **lowercase_ )
lowercase__ : Dict = XLMRobertaModel(lowercase_ )
lowercase__ : Optional[int] = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any ) -> str:
lowercase__ : Dict = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0]
lowercase__ : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(lowercase_ ), embs
| 87 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 0 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
__lowerCAmelCase : int = False
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[Any]=32 ) -> List[str]:
"""simple docstring"""
set_seed(0 )
__magic_name__ = UNetaDModel(sample_size=UpperCamelCase__ , in_channels=3 , out_channels=3 )
__magic_name__ = torch.optim.SGD(model.parameters() , lr=0.0001 )
return model, optimizer
@slow
def _lowercase ( self : Any ) -> List[Any]:
"""simple docstring"""
__magic_name__ = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
__magic_name__ = DDPMScheduler(
num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , )
__magic_name__ = DDIMScheduler(
num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
__magic_name__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCamelCase__ ) for _ in range(4 )]
__magic_name__ = [torch.randn((4, 3, 32, 32) ).to(UpperCamelCase__ ) for _ in range(4 )]
__magic_name__ = [torch.randint(0 , 1000 , (4,) ).long().to(UpperCamelCase__ ) for _ in range(4 )]
# train with a DDPM scheduler
__magic_name__ , __magic_name__ = self.get_model_optimizer(resolution=32 )
model.train().to(UpperCamelCase__ )
for i in range(4 ):
optimizer.zero_grad()
__magic_name__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
__magic_name__ = model(UpperCamelCase__ , timesteps[i] ).sample
__magic_name__ = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
__magic_name__ , __magic_name__ = self.get_model_optimizer(resolution=32 )
model.train().to(UpperCamelCase__ )
for i in range(4 ):
optimizer.zero_grad()
__magic_name__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
__magic_name__ = model(UpperCamelCase__ , timesteps[i] ).sample
__magic_name__ = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) )
| 88 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 0 |
'''simple docstring'''
def __lowerCamelCase ( lowerCAmelCase_ = 4000000 ) -> int:
_a : Optional[Any] = [0, 1]
_a : str = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
_a : List[Any] = 0
for j in range(len(lowerCAmelCase_ ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f"""{solution() = }""")
| 89 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 0 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = logging.get_logger()
# the current default level is logging.WARNING
__lowerCamelCase = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = logging.get_verbosity()
__lowerCamelCase = logging.get_logger('transformers.models.bart.tokenization_bart' )
__lowerCamelCase = 'Testing 1, 2, 3'
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(lowerCamelCase__ ) as cl:
logger.warning(lowerCamelCase__ )
self.assertEqual(cl.out , msg + '\n' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(lowerCamelCase__ ) as cl:
logger.warning(lowerCamelCase__ )
self.assertEqual(cl.out , '' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(lowerCamelCase__ ) as cl:
logger.warning(lowerCamelCase__ )
self.assertEqual(cl.out , msg + '\n' )
# restore to the original level
logging.set_verbosity(lowerCamelCase__ )
@mockenv(TRANSFORMERS_VERBOSITY='error' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
__lowerCamelCase = logging.get_logger('transformers.models.bart.tokenization_bart' )
__lowerCamelCase = os.getenv('TRANSFORMERS_VERBOSITY' , lowerCamelCase__ )
__lowerCamelCase = logging.log_levels[env_level_str]
__lowerCamelCase = logging.get_verbosity()
self.assertEqual(
lowerCamelCase__ , lowerCamelCase__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
__lowerCamelCase = ''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='super-error' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
__lowerCamelCase = logging.logging.getLogger()
with CaptureLogger(lowerCamelCase__ ) as cl:
# this action activates the env var
logging.get_logger('transformers.models.bart.tokenization_bart' )
self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out )
# no need to restore as nothing was changed
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
__lowerCamelCase = logging.get_logger('transformers.models.bart.tokenization_bart' )
__lowerCamelCase = 'Testing 1, 2, 3'
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ):
# nothing should be logged as env var disables this method
with CaptureLogger(lowerCamelCase__ ) as cl:
logger.warning_advice(lowerCamelCase__ )
self.assertEqual(cl.out , '' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(lowerCamelCase__ ) as cl:
logger.warning_advice(lowerCamelCase__ )
self.assertEqual(cl.out , msg + '\n' )
def lowerCamelCase_ ( ) -> Dict:
"""simple docstring"""
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 90 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase_ : int = {
"""speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "mctct"
def __init__( self : Union[str, Any] , lowercase_ : str=8065 , lowercase_ : Optional[Any]=1536 , lowercase_ : str=36 , lowercase_ : List[str]=6144 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[Any]=384 , lowercase_ : Tuple=920 , lowercase_ : Any=1e-5 , lowercase_ : Optional[Any]=0.3 , lowercase_ : Any="relu" , lowercase_ : Any=0.02 , lowercase_ : Dict=0.3 , lowercase_ : int=0.3 , lowercase_ : Union[str, Any]=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0.3 , lowercase_ : Optional[int]=1 , lowercase_ : Dict=(7,) , lowercase_ : Union[str, Any]=(3,) , lowercase_ : Tuple=80 , lowercase_ : Union[str, Any]=1 , lowercase_ : Any=None , lowercase_ : Any="sum" , lowercase_ : List[Any]=False , **lowercase_ : Any , ):
'''simple docstring'''
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_)
SCREAMING_SNAKE_CASE_ : str = vocab_size
SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size
SCREAMING_SNAKE_CASE_ : int = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE_ : Any = attention_head_dim
SCREAMING_SNAKE_CASE_ : int = max_position_embeddings
SCREAMING_SNAKE_CASE_ : List[str] = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layerdrop
SCREAMING_SNAKE_CASE_ : str = hidden_act
SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Tuple = pad_token_id
SCREAMING_SNAKE_CASE_ : Tuple = bos_token_id
SCREAMING_SNAKE_CASE_ : int = eos_token_id
SCREAMING_SNAKE_CASE_ : Optional[Any] = conv_glu_dim
SCREAMING_SNAKE_CASE_ : List[str] = conv_dropout
SCREAMING_SNAKE_CASE_ : Optional[Any] = num_conv_layers
SCREAMING_SNAKE_CASE_ : Tuple = input_feat_per_channel
SCREAMING_SNAKE_CASE_ : Optional[int] = input_channels
SCREAMING_SNAKE_CASE_ : List[str] = conv_channels
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ctc_loss_reduction
SCREAMING_SNAKE_CASE_ : str = ctc_zero_infinity
# prevents config testing fail with exporting to json
SCREAMING_SNAKE_CASE_ : Optional[Any] = list(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = list(lowercase_)
if len(self.conv_kernel) != self.num_conv_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '''
F'but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, '
F'`config.num_conv_layers = {self.num_conv_layers}`.')
| 91 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = {
"""Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class a__ ( snake_case__ ):
_a : Optional[Any] = """dpt"""
def __init__( self , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.0 , _A=0.0 , _A=0.02 , _A=1E-1_2 , _A=3_8_4 , _A=1_6 , _A=3 , _A=False , _A=True , _A=[2, 5, 8, 1_1] , _A="project" , _A=[4, 2, 1, 0.5] , _A=[9_6, 1_9_2, 3_8_4, 7_6_8] , _A=2_5_6 , _A=-1 , _A=False , _A=True , _A=0.4 , _A=2_5_5 , _A=0.1 , _A=[1, 1_0_2_4, 2_4, 2_4] , _A=[0, 1] , _A=None , **_A , ):
"""simple docstring"""
super().__init__(**_A )
__lowerCAmelCase = hidden_size
__lowerCAmelCase = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("Initializing the config with a `BiT` backbone." )
__lowerCAmelCase = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
}
__lowerCAmelCase = BitConfig(**_A )
elif isinstance(_A , _A ):
logger.info("Initializing the config with a `BiT` backbone." )
__lowerCAmelCase = BitConfig(**_A )
elif isinstance(_A , _A ):
__lowerCAmelCase = backbone_config
else:
raise ValueError(
f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" )
__lowerCAmelCase = backbone_featmap_shape
__lowerCAmelCase = neck_ignore_stages
if readout_type != "project":
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." )
else:
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = []
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = image_size
__lowerCAmelCase = patch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = qkv_bias
__lowerCAmelCase = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" )
__lowerCAmelCase = readout_type
__lowerCAmelCase = reassemble_factors
__lowerCAmelCase = neck_hidden_sizes
__lowerCAmelCase = fusion_hidden_size
__lowerCAmelCase = head_in_index
__lowerCAmelCase = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
__lowerCAmelCase = use_auxiliary_head
__lowerCAmelCase = auxiliary_loss_weight
__lowerCAmelCase = semantic_loss_ignore_index
__lowerCAmelCase = semantic_classifier_dropout
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__lowerCAmelCase = self.backbone_config.to_dict()
__lowerCAmelCase = self.__class__.model_type
return output
| 92 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 0 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowercase : int = get_logger(__name__)
class lowerCAmelCase__ :
lowerCAmelCase_ = '''dummy_data'''
lowerCAmelCase_ = '''datasets'''
lowerCAmelCase_ = False
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ):
"""simple docstring"""
lowercase_ : Any = 0
lowercase_ : List[Any] = dataset_name
lowercase_ : int = cache_dir
lowercase_ : str = use_local_dummy_data
lowercase_ : int = config
# download_callbacks take a single url as input
lowercase_ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
lowercase_ : Optional[int] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
lowercase_ : Optional[Any] = str(__SCREAMING_SNAKE_CASE )
# to be downloaded
lowercase_ : Union[str, Any] = None
lowercase_ : int = None
@property
def _snake_case ( self ):
"""simple docstring"""
if self._dummy_file is None:
lowercase_ : Optional[Any] = self.download_dummy_data()
return self._dummy_file
@property
def _snake_case ( self ):
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('''dummy''' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('''dummy''' , self.version_name )
@property
def _snake_case ( self ):
"""simple docstring"""
return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' )
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Any = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
lowercase_ : int = cached_path(
__SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE )
return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name )
@property
def _snake_case ( self ):
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def _snake_case ( self ):
"""simple docstring"""
if self._bucket_url is None:
lowercase_ : Optional[int] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) )
return self._bucket_url
@property
def _snake_case ( self ):
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
lowercase_ : Optional[int] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
lowercase_ : int = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ):
return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def _snake_case ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return path
def _snake_case ( self ):
"""simple docstring"""
return {}
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : List[str] = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for single_url in single_urls:
download_callback(__SCREAMING_SNAKE_CASE )
else:
lowercase_ : Any = single_urls
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[Any] = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls]
else:
lowercase_ : Any = single_urls
lowercase_ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) )
lowercase_ : Optional[Any] = value
# make sure that values are unique
if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
lowercase_ : str = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase_ : List[Any] = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
lowercase_ : Dict = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , __SCREAMING_SNAKE_CASE ) ) for url in data_url )
lowercase_ : Union[str, Any] = all(
url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
lowercase_ : Any = [data_url[0]] * len(__SCREAMING_SNAKE_CASE )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
lowercase_ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) )
dummy_data_list.append(__SCREAMING_SNAKE_CASE )
return dummy_data_list
def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
lowercase_ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) )
if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _snake_case ( self ):
"""simple docstring"""
pass
def _snake_case ( self ):
"""simple docstring"""
pass
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def _iter_archive_members(__SCREAMING_SNAKE_CASE ):
# this preserves the order of the members inside the ZIP archive
lowercase_ : List[str] = Path(self.dummy_file ).parent
lowercase_ : str = path.relative_to(__SCREAMING_SNAKE_CASE )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
lowercase_ : List[str] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = Path(__SCREAMING_SNAKE_CASE )
lowercase_ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob('''*''' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ):
yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open('''rb''' )
def _snake_case ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase_ : int = [paths]
for path in paths:
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith(('''.''', '''__''') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith(('''.''', '''__''') ):
continue
dirnames.sort()
for filename in sorted(__SCREAMING_SNAKE_CASE ):
if filename.startswith(('''.''', '''__''') ):
continue
yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 93 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : str = logging.get_logger(__name__)
snake_case : Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = 'markuplm'
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=256 , _lowerCamelCase=1024 , _lowerCamelCase=216 , _lowerCamelCase=1001 , _lowerCamelCase=32 , _lowerCamelCase=50 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
super().__init__(
pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , )
a :Optional[Any] = vocab_size
a :int = hidden_size
a :List[Any] = num_hidden_layers
a :str = num_attention_heads
a :Tuple = hidden_act
a :Any = intermediate_size
a :Optional[int] = hidden_dropout_prob
a :Optional[Any] = attention_probs_dropout_prob
a :Any = max_position_embeddings
a :Union[str, Any] = type_vocab_size
a :Optional[int] = initializer_range
a :Any = layer_norm_eps
a :Any = position_embedding_type
a :Optional[Any] = use_cache
a :Optional[Any] = classifier_dropout
# additional properties
a :Optional[int] = max_depth
a :int = max_xpath_tag_unit_embeddings
a :Optional[Any] = max_xpath_subs_unit_embeddings
a :Union[str, Any] = tag_pad_id
a :str = subs_pad_id
a :List[str] = xpath_unit_hidden_size
| 94 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 0 |
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase):
_lowercase : Dict = AudioLDMPipeline
_lowercase : Tuple = TEXT_TO_AUDIO_PARAMS
_lowercase : str = TEXT_TO_AUDIO_BATCH_PARAMS
_lowercase : Optional[Any] = frozenset(
[
"""num_inference_steps""",
"""num_waveforms_per_prompt""",
"""generator""",
"""latents""",
"""output_type""",
"""return_dict""",
"""callback""",
"""callback_steps""",
])
def _lowercase ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
a__ : List[Any] =UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(3_2, 6_4) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=lowerCAmelCase__ , )
a__ : Optional[int] =DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
torch.manual_seed(0 )
a__ : str =AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
a__ : int =ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , )
a__ : str =ClapTextModelWithProjection(lowerCAmelCase__ )
a__ : int =RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=7_7 )
a__ : Any =SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCAmelCase__ , )
a__ : Dict =SpeechTaHifiGan(lowerCAmelCase__ )
a__ : Dict ={
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"vocoder": vocoder,
}
return components
def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]:
'''simple docstring'''
if str(lowerCAmelCase__ ).startswith("mps" ):
a__ : str =torch.manual_seed(lowerCAmelCase__ )
else:
a__ : List[Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
a__ : Union[str, Any] ={
"prompt": "A hammer hitting a wooden surface",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
}
return inputs
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
a__ : Tuple ="cpu" # ensure determinism for the device-dependent torch.Generator
a__ : List[Any] =self.get_dummy_components()
a__ : List[Any] =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : int =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : Optional[int] =audioldm_pipe(**lowerCAmelCase__ )
a__ : Union[str, Any] =output.audios[0]
assert audio.ndim == 1
assert len(lowerCAmelCase__ ) == 2_5_6
a__ : Optional[Any] =audio[:1_0]
a__ : Optional[int] =np.array(
[-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def _lowercase ( self ) -> int:
'''simple docstring'''
a__ : List[str] =self.get_dummy_components()
a__ : Union[str, Any] =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ )
a__ : List[str] =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : Optional[int] =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : Tuple =3 * [inputs["prompt"]]
# forward
a__ : List[Any] =audioldm_pipe(**lowerCAmelCase__ )
a__ : Optional[int] =output.audios[0]
a__ : int =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : List[Any] =3 * [inputs.pop("prompt" )]
a__ : str =audioldm_pipe.tokenizer(
lowerCAmelCase__ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="pt" , )
a__ : Any =text_inputs["input_ids"].to(lowerCAmelCase__ )
a__ : int =audioldm_pipe.text_encoder(
lowerCAmelCase__ , )
a__ : Any =prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
a__ : Any =F.normalize(lowerCAmelCase__ , dim=-1 )
a__ : List[Any] =prompt_embeds
# forward
a__ : int =audioldm_pipe(**lowerCAmelCase__ )
a__ : Optional[Any] =output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
a__ : Any =self.get_dummy_components()
a__ : Union[str, Any] =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : Optional[Any] =audioldm_pipe.to(lowerCAmelCase__ )
a__ : str =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : Any =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : Optional[int] =3 * ["this is a negative prompt"]
a__ : int =negative_prompt
a__ : List[str] =3 * [inputs["prompt"]]
# forward
a__ : List[str] =audioldm_pipe(**lowerCAmelCase__ )
a__ : List[Any] =output.audios[0]
a__ : int =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : Dict =3 * [inputs.pop("prompt" )]
a__ : Tuple =[]
for p in [prompt, negative_prompt]:
a__ : Any =audioldm_pipe.tokenizer(
lowerCAmelCase__ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="pt" , )
a__ : Dict =text_inputs["input_ids"].to(lowerCAmelCase__ )
a__ : int =audioldm_pipe.text_encoder(
lowerCAmelCase__ , )
a__ : str =text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
a__ : int =F.normalize(lowerCAmelCase__ , dim=-1 )
embeds.append(lowerCAmelCase__ )
a__ , a__ : str =embeds
# forward
a__ : List[Any] =audioldm_pipe(**lowerCAmelCase__ )
a__ : str =output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def _lowercase ( self ) -> Any:
'''simple docstring'''
a__ : Tuple ="cpu" # ensure determinism for the device-dependent torch.Generator
a__ : Tuple =self.get_dummy_components()
a__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
a__ : List[Any] =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : int ="egg cracking"
a__ : str =audioldm_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ )
a__ : List[str] =output.audios[0]
assert audio.ndim == 1
assert len(lowerCAmelCase__ ) == 2_5_6
a__ : Optional[Any] =audio[:1_0]
a__ : List[str] =np.array(
[-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def _lowercase ( self ) -> str:
'''simple docstring'''
a__ : Union[str, Any] ="cpu" # ensure determinism for the device-dependent torch.Generator
a__ : List[Any] =self.get_dummy_components()
a__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
a__ : str =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : Any =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : int ="A hammer hitting a wooden surface"
# test num_waveforms_per_prompt=1 (default)
a__ : int =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=2 ).audios
assert audios.shape == (1, 2_5_6)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
a__ : Dict =2
a__ : Any =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 2_5_6)
# test num_waveforms_per_prompt for single prompt
a__ : List[Any] =2
a__ : Any =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase__ ).audios
assert audios.shape == (num_waveforms_per_prompt, 2_5_6)
# test num_waveforms_per_prompt for batch of prompts
a__ : List[str] =2
a__ : Any =audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase__ ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6)
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
a__ : List[Any] ="cpu" # ensure determinism for the device-dependent torch.Generator
a__ : Any =self.get_dummy_components()
a__ : Any =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : Union[str, Any] =audioldm_pipe.vocoder.config.sampling_rate
a__ : str =self.get_dummy_inputs(lowerCAmelCase__ )
a__ : Union[str, Any] =audioldm_pipe(audio_length_in_s=0.0_16 , **lowerCAmelCase__ )
a__ : Optional[int] =output.audios[0]
assert audio.ndim == 1
assert len(lowerCAmelCase__ ) / vocoder_sampling_rate == 0.0_16
a__ : Dict =audioldm_pipe(audio_length_in_s=0.0_32 , **lowerCAmelCase__ )
a__ : List[str] =output.audios[0]
assert audio.ndim == 1
assert len(lowerCAmelCase__ ) / vocoder_sampling_rate == 0.0_32
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
a__ : List[str] =self.get_dummy_components()
a__ : Tuple =AudioLDMPipeline(**lowerCAmelCase__ )
a__ : List[str] =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : str =["hey"]
a__ : int =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=1 )
a__ : str =output.audios.shape
assert audio_shape == (1, 2_5_6)
a__ : Any =audioldm_pipe.vocoder.config
config.model_in_dim *= 2
a__ : Dict =SpeechTaHifiGan(lowerCAmelCase__ ).to(lowerCAmelCase__ )
a__ : List[str] =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=1 )
a__ : Optional[Any] =output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 2_5_6)
def _lowercase ( self ) -> str:
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase__ )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCAmelCase__ )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _lowercase ( self ) -> str:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase__ )
@slow
class __lowerCAmelCase ( unittest.TestCase):
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> List[str]:
'''simple docstring'''
a__ : Optional[Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
a__ : str =np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 8, 1_2_8, 1_6) )
a__ : Optional[Any] =torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
a__ : List[str] ={
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
a__ : Any =AudioLDMPipeline.from_pretrained("cvssp/audioldm" )
a__ : str =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : Any =self.get_inputs(lowerCAmelCase__ )
a__ : Optional[Any] =2_5
a__ : Union[str, Any] =audioldm_pipe(**lowerCAmelCase__ ).audios[0]
assert audio.ndim == 1
assert len(lowerCAmelCase__ ) == 8_1_9_2_0
a__ : Union[str, Any] =audio[7_7_2_3_0:7_7_2_4_0]
a__ : Union[str, Any] =np.array(
[-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] )
a__ : Optional[Any] =np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1E-2
def _lowercase ( self ) -> Dict:
'''simple docstring'''
a__ : int =AudioLDMPipeline.from_pretrained("cvssp/audioldm" )
a__ : Optional[int] =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
a__ : str =audioldm_pipe.to(lowerCAmelCase__ )
audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
a__ : Any =self.get_inputs(lowerCAmelCase__ )
a__ : List[Any] =audioldm_pipe(**lowerCAmelCase__ ).audios[0]
assert audio.ndim == 1
assert len(lowerCAmelCase__ ) == 8_1_9_2_0
a__ : int =audio[2_7_7_8_0:2_7_7_9_0]
a__ : Optional[int] =np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] )
a__ : Any =np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3E-2
| 95 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 0 |
"""simple docstring"""
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def _snake_case ( lowercase__ , lowercase__ , lowercase__=[] ):
_lowerCamelCase : Dict = size[0] - overlap_pixels * 2
_lowerCamelCase : int = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
_lowerCamelCase : Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 255
_lowerCamelCase : List[str] = np.pad(lowercase__ , mode='linear_ramp' , pad_width=lowercase__ , end_values=0 )
if "l" in remove_borders:
_lowerCamelCase : Tuple = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
_lowerCamelCase : Any = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
_lowerCamelCase : Optional[Any] = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
_lowerCamelCase : Union[str, Any] = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
return max(lowercase__ , min(lowercase__ , lowercase__ ) )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
return (
clamp(rect[0] , min[0] , max[0] ),
clamp(rect[1] , min[1] , max[1] ),
clamp(rect[2] , min[0] , max[0] ),
clamp(rect[3] , min[1] , max[1] ),
)
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Any = list(lowercase__ )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
_lowerCamelCase : str = clamp_rect(lowercase__ , [0, 0] , [image_size[0], image_size[1]] )
return rect
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , )
result.paste(lowercase__ , (original_slice, 0) )
return result
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
_lowerCamelCase : Optional[int] = tile.crop(lowercase__ )
return tile
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = n % d
return n - divisor
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = 350 , ):
super().__init__(
vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , low_res_scheduler=lowercase , scheduler=lowercase , max_noise_level=lowercase , )
def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase ):
torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
_lowerCamelCase : str = add_overlap_rect(lowercase , lowercase , image.size )
_lowerCamelCase : Dict = image.crop(lowercase )
_lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
_lowerCamelCase : List[str] = translated_slice_x - (original_image_slice / 2)
_lowerCamelCase : List[Any] = max(0 , lowercase )
_lowerCamelCase : Optional[Any] = squeeze_tile(lowercase , lowercase , lowercase , lowercase )
_lowerCamelCase : int = to_input.size
_lowerCamelCase : Union[str, Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
_lowerCamelCase : Union[str, Any] = super(lowercase , self ).__call__(image=lowercase , **lowercase ).images[0]
_lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
_lowerCamelCase : List[Any] = unsqueeze_tile(lowercase , lowercase )
_lowerCamelCase : Dict = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
_lowerCamelCase : Dict = []
if x == 0:
remove_borders.append('l' )
elif crop_rect[2] == image.size[0]:
remove_borders.append('r' )
if y == 0:
remove_borders.append('t' )
elif crop_rect[3] == image.size[1]:
remove_borders.append('b' )
_lowerCamelCase : str = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowercase ) , mode='L' , )
final_image.paste(
lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowercase )
@torch.no_grad()
def __call__( self , lowercase , lowercase , lowercase = 75 , lowercase = 9.0 , lowercase = 50 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = None , lowercase = 1 , lowercase = 128 , lowercase = 32 , lowercase = 32 , ):
_lowerCamelCase : Any = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) )
_lowerCamelCase : Optional[int] = math.ceil(image.size[0] / tile_size )
_lowerCamelCase : Optional[Any] = math.ceil(image.size[1] / tile_size )
_lowerCamelCase : Dict = tcx * tcy
_lowerCamelCase : List[str] = 0
for y in range(lowercase ):
for x in range(lowercase ):
self._process_tile(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , prompt=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , noise_level=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , )
current_count += 1
if callback is not None:
callback({'progress': current_count / total_tile_count, 'image': final_image} )
return final_image
def _snake_case ( ):
# Run a demo
_lowerCamelCase : int = 'stabilityai/stable-diffusion-x4-upscaler'
_lowerCamelCase : Optional[Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(lowercase__ , revision='fp16' , torch_dtype=torch.floataa )
_lowerCamelCase : Optional[int] = pipe.to('cuda' )
_lowerCamelCase : List[Any] = Image.open('../../docs/source/imgs/diffusers_library.jpg' )
def callback(lowercase__ ):
print(f'''progress: {obj['progress']:.4f}''' )
obj["image"].save('diffusers_library_progress.jpg' )
_lowerCamelCase : str = pipe(image=lowercase__ , prompt='Black font, white background, vector' , noise_level=40 , callback=lowercase__ )
final_image.save('diffusers_library.jpg' )
if __name__ == "__main__":
main()
| 96 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 0 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 97 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 0 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
lowerCAmelCase__ : Dict = pytest.mark.integration
@require_faiss
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Union[str, Any] ):
UpperCAmelCase__ = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCamelCase__ ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self : List[Any] ):
import faiss
UpperCAmelCase__ = self._create_dummy_dataset()
UpperCAmelCase__ = dset.map(
lambda lowerCamelCase__ ,lowerCamelCase__ : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=lowerCamelCase__ ,keep_in_memory=lowerCamelCase__ )
UpperCAmelCase__ = dset.add_faiss_index('vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] ,'my_name-train_29' )
dset.drop_index('vecs' )
def __lowerCAmelCase ( self : List[str] ):
import faiss
UpperCAmelCase__ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ,)
UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] ,'my_name-train_29' )
def __lowerCAmelCase ( self : List[Any] ):
import faiss
UpperCAmelCase__ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,metric_type=faiss.METRIC_INNER_PRODUCT ,)
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowerCamelCase__ ) as tmp_file:
dset.save_faiss_index('vecs' ,tmp_file.name )
dset.load_faiss_index('vecs2' ,tmp_file.name )
os.unlink(tmp_file.name )
UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('vecs2' ,np.ones(5 ,dtype=np.floataa ) )
self.assertEqual(examples['filename'][0] ,'my_name-train_29' )
def __lowerCAmelCase ( self : Optional[Any] ):
UpperCAmelCase__ = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' )
dset.drop_index('vecs' )
self.assertRaises(lowerCamelCase__ ,partial(dset.get_nearest_examples ,'vecs2' ,np.ones(5 ,dtype=np.floataa ) ) )
def __lowerCAmelCase ( self : str ):
from elasticsearch import Elasticsearch
UpperCAmelCase__ = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
UpperCAmelCase__ = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 30 )
UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 29}]}}
UpperCAmelCase__ = Elasticsearch()
dset.add_elasticsearch_index('filename' ,es_client=lowerCamelCase__ )
UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('filename' ,'my_name-train_29' )
self.assertEqual(examples['filename'][0] ,'my_name-train_29' )
@require_faiss
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : List[Any] ):
import faiss
UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal ,5 )
index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal ,10 )
# single query
UpperCAmelCase__ = np.zeros(5 ,dtype=np.floataa )
UpperCAmelCase__ = 1
UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ )
self.assertRaises(lowerCamelCase__ ,index.search ,query.reshape(-1 ,1 ) )
self.assertGreater(scores[0] ,0 )
self.assertEqual(indices[0] ,1 )
# batched queries
UpperCAmelCase__ = np.eye(5 ,dtype=np.floataa )[::-1]
UpperCAmelCase__ , UpperCAmelCase__ = index.search_batch(lowerCamelCase__ )
self.assertRaises(lowerCamelCase__ ,index.search_batch ,queries[0] )
UpperCAmelCase__ = [scores[0] for scores in total_scores]
UpperCAmelCase__ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCamelCase__ ) ,0 )
self.assertListEqual([4, 3, 2, 1, 0] ,lowerCamelCase__ )
def __lowerCAmelCase ( self : Dict ):
import faiss
UpperCAmelCase__ = FaissIndex(string_factory='Flat' )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index ,faiss.IndexFlat )
UpperCAmelCase__ = FaissIndex(string_factory='LSH' )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index ,faiss.IndexLSH )
with self.assertRaises(lowerCamelCase__ ):
UpperCAmelCase__ = FaissIndex(string_factory='Flat' ,custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self : str ):
import faiss
UpperCAmelCase__ = faiss.IndexFlat(5 )
UpperCAmelCase__ = FaissIndex(custom_index=lowerCamelCase__ )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index ,faiss.IndexFlat )
def __lowerCAmelCase ( self : List[Any] ):
import faiss
UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 ,dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowerCamelCase__ ) as tmp_file:
index.save(tmp_file.name )
UpperCAmelCase__ = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
UpperCAmelCase__ = np.zeros(5 ,dtype=np.floataa )
UpperCAmelCase__ = 1
UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ )
self.assertGreater(scores[0] ,0 )
self.assertEqual(indices[0] ,1 )
@require_faiss
def a_ ( lowerCamelCase ):
import faiss
UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
UpperCAmelCase__ = 'index.faiss'
UpperCAmelCase__ = f'''mock://{index_name}'''
index.save(lowerCamelCase , storage_options=mockfs.storage_options )
UpperCAmelCase__ = FaissIndex.load(lowerCamelCase , storage_options=mockfs.storage_options )
UpperCAmelCase__ = np.zeros(5 , dtype=np.floataa )
UpperCAmelCase__ = 1
UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : Any ):
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch(
'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk:
UpperCAmelCase__ = Elasticsearch()
UpperCAmelCase__ = {'acknowledged': True}
UpperCAmelCase__ = ElasticSearchIndex(es_client=lowerCamelCase__ )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['foo', 'bar', 'foobar'] )
# single query
UpperCAmelCase__ = 'foo'
UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ )
self.assertEqual(scores[0] ,1 )
self.assertEqual(indices[0] ,0 )
# single query with timeout
UpperCAmelCase__ = 'foo'
UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ ,request_timeout=30 )
self.assertEqual(scores[0] ,1 )
self.assertEqual(indices[0] ,0 )
# batched queries
UpperCAmelCase__ = ['foo', 'bar', 'foobar']
UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
UpperCAmelCase__ , UpperCAmelCase__ = index.search_batch(lowerCamelCase__ )
UpperCAmelCase__ = [scores[0] for scores in total_scores]
UpperCAmelCase__ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCamelCase__ ) ,0 )
self.assertListEqual([1, 1, 1] ,lowerCamelCase__ )
# batched queries with timeout
UpperCAmelCase__ = ['foo', 'bar', 'foobar']
UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
UpperCAmelCase__ , UpperCAmelCase__ = index.search_batch(lowerCamelCase__ ,request_timeout=30 )
UpperCAmelCase__ = [scores[0] for scores in total_scores]
UpperCAmelCase__ = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowerCamelCase__ ) ,0 )
self.assertListEqual([1, 1, 1] ,lowerCamelCase__ )
| 98 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 0 |
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def A_ ( ) -> int:
a__ : Dict = torch.nn.Linear(2 , 4 )
a__ : Dict = torch.optim.AdamW(model.parameters() , lr=1.0 )
a__ : Any = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
a__ : Tuple = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
a__ : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def A_ ( A__ ) -> Optional[Any]:
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def A_ ( A__ ) -> str:
a__ : List[Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(A__ )
class A__ ( __UpperCAmelCase ):
"""simple docstring"""
@require_cuda
def __lowercase ( self) -> Any:
'''simple docstring'''
a__ : List[str] = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(lowercase):
a__ : Union[str, Any] = Accelerator(cpu=lowercase)
def __lowercase ( self) -> Union[str, Any]:
'''simple docstring'''
a__ : Tuple = Accelerator()
a__ : Optional[Any] = GradientState()
assert state.num_steps == 1
a__ : Union[str, Any] = 4
assert state.num_steps == 4
assert state.sync_gradients is True
a__ : Optional[int] = False
assert state.sync_gradients is False
GradientState._reset_state()
def __lowercase ( self) -> Tuple:
'''simple docstring'''
a__ : Tuple = Accelerator()
a__ , a__ , a__ , a__ , a__ : Tuple = create_components()
(
(
a__
) , (
a__
) , (
a__
) , (
a__
) , (
a__
) ,
) : List[Any] = accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase)
self.assertTrue(prepared_model in accelerator._models)
self.assertTrue(prepared_optimizer in accelerator._optimizers)
self.assertTrue(prepared_scheduler in accelerator._schedulers)
self.assertTrue(prepared_train_dl in accelerator._dataloaders)
self.assertTrue(prepared_valid_dl in accelerator._dataloaders)
def __lowercase ( self) -> Dict:
'''simple docstring'''
a__ : Union[str, Any] = Accelerator()
a__ , a__ , a__ , a__ , a__ : List[str] = create_components()
accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase)
accelerator.free_memory()
self.assertTrue(len(accelerator._models) == 0)
self.assertTrue(len(accelerator._optimizers) == 0)
self.assertTrue(len(accelerator._schedulers) == 0)
self.assertTrue(len(accelerator._dataloaders) == 0)
def __lowercase ( self) -> str:
'''simple docstring'''
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*lowercase , **lowercase):
pass
with patch('torch.cuda.set_device' , lowercase), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64'):
a__ : Tuple = Accelerator()
self.assertEqual(str(accelerator.state.device) , 'cuda:64')
def __lowercase ( self) -> List[Any]:
'''simple docstring'''
a__ : Optional[int] = Accelerator()
a__ , a__ , a__ , a__ , a__ : Union[str, Any] = create_components()
accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase)
a__ : Tuple = get_signature(lowercase)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowercase)
# make sure random weights don't match
load_random_weights(lowercase)
self.assertTrue(abs(model_signature - get_signature(lowercase)) > 1e-3)
# make sure loaded weights match
accelerator.load_state(lowercase)
self.assertTrue(abs(model_signature - get_signature(lowercase)) < 1e-3)
def __lowercase ( self) -> List[Any]:
'''simple docstring'''
a__ : List[str] = Accelerator()
a__ , a__ , a__ , a__ , a__ : Optional[int] = create_components()
accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase)
a__ : List[str] = get_signature(lowercase)
# saving hook
def save_config(lowercase , lowercase , lowercase):
a__ : int = {'class_name': models[0].__class__.__name__}
with open(os.path.join(lowercase , 'data.json') , 'w') as f:
json.dump(lowercase , lowercase)
# loading hook
def load_config(lowercase , lowercase):
with open(os.path.join(lowercase , 'data.json') , 'r') as f:
a__ : List[Any] = json.load(lowercase)
a__ : Union[str, Any] = config['class_name']
a__ : Optional[Any] = accelerator.register_save_state_pre_hook(lowercase)
a__ : str = accelerator.register_load_state_pre_hook(lowercase)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowercase)
# make sure random weights don't match with hooks
load_random_weights(lowercase)
self.assertTrue(abs(model_signature - get_signature(lowercase)) > 1e-3)
# random class name to verify correct one is loaded
a__ : int = 'random'
# make sure loaded weights match with hooks
accelerator.load_state(lowercase)
self.assertTrue(abs(model_signature - get_signature(lowercase)) < 1e-3)
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__)
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowercase)
# make sure random weights don't match with hooks removed
load_random_weights(lowercase)
self.assertTrue(abs(model_signature - get_signature(lowercase)) > 1e-3)
# random class name to verify correct one is loaded
a__ : Union[str, Any] = 'random'
# make sure loaded weights match with hooks removed
accelerator.load_state(lowercase)
self.assertTrue(abs(model_signature - get_signature(lowercase)) < 1e-3)
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__)
def __lowercase ( self) -> Optional[Any]:
'''simple docstring'''
a__ : str = Accelerator()
a__ , a__ , a__ , a__ , a__ : str = create_components()
a__ : Dict = None
# This should work
a__ , a__ , a__ , a__ , a__ , a__ : Tuple = accelerator.prepare(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase)
self.assertTrue(dummy_obj is None)
def __lowercase ( self) -> Optional[int]:
'''simple docstring'''
a__ : List[Any] = Accelerator()
a__ , a__ , a__ , a__ , a__ : int = create_components()
a__ : int = [1, 2, 3]
# This should work
a__ , a__ , a__ , a__ , a__ , a__ : Any = accelerator.prepare(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase)
self.assertEqual(
getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , )
self.assertEqual(
getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , )
self.assertEqual(
getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , )
self.assertEqual(
getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , )
self.assertEqual(
getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , )
self.assertEqual(
getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , )
@slow
@require_bnb
def __lowercase ( self) -> Optional[int]:
'''simple docstring'''
from transformers import AutoModelForCausalLM
a__ : List[str] = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , load_in_abit=lowercase , device_map={'': 0} , )
a__ : Union[str, Any] = Accelerator()
# This should work
a__ : Union[str, Any] = accelerator.prepare(lowercase)
@slow
@require_bnb
def __lowercase ( self) -> Any:
'''simple docstring'''
from transformers import AutoModelForCausalLM
a__ : Dict = Accelerator()
with init_empty_weights():
a__ : Dict = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , )
model.tie_weights()
a__ : Optional[int] = infer_auto_device_map(lowercase)
a__ : Optional[Any] = 'cpu'
a__ : str = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , device_map=lowercase , load_in_abit=lowercase , llm_inta_enable_fpaa_cpu_offload=lowercase)
# This should not work and get value error
with self.assertRaises(lowercase):
a__ : List[str] = accelerator.prepare(lowercase)
@slow
@require_bnb
@require_multi_gpu
def __lowercase ( self) -> str:
'''simple docstring'''
from transformers import AutoModelForCausalLM
a__ : int = {'distributed_type': DistributedType.MULTI_GPU}
with init_empty_weights():
a__ : Optional[int] = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , )
model.tie_weights()
a__ : Optional[int] = infer_auto_device_map(lowercase)
a__ : Optional[Any] = 1
a__ : List[str] = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , load_in_abit=lowercase , device_map=lowercase , )
a__ : Optional[Any] = Accelerator()
# This should not work and get value error
with self.assertRaises(lowercase):
a__ : int = accelerator.prepare(lowercase)
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def __lowercase ( self) -> Optional[int]:
'''simple docstring'''
from transformers import AutoModelForCausalLM
with init_empty_weights():
a__ : int = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , )
a__ : List[str] = infer_auto_device_map(lowercase)
a__ : List[str] = 1
a__ : List[str] = AutoModelForCausalLM.from_pretrained(
'EleutherAI/gpt-neo-125m' , load_in_abit=lowercase , device_map=lowercase , )
a__ : int = Accelerator()
# This should work
a__ : Optional[Any] = accelerator.prepare(lowercase)
@require_cuda
def __lowercase ( self) -> Dict:
'''simple docstring'''
a__ : Optional[int] = torch.nn.Linear(10 , 10)
a__ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01)
a__ : Optional[int] = Accelerator(cpu=lowercase)
a__ : str = accelerator.prepare(lowercase)
| 99 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from transformers import (
XLMRobertaTokenizer,
)
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
from .text_encoder import MultilingualCLIP
__magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name
__magic_name__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n"
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=8 ):
__SCREAMING_SNAKE_CASE = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
__SCREAMING_SNAKE_CASE = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
super().__init__()
self.register_modules(
text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , )
__SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels) - 1)
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__):
if latents is None:
__SCREAMING_SNAKE_CASE = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
__SCREAMING_SNAKE_CASE = latents.to(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma
return latents
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , ):
__SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else 1
# get prompt text embeddings
__SCREAMING_SNAKE_CASE = self.tokenizer(
lowerCAmelCase__ , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=7_7 , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" , )
__SCREAMING_SNAKE_CASE = text_inputs.input_ids
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
f" {self.tokenizer.model_max_length} tokens: {removed_text}")
__SCREAMING_SNAKE_CASE = text_input_ids.to(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = text_inputs.attention_mask.to(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.text_encoder(
input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0)
__SCREAMING_SNAKE_CASE = text_encoder_hidden_states.repeat_interleave(lowerCAmelCase__ , dim=0)
__SCREAMING_SNAKE_CASE = text_mask.repeat_interleave(lowerCAmelCase__ , dim=0)
if do_classifier_free_guidance:
__SCREAMING_SNAKE_CASE = 42
if negative_prompt is None:
__SCREAMING_SNAKE_CASE = [""""""] * batch_size
elif type(lowerCAmelCase__) is not type(lowerCAmelCase__):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__)} !="
f" {type(lowerCAmelCase__)}.")
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = [negative_prompt]
elif batch_size != len(lowerCAmelCase__):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
""" the batch size of `prompt`.""")
else:
__SCREAMING_SNAKE_CASE = negative_prompt
__SCREAMING_SNAKE_CASE = self.tokenizer(
lowerCAmelCase__ , padding="""max_length""" , max_length=7_7 , truncation=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" , )
__SCREAMING_SNAKE_CASE = uncond_input.input_ids.to(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = uncond_input.attention_mask.to(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.text_encoder(
input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__SCREAMING_SNAKE_CASE = negative_prompt_embeds.shape[1]
__SCREAMING_SNAKE_CASE = negative_prompt_embeds.repeat(1 , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.shape[1]
__SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.repeat(1 , lowerCAmelCase__ , 1)
__SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt , lowerCAmelCase__ , -1)
__SCREAMING_SNAKE_CASE = uncond_text_mask.repeat_interleave(lowerCAmelCase__ , dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__SCREAMING_SNAKE_CASE = torch.cat([negative_prompt_embeds, prompt_embeds])
__SCREAMING_SNAKE_CASE = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
__SCREAMING_SNAKE_CASE = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
def snake_case_ ( self , lowerCAmelCase__=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""")
__SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}")
__SCREAMING_SNAKE_CASE = [
self.unet,
self.text_encoder,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCAmelCase__ , lowerCAmelCase__)
def snake_case_ ( self , lowerCAmelCase__=0):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""")
__SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__SCREAMING_SNAKE_CASE = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]:
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__)
if self.safety_checker is not None:
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cpu_offload_with_hook(self.safety_checker , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__)
# We'll offload the last model manually.
__SCREAMING_SNAKE_CASE = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def snake_case_ ( self):
if not hasattr(self.unet , """_hf_hook"""):
return self.device
for module in self.unet.modules():
if (
hasattr(lowerCAmelCase__ , """_hf_hook""")
and hasattr(module._hf_hook , """execution_device""")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowerCAmelCase__)
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ):
if isinstance(lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = 1
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = len(lowerCAmelCase__)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__)}")
__SCREAMING_SNAKE_CASE = self._execution_device
__SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt
__SCREAMING_SNAKE_CASE = guidance_scale > 1.0
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self._encode_prompt(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)
if isinstance(lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=0)
if isinstance(lowerCAmelCase__ , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=0)
if do_classifier_free_guidance:
__SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0)
__SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0)
__SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(
dtype=prompt_embeds.dtype , device=lowerCAmelCase__)
self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = self.scheduler.timesteps
__SCREAMING_SNAKE_CASE = self.unet.config.in_channels
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = get_new_h_w(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor)
# create initial latent
__SCREAMING_SNAKE_CASE = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowerCAmelCase__)):
# expand the latents if we are doing classifier free guidance
__SCREAMING_SNAKE_CASE = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__SCREAMING_SNAKE_CASE = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds}
__SCREAMING_SNAKE_CASE = self.unet(
sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0]
if do_classifier_free_guidance:
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1)
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.chunk(2)
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = variance_pred.chunk(2)
__SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , """variance_type""")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__SCREAMING_SNAKE_CASE = self.scheduler.step(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , ).prev_sample
# post-processing
__SCREAMING_SNAKE_CASE = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__)["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__SCREAMING_SNAKE_CASE = image * 0.5 + 0.5
__SCREAMING_SNAKE_CASE = image.clamp(0 , 1)
__SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCAmelCase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase__)
| 100 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 0 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
lowercase = checkpoint
lowercase = {}
lowercase = vae_state_dict['''encoder.conv_in.weight''']
lowercase = vae_state_dict['''encoder.conv_in.bias''']
lowercase = vae_state_dict['''encoder.conv_out.weight''']
lowercase = vae_state_dict['''encoder.conv_out.bias''']
lowercase = vae_state_dict['''encoder.norm_out.weight''']
lowercase = vae_state_dict['''encoder.norm_out.bias''']
lowercase = vae_state_dict['''decoder.conv_in.weight''']
lowercase = vae_state_dict['''decoder.conv_in.bias''']
lowercase = vae_state_dict['''decoder.conv_out.weight''']
lowercase = vae_state_dict['''decoder.conv_out.bias''']
lowercase = vae_state_dict['''decoder.norm_out.weight''']
lowercase = vae_state_dict['''decoder.norm_out.bias''']
lowercase = vae_state_dict['''quant_conv.weight''']
lowercase = vae_state_dict['''quant_conv.bias''']
lowercase = vae_state_dict['''post_quant_conv.weight''']
lowercase = vae_state_dict['''post_quant_conv.bias''']
# Retrieves the keys for the encoder down blocks only
lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} )
lowercase = {
layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowerCAmelCase__ )
}
# Retrieves the keys for the decoder up blocks only
lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} )
lowercase = {
layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowerCAmelCase__ )
}
for i in range(lowerCAmelCase__ ):
lowercase = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key]
if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict:
lowercase = vae_state_dict.pop(
f'encoder.down.{i}.downsample.conv.weight' )
lowercase = vae_state_dict.pop(
f'encoder.down.{i}.downsample.conv.bias' )
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''encoder.mid.block''' in key]
lowercase = 2
for i in range(1 , num_mid_res_blocks + 1 ):
lowercase = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key]
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''encoder.mid.attn''' in key]
lowercase = renew_vae_attention_paths(lowerCAmelCase__ )
lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
for i in range(lowerCAmelCase__ ):
lowercase = num_up_blocks - 1 - i
lowercase = [
key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key
]
if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict:
lowercase = vae_state_dict[
f'decoder.up.{block_id}.upsample.conv.weight'
]
lowercase = vae_state_dict[
f'decoder.up.{block_id}.upsample.conv.bias'
]
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''decoder.mid.block''' in key]
lowercase = 2
for i in range(1 , num_mid_res_blocks + 1 ):
lowercase = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key]
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''decoder.mid.attn''' in key]
lowercase = renew_vae_attention_paths(lowerCAmelCase__ )
lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
return new_checkpoint
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , ):
'''simple docstring'''
# Only support V1
lowercase = requests.get(
''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' )
lowercase = io.BytesIO(r.content )
lowercase = OmegaConf.load(lowerCAmelCase__ )
lowercase = 512
lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if checkpoint_path.endswith('''safetensors''' ):
from safetensors import safe_open
lowercase = {}
with safe_open(lowerCAmelCase__ , framework='''pt''' , device='''cpu''' ) as f:
for key in f.keys():
lowercase = f.get_tensor(lowerCAmelCase__ )
else:
lowercase = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )['''state_dict''']
# Convert the VAE model.
lowercase = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ )
lowercase = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = AutoencoderKL(**lowerCAmelCase__ )
vae.load_state_dict(lowerCAmelCase__ )
vae.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowercase__ :List[str] = argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
lowercase__ :int = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 101 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 0 |
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Tuple = """▁"""
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""}
SCREAMING_SNAKE_CASE : str = {
"""sentencepiece_model_file""": """sentencepiece.bpe.model""",
"""vocab_file""": """vocab.txt""",
}
SCREAMING_SNAKE_CASE : Tuple = {
"""vocab_file""": {
"""ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""",
"""ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""",
},
"""sentencepiece_model_file""": {
"""ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""",
"""ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""",
},
}
SCREAMING_SNAKE_CASE : Optional[int] = {
"""ernie-m-base""": 514,
"""ernie-m-large""": 514,
}
SCREAMING_SNAKE_CASE : Optional[Any] = {
"""ernie-m-base""": {"""do_lower_case""": False},
"""ernie-m-large""": {"""do_lower_case""": False},
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =["input_ids"]
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =RESOURCE_FILES_NAMES
def __init__(self , a_ , a_=None , a_=False , a_="utf8" , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_ = None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , vocab_file=a_ , encoding=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , )
__snake_case : str = do_lower_case
__snake_case : int = sentencepiece_model_ckpt
__snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(a_ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=a_ )
else:
__snake_case : Any = {self.sp_model.id_to_piece(a_ ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : Optional[int] = {v: k for k, v in self.vocab.items()}
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if text is None:
return None
__snake_case : Union[str, Any] = self.tokenize(a_ )
__snake_case , __snake_case : Tuple = '''''', []
for i, ch in enumerate(a_ ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : List[Any] = self.SP_CHAR_MAPPING.get(a_ )
else:
__snake_case : List[Any] = unicodedata.normalize('''NFKC''' , a_ )
if self.is_whitespace(a_ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(a_ ) )
__snake_case , __snake_case , __snake_case : Tuple = normalized_text, [], 0
if self.do_lower_case:
__snake_case : List[str] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : List[str] = text[offset:].index(a_ ) + offset
__snake_case : int = start + len(a_ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : List[Any] = end
return token_mapping
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return len(self.vocab )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__(self ):
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__(self , a_ ):
'''simple docstring'''
__snake_case : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__snake_case : List[str] = {}
__snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return "".join((self.SP_CHAR_MAPPING.get(a_ , a_ ) for c in text) )
def SCREAMING_SNAKE_CASE (self , a_ , a_=False , a_=64 , a_=0.1 ):
'''simple docstring'''
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
__snake_case : Tuple = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
__snake_case : Tuple = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
__snake_case : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
__snake_case : Optional[Any] = self.sp_model.EncodeAsPieces(a_ )
else:
__snake_case : int = self.sp_model.SampleEncodeAsPieces(a_ , a_ , a_ )
__snake_case : Dict = []
for pi, piece in enumerate(a_ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(a_ ) and pi != 0:
new_pieces.append(a_ )
continue
else:
continue
__snake_case : Dict = 0
for i, chunk in enumerate(a_ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(a_ ) or self.is_punct(a_ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(a_ )
__snake_case : Optional[int] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Optional[int] = i
if len(a_ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Dict = ''''''.join(a_ ).replace(a_ , ''' ''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : List[str] = self.convert_ids_to_tokens(a_ )
__snake_case : Tuple = ''''''.join(a_ ).replace(a_ , ''' ''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self.vocab.get(a_ , self.vocab.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self.reverse_vocab.get(a_ , self.unk_token )
def SCREAMING_SNAKE_CASE (self , a_ , a_=None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[int] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def SCREAMING_SNAKE_CASE (self , a_ , a_=None ):
'''simple docstring'''
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def SCREAMING_SNAKE_CASE (self , a_ , a_=None , a_=False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1]
return [1] + ([0] * len(a_ )) + [1]
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
# [CLS] X [SEP]
return (len(a_ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(a_ ) + 1) + [1] * (len(a_ ) + 3)
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if "\u4e00" <= char <= "\u9fff":
return True
return False
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(a_ ) == 1:
__snake_case : Tuple = unicodedata.category(a_ )
if cat == "Zs":
return True
return False
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : str = {}
with io.open(a_ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(a_ ):
__snake_case : Union[str, Any] = line.rstrip('''\n''' )
__snake_case : Dict = int(a_ )
return token_to_idx
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Optional[Any] = 0
if os.path.isdir(a_ ):
__snake_case : Any = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
__snake_case : Dict = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(a_ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda a_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
__snake_case : Tuple = token_index
writer.write(token + '''\n''' )
index += 1
__snake_case : Tuple = os.path.join(a_ , '''sentencepiece.bpe.model''' )
with open(a_ , '''wb''' ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(a_ )
return (vocab_file,)
| 102 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 0 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
A__ : str = '''bert-base-cased'''
A__ : Optional[int] = '''fp16'''
A__ : Optional[int] = '''bf16'''
A__ : Any = [FPaa, BFaa]
@require_fsdp
@require_cuda
class __snake_case ( UpperCamelCase_ ):
def UpperCAmelCase__ ( self : str):
super().setUp()
lowerCAmelCase_ : int = dict(
ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , )
def UpperCAmelCase__ ( self : Any):
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(A_):
lowerCAmelCase_ : Optional[int] = self.dist_env.copy()
lowerCAmelCase_ : Optional[Any] = F"""{i + 1}"""
lowerCAmelCase_ : List[Any] = strategy
with mockenv_context(**A_):
lowerCAmelCase_ : List[Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1))
def UpperCAmelCase__ ( self : Any):
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(A_):
lowerCAmelCase_ : Tuple = self.dist_env.copy()
lowerCAmelCase_ : str = prefetch_policy
with mockenv_context(**A_):
lowerCAmelCase_ : List[str] = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch)
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1))
def UpperCAmelCase__ ( self : int):
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(A_):
lowerCAmelCase_ : Optional[int] = self.dist_env.copy()
lowerCAmelCase_ : str = state_dict_type
with mockenv_context(**A_):
lowerCAmelCase_ : Optional[Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1))
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu)
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only)
def UpperCAmelCase__ ( self : int):
lowerCAmelCase_ : str = AutoModel.from_pretrained(A_)
for policy in FSDP_AUTO_WRAP_POLICY:
lowerCAmelCase_ : Tuple = self.dist_env.copy()
lowerCAmelCase_ : List[str] = policy
if policy == "TRANSFORMER_BASED_WRAP":
lowerCAmelCase_ : List[str] = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
lowerCAmelCase_ : Optional[int] = '''2000'''
with mockenv_context(**A_):
lowerCAmelCase_ : Tuple = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(A_)
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy)
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy)
lowerCAmelCase_ : str = self.dist_env.copy()
lowerCAmelCase_ : List[str] = '''TRANSFORMER_BASED_WRAP'''
lowerCAmelCase_ : Optional[int] = '''T5Layer'''
with mockenv_context(**A_):
lowerCAmelCase_ : List[str] = FullyShardedDataParallelPlugin()
with self.assertRaises(A_) as cm:
fsdp_plugin.set_auto_wrap_policy(A_)
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception))
lowerCAmelCase_ : Union[str, Any] = self.dist_env.copy()
lowerCAmelCase_ : List[Any] = '''SIZE_BASED_WRAP'''
lowerCAmelCase_ : List[Any] = '''0'''
with mockenv_context(**A_):
lowerCAmelCase_ : str = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(A_)
self.assertIsNone(fsdp_plugin.auto_wrap_policy)
def UpperCAmelCase__ ( self : Optional[Any]):
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
lowerCAmelCase_ : Dict = self.dist_env.copy()
lowerCAmelCase_ : List[str] = mp_dtype
with mockenv_context(**A_):
lowerCAmelCase_ : List[Any] = Accelerator()
if mp_dtype == "fp16":
lowerCAmelCase_ : Optional[Any] = torch.floataa
elif mp_dtype == "bf16":
lowerCAmelCase_ : Any = torch.bfloataa
lowerCAmelCase_ : Optional[Any] = MixedPrecision(param_dtype=A_ , reduce_dtype=A_ , buffer_dtype=A_)
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A_)
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , A_))
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler)
AcceleratorState._reset_state(A_)
def UpperCAmelCase__ ( self : Any):
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
lowerCAmelCase_ : Any = self.dist_env.copy()
lowerCAmelCase_ : Union[str, Any] = str(A_).lower()
with mockenv_context(**A_):
lowerCAmelCase_ : str = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A_))
@require_fsdp
@require_multi_gpu
@slow
class __snake_case ( UpperCamelCase_ ):
def UpperCAmelCase__ ( self : List[Any]):
super().setUp()
lowerCAmelCase_ : Optional[Any] = 0.82
lowerCAmelCase_ : Union[str, Any] = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
lowerCAmelCase_ : Union[str, Any] = {
'''multi_gpu_fp16''': 3_2_0_0,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
lowerCAmelCase_ : Union[str, Any] = 1_6_0
lowerCAmelCase_ : List[Any] = 1_6_0
lowerCAmelCase_ : Dict = inspect.getfile(accelerate.test_utils)
lowerCAmelCase_ : str = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps'''])
def UpperCAmelCase__ ( self : Optional[int]):
lowerCAmelCase_ : Tuple = os.path.join(self.test_scripts_folder , '''test_performance.py''')
lowerCAmelCase_ : Tuple = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
lowerCAmelCase_ : Union[str, Any] = cmd.copy()
for i, strategy in enumerate(A_):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""")
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''')
else:
cmd_config.append('''--mixed_precision=fp16''')
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''')
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""")
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''')
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''')
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(A_ , env=os.environ.copy())
def UpperCAmelCase__ ( self : Tuple):
lowerCAmelCase_ : Union[str, Any] = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''')
lowerCAmelCase_ : List[str] = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(A_):
lowerCAmelCase_ : List[Any] = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""")
if strategy != "FULL_SHARD":
continue
lowerCAmelCase_ : int = len(A_)
for state_dict_type in FSDP_STATE_DICT_TYPE:
lowerCAmelCase_ : List[str] = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""")
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(A_ , env=os.environ.copy())
lowerCAmelCase_ : int = cmd_config[:-1]
lowerCAmelCase_ : List[str] = os.path.join(self.tmpdir , '''epoch_0''')
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(A_ , env=os.environ.copy())
def UpperCAmelCase__ ( self : Dict):
lowerCAmelCase_ : int = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''')
lowerCAmelCase_ : Dict = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
lowerCAmelCase_ : Tuple = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''])
else:
cmd_config.extend(['''--mixed_precision=no'''])
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''])
for i, strategy in enumerate(A_):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""")
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''')
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""")
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''')
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''')
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(A_ , env=os.environ.copy())
| 103 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 0 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
lowerCAmelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.'''
def _A ( A__=None ):
"""simple docstring"""
if subparsers is not None:
__lowercase = subparsers.add_parser('''tpu-config''' , description=_description )
else:
__lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
__lowercase = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=A__ , default=A__ , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=A__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=A__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
__lowercase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=A__ , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def _A ( A__ ):
"""simple docstring"""
__lowercase = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(A__ ):
__lowercase = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
__lowercase = defaults.command_file
if not args.command and defaults.commands is not None:
__lowercase = defaults.commands
if not args.tpu_name:
__lowercase = defaults.tpu_name
if not args.tpu_zone:
__lowercase = defaults.tpu_zone
if args.accelerate_version == "dev":
__lowercase = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
__lowercase = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , A__ ):
__lowercase = F"accelerate=={args.accelerate_version}"
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
__lowercase = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , A__ ):
__lowercase = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
__lowercase = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [F"pip install {args.accelerate_version}"]
new_cmd += args.command
__lowercase = '''; '''.join(A__ )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
__lowercase = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F"Running {' '.join(A__ )}" )
return
subprocess.run(A__ )
print('''Successfully setup pod.''' )
def _A ( ):
"""simple docstring"""
__lowercase = tpu_command_parser()
__lowercase = parser.parse_args()
tpu_command_launcher(A__ )
| 104 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
a : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
| 105 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 0 |
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
__UpperCamelCase : int = logging.getLogger(__name__)
def __SCREAMING_SNAKE_CASE ( A_ , A_ ):
# save results
if os.path.exists(A_ ):
if os.path.exists(os.path.join(A_ , '''config.json''' ) ) and os.path.isfile(
os.path.join(A_ , '''config.json''' ) ):
os.remove(os.path.join(A_ , '''config.json''' ) )
if os.path.exists(os.path.join(A_ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(A_ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(A_ , '''pytorch_model.bin''' ) )
else:
os.makedirs(A_ )
model.save_pretrained(A_ )
def __SCREAMING_SNAKE_CASE ( A_ , A_=False ):
lowerCAmelCase__ : Optional[Any] = 2
if unlogit:
lowerCAmelCase__ : Union[str, Any] = torch.pow(A_ , A_ )
lowerCAmelCase__ : Optional[Any] = p * torch.log(A_ )
lowerCAmelCase__ : List[Any] = 0
return -plogp.sum(dim=-1 )
def __SCREAMING_SNAKE_CASE ( A_ ):
logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(A_ ) ) ) )
for row in range(len(A_ ) ):
if tensor.dtype != torch.long:
logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) )
else:
logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) )
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ):
lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCAmelCase__ : Dict = torch.zeros(A_ , A_ ).to(args.device )
lowerCAmelCase__ : int = torch.zeros(A_ , A_ ).to(args.device )
if head_mask is None:
lowerCAmelCase__ : Union[str, Any] = torch.ones(A_ , A_ ).to(args.device )
head_mask.requires_grad_(requires_grad=A_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCAmelCase__ : Union[str, Any] = None
lowerCAmelCase__ : Optional[int] = 0.0
lowerCAmelCase__ : Optional[int] = 0.0
for step, inputs in enumerate(tqdm(A_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
lowerCAmelCase__ : Any = tuple(t.to(args.device ) for t in inputs )
((lowerCAmelCase__) ,) : List[Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCAmelCase__ : Any = model(A_ , labels=A_ , head_mask=A_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(A_ ):
lowerCAmelCase__ : Dict = entropy(attn.detach() , A_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(A_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCAmelCase__ : Any = 2
lowerCAmelCase__ : Dict = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0
if not args.dont_normalize_global_importance:
lowerCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(A_ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(A_ )
logger.info('''Head ranked by importance scores''' )
lowerCAmelCase__ : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
lowerCAmelCase__ : Optional[int] = torch.arange(
head_importance.numel() , device=args.device )
lowerCAmelCase__ : int = head_ranks.view_as(A_ )
print_ad_tensor(A_ )
return attn_entropy, head_importance, total_loss
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ):
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ )
lowerCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , A_ , original_score * args.masking_threshold )
lowerCAmelCase__ : Union[str, Any] = torch.ones_like(A_ )
lowerCAmelCase__ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
lowerCAmelCase__ : int = original_score
while current_score >= original_score * args.masking_threshold:
lowerCAmelCase__ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCAmelCase__ : str = float('''Inf''' )
lowerCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1]
if len(A_ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
lowerCAmelCase__ : List[Any] = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
lowerCAmelCase__ : int = new_head_mask.view(-1 )
lowerCAmelCase__ : Optional[int] = 0.0
lowerCAmelCase__ : Union[str, Any] = new_head_mask.view_as(A_ )
lowerCAmelCase__ : Tuple = new_head_mask.clone().detach()
print_ad_tensor(A_ )
# Compute metric and head importance again
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = compute_heads_importance(
A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ )
lowerCAmelCase__ : Tuple = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , )
logger.info('''Final head mask''' )
print_ad_tensor(A_ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ):
lowerCAmelCase__ : Optional[Any] = datetime.now()
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = compute_heads_importance(
A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ )
lowerCAmelCase__ : Optional[Any] = 1 / loss
lowerCAmelCase__ : Tuple = datetime.now() - before_time
lowerCAmelCase__ : int = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ : List[Any] = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(A_ , A_ ):
lowerCAmelCase__ : int = [
v,
]
assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(A_ )
lowerCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ : Any = datetime.now()
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : int = compute_heads_importance(
A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , )
lowerCAmelCase__ : int = 1 / loss
lowerCAmelCase__ : Dict = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A_ , A_ , pruned_num_params / original_num_params * 1_00 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A_ , A_ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 )
save_model(A_ , args.output_dir )
def __SCREAMING_SNAKE_CASE ( ):
lowerCAmelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=A_ , type=A_ , required=A_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=A_ , type=A_ , required=A_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=A_ , type=A_ , required=A_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=A_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=A_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=A_ , type=A_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=A_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=A_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=A_ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=A_ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=1_28 , type=A_ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=A_ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=A_ , default=42 )
parser.add_argument('''--local_rank''' , type=A_ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' )
lowerCAmelCase__ : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCAmelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
lowerCAmelCase__ : str = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCAmelCase__ : Dict = torch.device('''cuda''' , args.local_rank )
lowerCAmelCase__ : Union[str, Any] = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
lowerCAmelCase__ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCAmelCase__ : Dict = nn.parallel.DistributedDataParallel(
A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ )
elif args.n_gpu > 1:
lowerCAmelCase__ : List[Any] = nn.DataParallel(A_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=A_ )
torch.save(A_ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , A_ )
# Prepare dataset
lowerCAmelCase__ : str = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
lowerCAmelCase__ : Union[str, Any] = (torch.from_numpy(A_ ),)
lowerCAmelCase__ : Tuple = TensorDataset(*A_ )
lowerCAmelCase__ : Optional[int] = RandomSampler(A_ )
lowerCAmelCase__ : Dict = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(A_ , A_ , A_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCAmelCase__ : Tuple = mask_heads(A_ , A_ , A_ )
prune_heads(A_ , A_ , A_ , A_ )
if __name__ == "__main__":
main()
| 106 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
__lowerCAmelCase : Tuple = {
'/attention/': '/0/SelfAttention/',
'/self_attention/': '/0/SelfAttention/',
'/encoder_decoder_attention/': '/1/EncDecAttention/',
'value': 'v',
'query': 'q',
'key': 'k',
'out': 'o',
'pre_self_attention_layer_norm': '0/layer_norm',
'pre_cross_attention_layer_norm': '1/layer_norm',
'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong
'token_embedder': 'shared',
'encoder_norm': 'final_layer_norm',
'decoder_norm': 'final_layer_norm',
'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight',
'router/router_weights/w/': 'router/classifier/',
'roer/roer_weights/w/': 'router/classifier/',
'logits_dense': 'lm_head',
}
def __magic_name__ ( A : Optional[int] ):
'''simple docstring'''
a = list(s_dict.keys() )
for key in keys:
a = R".*/layers_(\d+)"
a = key
if re.match(A, A ):
a = re.sub(R"layers_(\d+)", R"block/\1/layer", A )
a = R"(encoder|decoder)\/"
if re.match(A, A ):
a = re.match(A, A ).groups()
if groups[0] == "encoder":
a = re.sub(R"/mlp/", R"/1/mlp/", A )
a = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", A )
elif groups[0] == "decoder":
a = re.sub(R"/mlp/", R"/2/mlp/", A )
a = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", A )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
a = new_key.replace(A, A )
print(F"""{key} -> {new_key}""" )
a = s_dict.pop(A )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
a = s_dict[
"encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
a = s_dict[
"decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
a = s_dict[key].shape[0]
a = s_dict[key]
for idx in range(A ):
a = expert_weihts[idx]
print(F"""{key} -> {key.replace("expert/", "nested fstring" )}""" )
s_dict.pop(A )
return s_dict
__lowerCAmelCase : Optional[int] = {
'NUM_ENCODER_LAYERS': 'num_layers',
'NUM_DECODER_LAYERS': 'num_decoder_layers',
'NUM_HEADS': 'num_heads',
'HEAD_DIM': 'd_kv',
'EMBED_DIM': 'd_model',
'MLP_DIM': 'd_ff',
'NUM_SELECTED_EXPERTS': 'num_selected_experts',
'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers',
'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers',
'dense.MlpBlock.activations': 'feed_forward_proj',
}
def __magic_name__ ( A : Dict, A : Optional[Any] ):
'''simple docstring'''
import regex as re
with open(A, "r" ) as f:
a = f.read()
a = re.findall(R"(.*) = ([0-9.]*)", A )
a = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
a = float(A ) if "." in value else int(A )
a = re.findall(R"(.*activations) = \(\'(.*)\',\)", A )[0]
a = str(activation[1] )
a = num_experts
a = SwitchTransformersConfig(**A )
return config
def __magic_name__ ( A : Union[str, Any], A : Union[str, Any], A : List[str]=None, A : List[Any]="./", A : str=8 ):
'''simple docstring'''
print(F"""Loading flax weights from : {flax_checkpoint_path}""" )
a = checkpoints.load_tax_checkpoint(A )
if gin_file is not None:
a = convert_gin_to_config(A, A )
else:
a = SwitchTransformersConfig.from_pretrained(A )
a = SwitchTransformersForConditionalGeneration(A )
a = flax_params["target"]
a = flatten_dict(A, sep="/" )
a = rename_keys(A )
a = unflatten_dict(A, sep="/" )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(A, A )
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
pt_model.save_pretrained(A )
if __name__ == "__main__":
__lowerCAmelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the'
' model architecture. If not provided, a `gin_file` has to be provided.'
),
)
parser.add_argument(
'--gin_file',
default=None,
type=str,
required=False,
help='Path to the gin config file. If not provided, a `config_file` has to be passed ',
)
parser.add_argument(
'--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.'
)
parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts')
__lowerCAmelCase : Tuple = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 107 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 0 |
"""simple docstring"""
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Union[str, Any] = mock.Mock()
lowerCAmelCase : Any = 500
lowerCAmelCase : Optional[Any] = {}
lowerCAmelCase : int = HTTPError
lowerCAmelCase : Optional[int] = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase : List[str] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head:
lowerCAmelCase : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Tuple = mock.Mock()
lowerCAmelCase : int = 500
lowerCAmelCase : Dict = {}
lowerCAmelCase : List[Any] = HTTPError
lowerCAmelCase : Any = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase : Optional[Any] = GPTaTokenizerFast.from_pretrained("gpt2" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head:
lowerCAmelCase : Any = GPTaTokenizerFast.from_pretrained("gpt2" )
# This check we did call the fake head request
mock_head.assert_called()
def lowercase__ ( self ):
"""simple docstring"""
try:
lowerCAmelCase : Optional[int] = tempfile.mktemp()
with open(snake_case__ , "wb" ) as f:
http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , snake_case__ )
lowerCAmelCase : Union[str, Any] = AlbertTokenizer.from_pretrained(snake_case__ )
finally:
os.remove(snake_case__ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("tokenizer.json" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("tokenizer.json" , "wb" ) as f:
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , snake_case__ )
lowerCAmelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("tokenizer.json" )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Tuple = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" )
@is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
a : Any =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def lowercase__ ( cls ):
"""simple docstring"""
lowerCAmelCase : List[str] = TOKEN
HfFolder.save_token(snake_case__ )
@classmethod
def lowercase__ ( cls ):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="test-tokenizer" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" )
except HTTPError:
pass
def lowercase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Optional[Any] = os.path.join(snake_case__ , "vocab.txt" )
with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowerCAmelCase : Optional[Any] = BertTokenizer(snake_case__ )
tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token )
lowerCAmelCase : List[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="test-tokenizer" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ , repo_id="test-tokenizer" , push_to_hub=snake_case__ , use_auth_token=self._token )
lowerCAmelCase : Any = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def lowercase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : str = os.path.join(snake_case__ , "vocab.txt" )
with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowerCAmelCase : Tuple = BertTokenizer(snake_case__ )
tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token )
lowerCAmelCase : Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
snake_case__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=snake_case__ , use_auth_token=self._token )
lowerCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def lowercase__ ( self ):
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : List[str] = os.path.join(snake_case__ , "vocab.txt" )
with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowerCAmelCase : Tuple = CustomTokenizer(snake_case__ )
# No fast custom tokenizer
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : List[Any] = os.path.join(snake_case__ , "vocab.txt" )
with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowerCAmelCase : str = BertTokenizerFast.from_pretrained(snake_case__ )
bert_tokenizer.save_pretrained(snake_case__ )
lowerCAmelCase : Optional[int] = CustomTokenizerFast.from_pretrained(snake_case__ )
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" )
lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(
f"""{USER}/test-dynamic-tokenizer""" , use_fast=snake_case__ , trust_remote_code=snake_case__ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Optional[Any] = Trie()
trie.add("Hello 友達" )
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} )
trie.add("Hello" )
trie.data
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : int = Trie()
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] )
trie.add("[CLS]" )
trie.add("extra_id_1" )
trie.add("extra_id_100" )
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : str = Trie()
trie.add("A" )
self.assertEqual(trie.split("ABC" ) , ["A", "BC"] )
self.assertEqual(trie.split("BCA" ) , ["BC", "A"] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : List[str] = Trie()
trie.add("TOKEN]" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Union[str, Any] = Trie()
trie.add("A" )
trie.add("P" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Dict = Trie()
trie.add("AB" )
trie.add("B" )
trie.add("C" )
self.assertEqual(trie.split("ABC" ) , ["AB", "C"] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Tuple = Trie()
trie.add("ABC" )
trie.add("B" )
trie.add("CD" )
self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Optional[int] = Trie()
lowerCAmelCase : Optional[int] = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(snake_case__ , ["AB", "C"] )
| 108 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
"""simple docstring"""
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
A: Any = get_logger(__name__)
A: Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n"
class SCREAMING_SNAKE_CASE__ :
@add_start_docstrings(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class SCREAMING_SNAKE_CASE__ :
@add_start_docstrings(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
@add_start_docstrings(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
for processor in self:
UpperCAmelCase : List[Any] = inspect.signature(processor.__call__ ).parameters
if len(_SCREAMING_SNAKE_CASE ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"Make sure that all the required parameters: {list(function_args.keys() )} for "
F"{processor.__class__} are passed to the logits processor." )
UpperCAmelCase : Dict = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase : Any = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not (temperature > 0):
raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" )
UpperCAmelCase : str = temperature
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase : List[Any] = scores / self.temperature
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float("""Inf""" ) , _SCREAMING_SNAKE_CASE = 1 ) -> List[str]:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1):
raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" )
UpperCAmelCase : int = top_p
UpperCAmelCase : Optional[int] = filter_value
UpperCAmelCase : Optional[int] = min_tokens_to_keep
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Tuple = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1] )
UpperCAmelCase : Tuple = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value )
UpperCAmelCase : Tuple = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 )
UpperCAmelCase : Optional[Any] = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
UpperCAmelCase : List[str] = jnp.roll(_SCREAMING_SNAKE_CASE , 1 )
score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE )
# min tokens to keep
UpperCAmelCase : Tuple = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[-1]
return next_scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float("""Inf""" ) , _SCREAMING_SNAKE_CASE = 1 ) -> Any:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or top_k <= 0:
raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" )
UpperCAmelCase : Optional[int] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = filter_value
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[Any] = scores.shape
UpperCAmelCase : Optional[int] = jnp.full(batch_size * vocab_size , self.filter_value )
UpperCAmelCase : int = min(self.top_k , scores.shape[-1] ) # Safety check
UpperCAmelCase , UpperCAmelCase : List[str] = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
UpperCAmelCase : Union[str, Any] = topk_scores.flatten()
UpperCAmelCase : Optional[int] = topk_indices.flatten() + shift
UpperCAmelCase : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return next_scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : str = bos_token_id
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase : Optional[int] = jnp.full(scores.shape , -float("""inf""" ) )
UpperCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - 1 )
UpperCAmelCase : Optional[int] = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = max_length
UpperCAmelCase : Optional[int] = eos_token_id
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase : Any = jnp.full(scores.shape , -float("""inf""" ) )
UpperCAmelCase : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 )
UpperCAmelCase : int = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or min_length < 0:
raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or eos_token_id < 0:
raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" )
UpperCAmelCase : List[Any] = min_length
UpperCAmelCase : Any = eos_token_id
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
UpperCAmelCase : List[Any] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = begin_index
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Any = 1 - jnp.bool_(cur_len - self.begin_index )
UpperCAmelCase : Optional[Any] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase : List[Any] = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = dict(_SCREAMING_SNAKE_CASE )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
UpperCAmelCase : List[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
UpperCAmelCase : List[Any] = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = jnp.intaa(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
'''simple docstring'''
def _force_token(_SCREAMING_SNAKE_CASE ):
UpperCAmelCase : int = scores.shape[0]
UpperCAmelCase : List[Any] = self.force_token_array[generation_idx]
UpperCAmelCase : int = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float("""inf""" )
UpperCAmelCase : List[str] = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
UpperCAmelCase : List[Any] = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token) )
return new_scores
UpperCAmelCase : Dict = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE ) , lambda: scores , ) , )
return scores
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple = generate_config.eos_token_id
UpperCAmelCase : List[Any] = generate_config.no_timestamps_token_id
UpperCAmelCase : str = generate_config.no_timestamps_token_id + 1
UpperCAmelCase : int = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(_SCREAMING_SNAKE_CASE , """max_initial_timestamp_index""" ):
UpperCAmelCase : Union[str, Any] = generate_config.max_initial_timestamp_index
else:
UpperCAmelCase : Dict = model_config.vocab_size
if self.max_initial_timestamp_index is None:
UpperCAmelCase : Union[str, Any] = model_config.vocab_size
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Optional[int] = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) )
def handle_pairs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , )
UpperCAmelCase : Dict = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
return jnp.where(
_SCREAMING_SNAKE_CASE , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , _SCREAMING_SNAKE_CASE , )
UpperCAmelCase : Optional[int] = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , )
UpperCAmelCase : Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index
UpperCAmelCase : Any = jnp.where(
_SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE , )
# if sum of probability over timestamps is above any other token, sample timestamp
UpperCAmelCase : Dict = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 )
def handle_cumulative_probs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
UpperCAmelCase : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE , )
UpperCAmelCase : str = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return scores
| 109 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 0 |
"""simple docstring"""
import argparse
from collections import defaultdict
import yaml
a = '''docs/source/en/_toctree.yml'''
def _snake_case ( _snake_case : Optional[int] ) -> Tuple:
'''simple docstring'''
_A = defaultdict(_lowercase )
for doc in model_doc:
counts[doc["local"]] += 1
_A = [key for key, value in counts.items() if value > 1]
_A = []
for duplicate_key in duplicates:
_A = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} )
if len(_lowercase ) > 1:
raise ValueError(
F'''{duplicate_key} is present several times in the documentation table of content at '''
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] )
# Sort
return sorted(_lowercase , key=lambda _snake_case : s["title"].lower() )
def _snake_case ( _snake_case : Any=False ) -> Tuple:
'''simple docstring'''
with open(_lowercase , encoding='utf-8' ) as f:
_A = yaml.safe_load(f.read() )
# Get to the API doc
_A = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_A = content[api_idx]['''sections''']
# Then to the model doc
_A = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
_A = api_doc[model_idx]['''sections''']
_A = [(idx, section) for idx, section in enumerate(_lowercase ) if '''sections''' in section]
_A = False
for idx, modality_doc in modalities_docs:
_A = modality_doc['''sections''']
_A = clean_model_doc_toc(_lowercase )
if old_modality_doc != new_modality_doc:
_A = True
if overwrite:
_A = new_modality_doc
if diff:
if overwrite:
_A = model_doc
_A = api_doc
with open(_lowercase , 'w' , encoding='utf-8' ) as f:
f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 315 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 0 |
"""simple docstring"""
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
_UpperCamelCase : Dict = logging.get_logger(__name__)
_UpperCamelCase : str = '''T5Config'''
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Dict , __snake_case : List[str] ):
'''simple docstring'''
lowercase = jnp.zeros_like(_lowercase )
lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowercase = shifted_input_ids.at[:, 0].set(_lowercase )
lowercase = jnp.where(shifted_input_ids == -1_00 , _lowercase , _lowercase )
return shifted_input_ids
class a ( _lowercase ):
UpperCAmelCase_ : Optional[int] ="mt5"
UpperCAmelCase_ : Dict =MTaConfig
class a ( _lowercase ):
UpperCAmelCase_ : Tuple ="mt5"
UpperCAmelCase_ : int =MTaConfig
class a ( _lowercase ):
UpperCAmelCase_ : Optional[int] ="mt5"
UpperCAmelCase_ : Union[str, Any] =MTaConfig
| 220 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 0 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __lowercase ( _lowercase ):
'''simple docstring'''
__lowerCAmelCase = ""
__lowerCAmelCase = "hf-legacy" # "hf://"" is reserved for hffs
def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ):
super().__init__(self , **_UpperCAmelCase )
__a : List[str] = repo_info
__a : Optional[int] = token
__a : int = None
def _lowerCamelCase ( self ):
if self.dir_cache is None:
__a : str = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
__a : Union[str, Any] = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(_UpperCAmelCase ): {'''name''': str(_UpperCAmelCase ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = "rb" , **_UpperCAmelCase , ):
if not isinstance(self.repo_info , _UpperCAmelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
__a : Optional[int] = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
_UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ):
self._get_dirs()
__a : Dict = self._strip_protocol(_UpperCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ):
self._get_dirs()
__a : Any = PurePosixPath(path.strip('''/''' ) )
__a : List[Any] = {}
for p, f in self.dir_cache.items():
__a : Union[str, Any] = PurePosixPath(p.strip('''/''' ) )
__a : Union[str, Any] = p.parent
if root == path:
__a : List[str] = f
__a : Dict = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 160 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 0 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ):
"""simple docstring"""
__magic_name__ : Tuple = x
__magic_name__ : Any = y
for step in range(_lowercase ): # noqa: B007
__magic_name__ : str = a * a - b * b + x
__magic_name__ : Optional[int] = 2 * a * b + y
__magic_name__ : Optional[int] = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCamelCase ( lowerCAmelCase : Dict ):
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCamelCase ( lowerCAmelCase : List[str] ):
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) )
def lowerCamelCase ( lowerCAmelCase : Any = 800 , lowerCAmelCase : List[Any] = 600 , lowerCAmelCase : Optional[Any] = -0.6 , lowerCAmelCase : Optional[Any] = 0 , lowerCAmelCase : Any = 3.2 , lowerCAmelCase : int = 50 , lowerCAmelCase : int = True , ):
"""simple docstring"""
__magic_name__ : Dict = Image.new('RGB' , (image_width, image_height) )
__magic_name__ : str = img.load()
# loop through the image-coordinates
for image_x in range(_lowercase ):
for image_y in range(_lowercase ):
# determine the figure-coordinates based on the image-coordinates
__magic_name__ : Tuple = figure_width / image_width * image_height
__magic_name__ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width
__magic_name__ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height
__magic_name__ : List[Any] = get_distance(_lowercase , _lowercase , _lowercase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__magic_name__ : Dict = get_color_coded_rgb(_lowercase )
else:
__magic_name__ : List[str] = get_black_and_white_rgb(_lowercase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCAmelCase :Optional[int] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 331 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Union[str, Any] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Any = ['''MLukeTokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 55 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 0 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def a__ ( snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = torch.load(_lowercase , map_location='''cpu''' )
if "model" in sd.keys():
__SCREAMING_SNAKE_CASE : int = torch.load(_lowercase , map_location='''cpu''' )['''model''']
# pop unnecessary weights
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
__SCREAMING_SNAKE_CASE : int = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
__SCREAMING_SNAKE_CASE : Any = sd.pop(_lowercase )
__SCREAMING_SNAKE_CASE : List[str] = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
__SCREAMING_SNAKE_CASE : int = sd[key]
# We split QKV in separate Q,K,V
__SCREAMING_SNAKE_CASE : List[str] = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
__SCREAMING_SNAKE_CASE : str = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
__SCREAMING_SNAKE_CASE : Tuple = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
__SCREAMING_SNAKE_CASE : str = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
__SCREAMING_SNAKE_CASE : List[str] = torch.split(_lowercase , depth // 3 , dim=0 )
__SCREAMING_SNAKE_CASE : List[Any] = q
__SCREAMING_SNAKE_CASE : Optional[Any] = k
__SCREAMING_SNAKE_CASE : int = v
del sd[key]
return sd
@torch.no_grad()
def a__ ( snake_case , snake_case , snake_case=None ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = load_checkpoint(_lowercase )
if config is not None:
__SCREAMING_SNAKE_CASE : List[str] = OPTConfig.from_pretrained(_lowercase )
else:
__SCREAMING_SNAKE_CASE : List[Any] = OPTConfig()
__SCREAMING_SNAKE_CASE : int = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
lowercase_ = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 303 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 0 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
lowercase__ : Tuple = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
lowercase__ : str = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
lowercase__ : List[Any] = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def __lowercase ( _a ):
def remove_articles(_a ):
snake_case_ : List[str] = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(_lowercase , ''' ''' , _lowercase )
def white_space_fix(_a ):
return " ".join(text.split() )
def remove_punc(_a ):
snake_case_ : str = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_a ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def __lowercase ( _a , _a ):
return int(normalize_answer(_lowercase ) == normalize_answer(_lowercase ) )
def __lowercase ( _a , _a ):
snake_case_ : int = [any(compute_exact(_lowercase , _lowercase ) for ref in refs ) for pred, refs in zip(_lowercase , _lowercase )]
return (sum(_lowercase ) / len(_lowercase )) * 100
def __lowercase ( _a , _a , _a , _a ):
snake_case_ : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams]
snake_case_ : Dict = Counter(_lowercase )
snake_case_ : List[str] = Counter(_lowercase )
snake_case_ : List[Any] = Counter()
for sgram, scount in sgramcounter.items():
snake_case_ : Any = scount * numref
snake_case_ : List[Any] = Counter(_lowercase )
snake_case_ : List[Any] = Counter()
for cgram, ccount in cgramcounter.items():
snake_case_ : Dict = ccount * numref
# KEEP
snake_case_ : str = sgramcounter_rep & cgramcounter_rep
snake_case_ : int = keepgramcounter_rep & rgramcounter
snake_case_ : List[str] = sgramcounter_rep & rgramcounter
snake_case_ : str = 0
snake_case_ : List[Any] = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case_ : str = 1
snake_case_ : Dict = 1
if len(_lowercase ) > 0:
snake_case_ : Union[str, Any] = keeptmpscorea / len(_lowercase )
if len(_lowercase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
snake_case_ : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() )
snake_case_ : Optional[int] = 0
if keepscore_precision > 0 or keepscore_recall > 0:
snake_case_ : Optional[int] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
snake_case_ : int = sgramcounter_rep - cgramcounter_rep
snake_case_ : Tuple = delgramcounter_rep - rgramcounter
snake_case_ : Any = sgramcounter_rep - rgramcounter
snake_case_ : str = 0
snake_case_ : int = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case_ : Any = 1
if len(_lowercase ) > 0:
snake_case_ : Union[str, Any] = deltmpscorea / len(_lowercase )
# ADDITION
snake_case_ : Optional[Any] = set(_lowercase ) - set(_lowercase )
snake_case_ : str = set(_lowercase ) & set(_lowercase )
snake_case_ : Optional[int] = set(_lowercase ) - set(_lowercase )
snake_case_ : int = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case_ : str = 1
snake_case_ : Dict = 1
if len(_lowercase ) > 0:
snake_case_ : List[Any] = addtmpscore / len(_lowercase )
if len(_lowercase ) > 0:
snake_case_ : Optional[Any] = addtmpscore / len(_lowercase )
snake_case_ : Union[str, Any] = 0
if addscore_precision > 0 or addscore_recall > 0:
snake_case_ : Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def __lowercase ( _a , _a , _a ):
snake_case_ : Union[str, Any] = len(_lowercase )
snake_case_ : Union[str, Any] = ssent.split(''' ''' )
snake_case_ : Tuple = csent.split(''' ''' )
snake_case_ : Optional[Any] = []
snake_case_ : Optional[int] = []
snake_case_ : List[Any] = []
snake_case_ : Any = []
snake_case_ : List[str] = []
snake_case_ : List[str] = []
snake_case_ : Optional[Any] = []
snake_case_ : Optional[int] = []
snake_case_ : Dict = []
snake_case_ : int = []
for rsent in rsents:
snake_case_ : Dict = rsent.split(''' ''' )
snake_case_ : Union[str, Any] = []
snake_case_ : List[Any] = []
snake_case_ : str = []
ragramslist.append(_lowercase )
for i in range(0 , len(_lowercase ) - 1 ):
if i < len(_lowercase ) - 1:
snake_case_ : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowercase )
if i < len(_lowercase ) - 2:
snake_case_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowercase )
if i < len(_lowercase ) - 3:
snake_case_ : Optional[int] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowercase )
ragramslist.append(_lowercase )
ragramslist.append(_lowercase )
ragramslist.append(_lowercase )
for i in range(0 , len(_lowercase ) - 1 ):
if i < len(_lowercase ) - 1:
snake_case_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowercase )
if i < len(_lowercase ) - 2:
snake_case_ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowercase )
if i < len(_lowercase ) - 3:
snake_case_ : Tuple = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowercase )
for i in range(0 , len(_lowercase ) - 1 ):
if i < len(_lowercase ) - 1:
snake_case_ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowercase )
if i < len(_lowercase ) - 2:
snake_case_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowercase )
if i < len(_lowercase ) - 3:
snake_case_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowercase )
(snake_case_) : Dict = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
(snake_case_) : Any = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
(snake_case_) : Optional[Any] = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
(snake_case_) : List[Any] = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
snake_case_ : str = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
snake_case_ : List[Any] = sum([delascore, delascore, delascore, delascore] ) / 4
snake_case_ : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4
snake_case_ : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def __lowercase ( _a , _a = True , _a = "13a" , _a = True ):
if lowercase:
snake_case_ : Optional[int] = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
snake_case_ : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(_lowercase )()(_lowercase )
else:
snake_case_ : str = sacrebleu.TOKENIZERS[tokenizer]()(_lowercase )
elif tokenizer == "moses":
snake_case_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(_lowercase , return_str=_lowercase , escape=_lowercase )
elif tokenizer == "penn":
snake_case_ : Optional[Any] = sacremoses.MosesTokenizer().penn_tokenize(_lowercase , return_str=_lowercase )
else:
snake_case_ : List[Any] = sentence
if not return_str:
snake_case_ : Any = normalized_sent.split()
return normalized_sent
def __lowercase ( _a , _a , _a ):
if not (len(_lowercase ) == len(_lowercase ) == len(_lowercase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
snake_case_ : str = 0
for src, pred, refs in zip(_lowercase , _lowercase , _lowercase ):
sari_score += SARIsent(normalize(_lowercase ) , normalize(_lowercase ) , [normalize(_lowercase ) for sent in refs] )
snake_case_ : List[str] = sari_score / len(_lowercase )
return 100 * sari_score
def __lowercase ( _a , _a , _a="exp" , _a=None , _a=False , _a=False , _a=False , ):
snake_case_ : Any = len(references[0] )
if any(len(_lowercase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
snake_case_ : Optional[int] = [[refs[i] for refs in references] for i in range(_lowercase )]
snake_case_ : Union[str, Any] = sacrebleu.corpus_bleu(
_lowercase , _lowercase , smooth_method=_lowercase , smooth_value=_lowercase , force=_lowercase , lowercase=_lowercase , use_effective_order=_lowercase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _UpperCAmelCase ( datasets.Metric):
def _snake_case ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _snake_case ( self : str , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] ):
snake_case_ : int = {}
result.update({'''sari''': compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} )
result.update({'''exact''': compute_em(predictions=lowercase_ , references=lowercase_ )} )
return result
| 264 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 0 |
from __future__ import annotations
import requests
def UpperCAmelCase__ ( _A : List[str] ):
'''simple docstring'''
a__ =F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty"""
return requests.get(_lowercase ).json()
def UpperCAmelCase__ ( _A : List[Any] = 10 ):
'''simple docstring'''
a__ ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
a__ =requests.get(_lowercase ).json()[:max_stories]
return [get_hackernews_story(_lowercase ) for story_id in story_ids]
def UpperCAmelCase__ ( _A : Dict = 10 ):
'''simple docstring'''
a__ =hackernews_top_stories(_lowercase )
return "\n".join('''* [{title}]({url})'''.format(**_lowercase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 188 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 0 |
'''simple docstring'''
__lowercase : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def lowerCamelCase ():
__a : Union[str, Any] = input('Enter message: ' )
__a : Optional[Any] = input('Enter key [alphanumeric]: ' )
__a : Tuple = input('Encrypt/Decrypt [e/d]: ' )
if mode.lower().startswith('e' ):
__a : Tuple = '''encrypt'''
__a : Dict = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith('d' ):
__a : Optional[int] = '''decrypt'''
__a : Dict = decrypt_message(_lowercase , _lowercase )
print(F"""\n{mode.title()}ed message:""" )
print(_lowercase )
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ):
return translate_message(_lowercase , _lowercase , 'encrypt' )
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ):
return translate_message(_lowercase , _lowercase , 'decrypt' )
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ):
__a : Tuple = []
__a : Optional[Any] = 0
__a : List[Any] = key.upper()
for symbol in message:
__a : Union[str, Any] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
__a : Tuple = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 27 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 0 |
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(_lowercase ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 186 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ : str = logging.get_logger(__name__)
def a_ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False ):
UpperCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def a_ ( lowerCamelCase , lowerCamelCase ):
for i in range(config.num_hidden_layers ):
UpperCAmelCase__ = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase__ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase__ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase__ = in_proj_bias[: config.hidden_size]
UpperCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase__ = in_proj_bias[-config.hidden_size :]
def a_ ( lowerCamelCase ):
UpperCAmelCase__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = dct.pop(_lowercase )
UpperCAmelCase__ = val
@torch.no_grad()
def a_ ( lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=_lowercase )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if "vqa" in checkpoint_url:
UpperCAmelCase__ = True
UpperCAmelCase__ = 3_1_2_9
UpperCAmelCase__ = '''huggingface/label-files'''
UpperCAmelCase__ = '''vqa2-id2label.json'''
UpperCAmelCase__ = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) )
UpperCAmelCase__ = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = {v: k for k, v in idalabel.items()}
UpperCAmelCase__ = ViltForQuestionAnswering(_lowercase )
elif "nlvr" in checkpoint_url:
UpperCAmelCase__ = True
UpperCAmelCase__ = 2
UpperCAmelCase__ = {0: '''False''', 1: '''True'''}
UpperCAmelCase__ = {v: k for k, v in config.idalabel.items()}
UpperCAmelCase__ = 3
UpperCAmelCase__ = ViltForImagesAndTextClassification(_lowercase )
elif "irtr" in checkpoint_url:
UpperCAmelCase__ = True
UpperCAmelCase__ = ViltForImageAndTextRetrieval(_lowercase )
elif "mlm_itm" in checkpoint_url:
UpperCAmelCase__ = True
UpperCAmelCase__ = ViltForMaskedLM(_lowercase )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' )['''state_dict''']
UpperCAmelCase__ = create_rename_keys(_lowercase , _lowercase , _lowercase , _lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
read_in_q_k_v(_lowercase , _lowercase )
if mlm_model or irtr_model:
UpperCAmelCase__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
UpperCAmelCase__ = model.load_state_dict(_lowercase , strict=_lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowercase )
# Define processor
UpperCAmelCase__ = ViltImageProcessor(size=3_8_4 )
UpperCAmelCase__ = BertTokenizer.from_pretrained('bert-base-uncased' )
UpperCAmelCase__ = ViltProcessor(_lowercase , _lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
UpperCAmelCase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowercase ).raw )
UpperCAmelCase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowercase ).raw )
UpperCAmelCase__ = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' )
UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' )
UpperCAmelCase__ = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
UpperCAmelCase__ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_lowercase ).raw )
if mlm_model:
UpperCAmelCase__ = '''a bunch of [MASK] laying on a [MASK].'''
else:
UpperCAmelCase__ = '''How many cats are there?'''
UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' )
UpperCAmelCase__ = model(**_lowercase )
# Verify outputs
if mlm_model:
UpperCAmelCase__ = torch.Size([1, 1_1, 3_0_5_2_2] )
UpperCAmelCase__ = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 )
# verify masked token prediction equals "cats"
UpperCAmelCase__ = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
UpperCAmelCase__ = torch.Size([1, 3_1_2_9] )
UpperCAmelCase__ = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 )
# verify vqa prediction equals "2"
UpperCAmelCase__ = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
UpperCAmelCase__ = torch.Size([1, 2] )
UpperCAmelCase__ = torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
processor.save_pretrained(_lowercase )
if __name__ == "__main__":
lowerCAmelCase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowerCAmelCase__ : Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 98 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 0 |
"""simple docstring"""
def _snake_case ( _snake_case : List[Any] = 10 , _snake_case : Any = 10_00 , _snake_case : Union[str, Any] = True ) -> int:
'''simple docstring'''
assert (
isinstance(_lowercase , _lowercase )
and isinstance(_lowercase , _lowercase )
and isinstance(_lowercase , _lowercase )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' )
return min_val if option else max_val
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ) -> int:
'''simple docstring'''
return int((number_a + number_a) / 2 )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Dict ) -> None:
'''simple docstring'''
assert (
isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError('argument value for lower and higher must be(lower > higher)' )
if not lower < to_guess < higher:
raise ValueError(
'guess value must be within the range of lower and higher value' )
def answer(_snake_case : List[str] ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print('started...' )
_A = lower
_A = higher
_A = []
while True:
_A = get_avg(_lowercase , _lowercase )
last_numbers.append(_lowercase )
if answer(_lowercase ) == "low":
_A = number
elif answer(_lowercase ) == "high":
_A = number
else:
break
print(F'''guess the number : {last_numbers[-1]}''' )
print(F'''details : {last_numbers!s}''' )
def _snake_case ( ) -> None:
'''simple docstring'''
_A = int(input('Enter lower value : ' ).strip() )
_A = int(input('Enter high value : ' ).strip() )
_A = int(input('Enter value to guess : ' ).strip() )
guess_the_number(_lowercase , _lowercase , _lowercase )
if __name__ == "__main__":
main()
| 315 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
from typing import Any
import numpy as np
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ):
'''simple docstring'''
return np.array_equal(_lowercase , matrix.conjugate().T )
def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : int ):
'''simple docstring'''
lowercase = v.conjugate().T
lowercase = v_star.dot(_lowercase )
assert isinstance(_lowercase , np.ndarray )
return (v_star_dot.dot(_lowercase )) / (v_star.dot(_lowercase ))
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase = np.array([[1], [2], [3]] )
assert is_hermitian(_lowercase ), f'{a} is not hermitian.'
print(rayleigh_quotient(_lowercase , _lowercase ) )
lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(_lowercase ), f'{a} is not hermitian.'
assert rayleigh_quotient(_lowercase , _lowercase ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 220 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 0 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class __lowercase ( _lowercase ):
'''simple docstring'''
__lowerCAmelCase = 42
__lowerCAmelCase = 42
class __lowercase ( _lowercase , _lowercase ):
'''simple docstring'''
__lowerCAmelCase = 1
@register_to_config
def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1348.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ):
# standard deviation of the initial noise distribution
__a : Tuple = sigma_max
# setable values
__a : Optional[Any] = None
self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
return sample
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ):
__a : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps
__a : str = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ):
__a : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min
__a : Any = sigma_max if sigma_max is not None else self.config.sigma_max
__a : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase )
__a : Any = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
__a : Union[str, Any] = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) )
__a : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ):
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
__a : List[str] = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
__a : int = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
__a : Optional[Any] = timesteps.to(self.discrete_sigmas.device )
__a : int = self.discrete_sigmas[timesteps].to(sample.device )
__a : str = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device )
__a : Dict = torch.zeros_like(_UpperCAmelCase )
__a : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
__a : List[Any] = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
__a : Union[str, Any] = diffusion.unsqueeze(-1 )
__a : Optional[Any] = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
__a : int = randn_tensor(
sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype )
__a : Tuple = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
__a : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
__a : Any = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
__a : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
__a : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
__a : str = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
__a : Union[str, Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
__a : List[Any] = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
__a : Union[str, Any] = step_size.unsqueeze(-1 )
__a : Dict = sample + step_size * model_output
__a : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__a : List[str] = timesteps.to(original_samples.device )
__a : int = self.discrete_sigmas.to(original_samples.device )[timesteps]
__a : Tuple = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None]
)
__a : Optional[Any] = noise + original_samples
return noisy_samples
def __len__( self ):
return self.config.num_train_timesteps
| 160 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase :int = {
'''configuration_blenderbot''': [
'''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlenderbotConfig''',
'''BlenderbotOnnxConfig''',
],
'''tokenization_blenderbot''': ['''BlenderbotTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :List[str] = ['''BlenderbotTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Any = [
'''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlenderbotForCausalLM''',
'''BlenderbotForConditionalGeneration''',
'''BlenderbotModel''',
'''BlenderbotPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Optional[int] = [
'''TFBlenderbotForConditionalGeneration''',
'''TFBlenderbotModel''',
'''TFBlenderbotPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase :Dict = [
'''FlaxBlenderbotForConditionalGeneration''',
'''FlaxBlenderbotModel''',
'''FlaxBlenderbotPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 331 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 0 |
'''simple docstring'''
from __future__ import annotations
import time
a_ : List[Any] = list[tuple[int, int]]
a_ : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
a_ : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class snake_case :
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = pos_x
lowerCamelCase_ = pos_y
lowerCamelCase_ = (pos_y, pos_x)
lowerCamelCase_ = goal_x
lowerCamelCase_ = goal_y
lowerCamelCase_ = parent
class snake_case :
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCamelCase )
lowerCamelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCamelCase )
lowerCamelCase_ = [self.start]
lowerCamelCase_ = False
def snake_case ( self ):
"""simple docstring"""
while self.node_queue:
lowerCamelCase_ = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ = True
return self.retrace_path(UpperCamelCase )
lowerCamelCase_ = self.get_successors(UpperCamelCase )
for node in successors:
self.node_queue.append(UpperCamelCase )
if not self.reached:
return [self.start.pos]
return None
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = []
for action in delta:
lowerCamelCase_ = parent.pos_x + action[1]
lowerCamelCase_ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(UpperCamelCase , UpperCamelCase , self.target.pos_y , self.target.pos_x , UpperCamelCase ) )
return successors
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = node
lowerCamelCase_ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ = current_node.parent
path.reverse()
return path
class snake_case :
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = BreadthFirstSearch(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = BreadthFirstSearch(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = False
def snake_case ( self ):
"""simple docstring"""
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ = True
return self.retrace_bidirectional_path(
UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = current_bwd_node
lowerCamelCase_ = current_fwd_node
lowerCamelCase_ = {
self.fwd_bfs: self.fwd_bfs.get_successors(UpperCamelCase ),
self.bwd_bfs: self.bwd_bfs.get_successors(UpperCamelCase ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(UpperCamelCase )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = self.fwd_bfs.retrace_path(UpperCamelCase )
lowerCamelCase_ = self.bwd_bfs.retrace_path(UpperCamelCase )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
a_ : List[str] = (0, 0)
a_ : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
a_ : Tuple = time.time()
a_ : int = BreadthFirstSearch(init, goal)
a_ : Dict = bfs.search()
a_ : Dict = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
a_ : int = time.time()
a_ : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
a_ : Any = bd_bfs.search()
a_ : Dict = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 55 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 0 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowercase_ = Lock()
def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
__SCREAMING_SNAKE_CASE : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
__SCREAMING_SNAKE_CASE : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
__SCREAMING_SNAKE_CASE : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
__SCREAMING_SNAKE_CASE : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def a__ ( snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = []
__SCREAMING_SNAKE_CASE : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
__SCREAMING_SNAKE_CASE : str = Pipe()
__SCREAMING_SNAKE_CASE : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
__SCREAMING_SNAKE_CASE : Optional[Any] = temp_rs
__SCREAMING_SNAKE_CASE : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
__SCREAMING_SNAKE_CASE : str = Pipe()
__SCREAMING_SNAKE_CASE : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
__SCREAMING_SNAKE_CASE : Dict = temp_rs
__SCREAMING_SNAKE_CASE : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
__SCREAMING_SNAKE_CASE : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def a__ ( ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
__SCREAMING_SNAKE_CASE : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 303 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Tuple = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class _UpperCAmelCase ( _lowercase):
_lowerCAmelCase : Any = "xmod"
def __init__( self : List[str] , lowercase_ : Optional[int]=30522 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : Any=12 , lowercase_ : Tuple=3072 , lowercase_ : int="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=512 , lowercase_ : str=2 , lowercase_ : List[Any]=0.02 , lowercase_ : Union[str, Any]=1E-12 , lowercase_ : Any=1 , lowercase_ : Tuple=0 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]="absolute" , lowercase_ : Optional[Any]=True , lowercase_ : Any=None , lowercase_ : List[str]=False , lowercase_ : str=2 , lowercase_ : Dict=False , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : str=("en_XX",) , lowercase_ : List[Any]=None , **lowercase_ : Any , ):
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
snake_case_ : List[str] = vocab_size
snake_case_ : Optional[int] = hidden_size
snake_case_ : Optional[int] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Tuple = hidden_act
snake_case_ : Any = intermediate_size
snake_case_ : Dict = hidden_dropout_prob
snake_case_ : Optional[int] = attention_probs_dropout_prob
snake_case_ : str = max_position_embeddings
snake_case_ : List[Any] = type_vocab_size
snake_case_ : Dict = initializer_range
snake_case_ : Dict = layer_norm_eps
snake_case_ : str = position_embedding_type
snake_case_ : Tuple = use_cache
snake_case_ : List[Any] = classifier_dropout
snake_case_ : Dict = pre_norm
snake_case_ : Union[str, Any] = adapter_reduction_factor
snake_case_ : Optional[int] = adapter_layer_norm
snake_case_ : List[str] = adapter_reuse_layer_norm
snake_case_ : Any = ln_before_adapter
snake_case_ : Tuple = list(lowercase_ )
snake_case_ : int = default_language
class _UpperCAmelCase ( _lowercase):
@property
def _snake_case ( self : int ):
if self.task == "multiple-choice":
snake_case_ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
snake_case_ : Any = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 264 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 188 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowercase : Dict = {
'''configuration_encodec''': [
'''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EncodecConfig''',
],
'''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] = [
'''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EncodecModel''',
'''EncodecPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
__lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 27 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 0 |
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return int((input_a, input_a).count(0 ) == 0 )
def _SCREAMING_SNAKE_CASE ( ):
assert and_gate(0 , 0 ) == 0
assert and_gate(0 , 1 ) == 0
assert and_gate(1 , 0 ) == 0
assert and_gate(1 , 1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 186 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a_ ( lowerCamelCase , lowerCamelCase = True , lowerCamelCase = math.inf , lowerCamelCase = -math.inf , lowerCamelCase = math.inf , lowerCamelCase = -math.inf , lowerCamelCase = False , lowerCamelCase = 1_0_0 , lowerCamelCase = 0.01 , lowerCamelCase = 1 , ):
UpperCAmelCase__ = False
UpperCAmelCase__ = search_prob
UpperCAmelCase__ = start_temperate
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = None
while not search_end:
UpperCAmelCase__ = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase__ = current_state
scores.append(_lowercase )
iterations += 1
UpperCAmelCase__ = None
UpperCAmelCase__ = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase__ = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
UpperCAmelCase__ = neighbors.pop(_lowercase )
UpperCAmelCase__ = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase__ = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase__ = picked_neighbor
else:
UpperCAmelCase__ = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase__ = picked_neighbor
UpperCAmelCase__ = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel('Iterations' )
plt.ylabel('Function values' )
plt.show()
return best_state
if __name__ == "__main__":
def a_ ( lowerCamelCase , lowerCamelCase ):
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
lowerCAmelCase__ : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ : Optional[Any] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
lowerCAmelCase__ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ : Optional[Any] = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def a_ ( lowerCamelCase , lowerCamelCase ):
return (3 * x**2) - (6 * y)
lowerCAmelCase__ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ : Optional[int] = simulated_annealing(prob, find_max=False, visualization=True)
print(
'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
F"""{local_min.score()}"""
)
lowerCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowerCAmelCase__ : int = simulated_annealing(prob, find_max=True, visualization=True)
print(
'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '
F"""{local_min.score()}"""
)
| 98 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 0 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
a = logging.getLogger(__name__)
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCAmelCase : Optional[str] = field(
default=_lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCAmelCase : Optional[str] = field(
default=_lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCAmelCase : Optional[str] = field(
default=_lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCAmelCase : bool = field(
default=_lowercase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : bool = field(
default=_lowercase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(default=_lowercase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCAmelCase : Optional[str] = field(
default=_lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCAmelCase : bool = field(
default=_lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCAmelCase : Optional[int] = field(
default=_lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCAmelCase : Optional[int] = field(
default=_lowercase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase : bool = field(
default=_lowercase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=_lowercase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=_lowercase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Tuple ):
if self.train_file is not None:
_A = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_A = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : PreTrainedTokenizerBase
UpperCAmelCase : Union[bool, str, PaddingStrategy] = True
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Optional[int] = None
def __call__( self : List[str] , _UpperCAmelCase : int ):
_A = '''label''' if '''label''' in features[0].keys() else '''labels'''
_A = [feature.pop(_UpperCAmelCase ) for feature in features]
_A = len(_UpperCAmelCase )
_A = len(features[0]['input_ids'] )
_A = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
_A = list(chain(*_UpperCAmelCase ) )
_A = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
_A = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
_A = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def _snake_case ( ) -> Union[str, Any]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_A = {}
if data_args.train_file is not None:
_A = data_args.train_file
if data_args.validation_file is not None:
_A = data_args.validation_file
_A = data_args.train_file.split('.' )[-1]
_A = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
_A = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_A = [F'''ending{i}''' for i in range(4 )]
_A = '''sent1'''
_A = '''sent2'''
if data_args.max_seq_length is None:
_A = tokenizer.model_max_length
if max_seq_length > 10_24:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
_A = 10_24
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
_A = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_snake_case : Dict ):
_A = [[context] * 4 for context in examples[context_name]]
_A = examples[question_header_name]
_A = [
[F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
_A = list(chain(*_lowercase ) )
_A = list(chain(*_lowercase ) )
# Tokenize
_A = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
_A = raw_datasets['''train''']
if data_args.max_train_samples is not None:
_A = min(len(_lowercase ) , data_args.max_train_samples )
_A = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
_A = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
_A = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
_A = min(len(_lowercase ) , data_args.max_eval_samples )
_A = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
_A = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
_A = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_snake_case : Union[str, Any] ):
_A = eval_predictions
_A = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_A = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
_A = train_result.metrics
_A = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
_A = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('train' , _lowercase )
trainer.save_metrics('train' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_A = trainer.evaluate()
_A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
_A = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('eval' , _lowercase )
trainer.save_metrics('eval' , _lowercase )
_A = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def _snake_case ( _snake_case : List[Any] ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
_UpperCamelCase : Any = {
'''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''',
}
class a ( _lowercase, _lowercase ):
UpperCAmelCase_ : Tuple ="resnet"
UpperCAmelCase_ : Optional[int] =["basic", "bottleneck"]
def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=6_4 , _lowerCamelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _lowerCamelCase=[3, 4, 6, 3] , _lowerCamelCase="bottleneck" , _lowerCamelCase="relu" , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ):
super().__init__(**_lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
lowercase = num_channels
lowercase = embedding_size
lowercase = hidden_sizes
lowercase = depths
lowercase = layer_type
lowercase = hidden_act
lowercase = downsample_in_first_stage
lowercase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )]
lowercase = get_aligned_output_features_output_indices(
out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
class a ( _lowercase ):
UpperCAmelCase_ : List[str] =version.parse("1.11" )
@property
def UpperCamelCase_ ( self ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def UpperCamelCase_ ( self ):
return 1e-3
| 220 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 0 |
"""simple docstring"""
from itertools import product
def __A ( a_ :Tuple , a_ :int) -> list[int]:
__a : int = sides_number
__a : Tuple = max_face_number * dice_number
__a : int = [0] * (max_total + 1)
__a : Tuple = 1
__a : Dict = range(_lowercase , max_face_number + 1)
for dice_numbers in product(_lowercase , repeat=_lowercase):
__a : Optional[Any] = sum(_lowercase)
totals_frequencies[total] += 1
return totals_frequencies
def __A ( ) -> float:
__a : Optional[Any] = total_frequency_distribution(
sides_number=4 , dice_number=9)
__a : Tuple = total_frequency_distribution(
sides_number=6 , dice_number=6)
__a : List[Any] = 0
__a : Tuple = 9
__a : Dict = 4 * 9
__a : Any = 6
for peter_total in range(_lowercase , max_peter_total + 1):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total])
__a : str = (4**9) * (6**6)
__a : List[str] = peter_wins_count / total_games_number
__a : Dict = round(_lowercase , ndigits=7)
return rounded_peter_win_probability
if __name__ == "__main__":
print(F'{solution() = }')
| 160 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 0 |
'''simple docstring'''
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]="shi-labs/oneformer_demo" ):
"""simple docstring"""
with open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) as f:
__magic_name__ : Optional[Any] = json.load(_lowercase )
__magic_name__ : Dict = {}
__magic_name__ : Optional[Any] = []
__magic_name__ : Union[str, Any] = []
for key, info in class_info.items():
__magic_name__ : List[Any] = info['''name''']
class_names.append(info['name'] )
if info["isthing"]:
thing_ids.append(int(_lowercase ) )
__magic_name__ : Tuple = thing_ids
__magic_name__ : List[Any] = class_names
return metadata
class _lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any]=7 , _A : List[Any]=3 , _A : Union[str, Any]=30 , _A : int=400 , _A : Union[str, Any]=None , _A : Optional[Any]=True , _A : Any=True , _A : List[str]=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : Optional[Any]=10 , _A : Union[str, Any]=False , _A : List[Any]=255 , _A : Union[str, Any]="shi-labs/oneformer_demo" , _A : Optional[int]="ade20k_panoptic.json" , _A : Any=10 , ) -> List[str]:
__magic_name__ : str = parent
__magic_name__ : Union[str, Any] = batch_size
__magic_name__ : Dict = num_channels
__magic_name__ : Tuple = min_resolution
__magic_name__ : List[Any] = max_resolution
__magic_name__ : List[Any] = do_resize
__magic_name__ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : str = image_mean
__magic_name__ : Optional[Any] = image_std
__magic_name__ : Dict = class_info_file
__magic_name__ : Any = prepare_metadata(_A , _A )
__magic_name__ : Dict = num_text
__magic_name__ : Optional[int] = repo_path
# for the post_process_functions
__magic_name__ : List[str] = 2
__magic_name__ : List[Any] = 10
__magic_name__ : List[str] = 10
__magic_name__ : Any = 3
__magic_name__ : List[Any] = 4
__magic_name__ : Dict = num_labels
__magic_name__ : Optional[int] = do_reduce_labels
__magic_name__ : Optional[Any] = ignore_index
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : int=False ) -> Any:
if not batched:
__magic_name__ : Any = image_inputs[0]
if isinstance(_A , Image.Image ):
__magic_name__ : Optional[int] = image.size
else:
__magic_name__ : Optional[int] = image.shape[1], image.shape[2]
if w < h:
__magic_name__ : Tuple = int(self.size['shortest_edge'] * h / w )
__magic_name__ : Optional[Any] = self.size['''shortest_edge''']
elif w > h:
__magic_name__ : Tuple = self.size['''shortest_edge''']
__magic_name__ : Dict = int(self.size['shortest_edge'] * w / h )
else:
__magic_name__ : Tuple = self.size['''shortest_edge''']
__magic_name__ : Optional[int] = self.size['''shortest_edge''']
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0]
__magic_name__ : Optional[int] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class _lowerCamelCase ( _lowercase , unittest.TestCase ):
'''simple docstring'''
A_ : List[str] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
A_ : Any = image_processing_class
def __lowerCAmelCase ( self : str ) -> int:
__magic_name__ : List[Any] = OneFormerImageProcessorTester(self )
@property
def __lowerCAmelCase ( self : str ) -> Union[str, Any]:
return self.image_processing_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'image_mean' ) )
self.assertTrue(hasattr(_A , 'image_std' ) )
self.assertTrue(hasattr(_A , 'do_normalize' ) )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'ignore_index' ) )
self.assertTrue(hasattr(_A , 'class_info_file' ) )
self.assertTrue(hasattr(_A , 'num_text' ) )
self.assertTrue(hasattr(_A , 'repo_path' ) )
self.assertTrue(hasattr(_A , 'metadata' ) )
self.assertTrue(hasattr(_A , 'do_reduce_labels' ) )
def __lowerCAmelCase ( self : List[str] ) -> int:
pass
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
# Initialize image_processor
__magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
__magic_name__ : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__magic_name__ : Optional[Any] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Tuple = self.image_processing_tester.get_expected_values(_A , batched=_A )
__magic_name__ : List[str] = image_processor(
_A , ['semantic'] * len(_A ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
# Initialize image_processor
__magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__magic_name__ : List[Any] = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : str = self.image_processing_tester.get_expected_values(_A , batched=_A )
__magic_name__ : Union[str, Any] = image_processor(
_A , ['semantic'] * len(_A ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self : Optional[int] ) -> int:
# Initialize image_processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
__magic_name__ : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__magic_name__ : int = self.image_processing_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = self.image_processing_tester.get_expected_values(_A , batched=_A )
__magic_name__ : Dict = image_processor(
_A , ['semantic'] * len(_A ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self : str , _A : Tuple=False , _A : Dict=False , _A : int="np" ) -> Dict:
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__magic_name__ : str = self.image_processing_tester.num_labels
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A )
if with_segmentation_maps:
__magic_name__ : Any = num_labels
if is_instance_map:
__magic_name__ : Union[str, Any] = list(range(_A ) ) * 2
__magic_name__ : int = dict(enumerate(_A ) )
__magic_name__ : Optional[int] = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__magic_name__ : List[str] = [Image.fromarray(_A ) for annotation in annotations]
__magic_name__ : Any = image_processor(
_A , ['semantic'] * len(_A ) , _A , return_tensors='pt' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , )
return inputs
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
pass
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
def common(_A : Optional[Any]=False , _A : Tuple=None ):
__magic_name__ : Union[str, Any] = self.comm_get_image_processor_inputs(
with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A )
__magic_name__ : Union[str, Any] = inputs['''mask_labels''']
__magic_name__ : str = inputs['''class_labels''']
__magic_name__ : Union[str, Any] = inputs['''pixel_values''']
__magic_name__ : str = inputs['''text_inputs''']
# check the batch_size
for mask_label, class_label, text_input in zip(_A , _A , _A ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_A ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_A )
common(is_instance_map=_A , segmentation_type='pil' )
common(is_instance_map=_A , segmentation_type='pil' )
def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
__magic_name__ : Tuple = np.zeros((20, 50) )
__magic_name__ : Any = 1
__magic_name__ : Dict = 1
__magic_name__ : List[Any] = 1
__magic_name__ : Union[str, Any] = binary_mask_to_rle(_A )
self.assertEqual(len(_A ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def __lowerCAmelCase ( self : str ) -> Optional[Any]:
__magic_name__ : int = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__magic_name__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs()
__magic_name__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A )
self.assertEqual(len(_A ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__magic_name__ : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__magic_name__ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def __lowerCAmelCase ( self : Union[str, Any] ) -> str:
__magic_name__ : List[str] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__magic_name__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs()
__magic_name__ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _A )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def __lowerCAmelCase ( self : List[Any] ) -> Any:
__magic_name__ : str = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__magic_name__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs()
__magic_name__ : Dict = image_processor.post_process_panoptic_segmentation(_A , threshold=0 )
self.assertTrue(len(_A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _A )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 331 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : Dict = {
'''configuration_bigbird_pegasus''': [
'''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BigBirdPegasusConfig''',
'''BigBirdPegasusOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : str = [
'''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BigBirdPegasusForCausalLM''',
'''BigBirdPegasusForConditionalGeneration''',
'''BigBirdPegasusForQuestionAnswering''',
'''BigBirdPegasusForSequenceClassification''',
'''BigBirdPegasusModel''',
'''BigBirdPegasusPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 55 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 0 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __UpperCamelCase :
"""simple docstring"""
@staticmethod
def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : List[Any] ):
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
__SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE : int = image_classifier(_A , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(_A ) , [
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}],
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}],
] , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_A ) , [
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
] , )
@require_tf
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
__SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE : List[Any] = image_classifier(_A , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(_A ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , )
__SCREAMING_SNAKE_CASE : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_A ) , [
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
{'''score''': 0.3_33, '''label''': ANY(_A )},
],
] , )
@slow
@require_torch
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
__SCREAMING_SNAKE_CASE : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE : str = image_classifier(_A , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(_A ) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
__SCREAMING_SNAKE_CASE : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_A ) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
__SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
__SCREAMING_SNAKE_CASE : Optional[Any] = image_classifier(_A , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(_A ) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
__SCREAMING_SNAKE_CASE : List[str] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(_A ) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
| 303 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class _UpperCAmelCase ( unittest.TestCase):
def _snake_case ( self : Optional[Any] ):
snake_case_ : Dict = tempfile.mkdtemp()
snake_case_ : int = BlipImageProcessor()
snake_case_ : List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' )
snake_case_ : List[Any] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
snake_case_ : Union[str, Any] = InstructBlipProcessor(lowercase_ , lowercase_ , lowercase_ )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **lowercase_ : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer
def _snake_case ( self : str , **lowercase_ : str ):
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor
def _snake_case ( self : Optional[Any] , **lowercase_ : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).qformer_tokenizer
def _snake_case ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : int ):
snake_case_ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case_ : Union[str, Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : int ):
snake_case_ : Any = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
snake_case_ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
snake_case_ : int = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
snake_case_ : Dict = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
self.assertIsInstance(processor.qformer_tokenizer , lowercase_ )
def _snake_case ( self : List[Any] ):
snake_case_ : Optional[int] = self.get_image_processor()
snake_case_ : str = self.get_tokenizer()
snake_case_ : str = self.get_qformer_tokenizer()
snake_case_ : Optional[Any] = InstructBlipProcessor(
tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ )
snake_case_ : Union[str, Any] = self.prepare_image_inputs()
snake_case_ : Optional[int] = image_processor(lowercase_ , return_tensors='''np''' )
snake_case_ : Tuple = processor(images=lowercase_ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _snake_case ( self : Any ):
snake_case_ : Union[str, Any] = self.get_image_processor()
snake_case_ : Union[str, Any] = self.get_tokenizer()
snake_case_ : str = self.get_qformer_tokenizer()
snake_case_ : Any = InstructBlipProcessor(
tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ )
snake_case_ : Union[str, Any] = '''lower newer'''
snake_case_ : Union[str, Any] = processor(text=lowercase_ )
snake_case_ : List[Any] = tokenizer(lowercase_ , return_token_type_ids=lowercase_ )
snake_case_ : str = qformer_tokenizer(lowercase_ , return_token_type_ids=lowercase_ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] )
def _snake_case ( self : List[str] ):
snake_case_ : Union[str, Any] = self.get_image_processor()
snake_case_ : Dict = self.get_tokenizer()
snake_case_ : Tuple = self.get_qformer_tokenizer()
snake_case_ : Optional[Any] = InstructBlipProcessor(
tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ )
snake_case_ : Any = '''lower newer'''
snake_case_ : int = self.prepare_image_inputs()
snake_case_ : Optional[Any] = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(
list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def _snake_case ( self : Optional[int] ):
snake_case_ : Dict = self.get_image_processor()
snake_case_ : Dict = self.get_tokenizer()
snake_case_ : List[str] = self.get_qformer_tokenizer()
snake_case_ : List[str] = InstructBlipProcessor(
tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ )
snake_case_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case_ : Optional[int] = processor.batch_decode(lowercase_ )
snake_case_ : int = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def _snake_case ( self : Any ):
snake_case_ : List[Any] = self.get_image_processor()
snake_case_ : List[Any] = self.get_tokenizer()
snake_case_ : List[str] = self.get_qformer_tokenizer()
snake_case_ : Union[str, Any] = InstructBlipProcessor(
tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ )
snake_case_ : Optional[int] = '''lower newer'''
snake_case_ : Tuple = self.prepare_image_inputs()
snake_case_ : Optional[int] = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(
list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
| 264 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 0 |
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __magic_name__ ( _lowercase , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ : str = XLMTokenizer
lowerCamelCase__ : Optional[Any] = False
def _UpperCAmelCase ( self ) -> Any:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
a__ =[
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
a__ =dict(zip(lowercase_, range(len(lowercase_ ) ) ) )
a__ =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file, '''w''' ) as fp:
fp.write(json.dumps(lowercase_ ) )
with open(self.merges_file, '''w''' ) as fp:
fp.write('''\n'''.join(lowercase_ ) )
def _UpperCAmelCase ( self, lowercase_ ) -> List[Any]:
"""simple docstring"""
a__ ='''lower newer'''
a__ ='''lower newer'''
return input_text, output_text
def _UpperCAmelCase ( self ) -> str:
"""simple docstring"""
a__ =XLMTokenizer(self.vocab_file, self.merges_file )
a__ ='''lower'''
a__ =['''low''', '''er</w>''']
a__ =tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_, lowercase_ )
a__ =tokens + ['''<unk>''']
a__ =[14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ), lowercase_ )
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
a__ =XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' )
a__ =tokenizer.encode('''sequence builders''', add_special_tokens=lowercase_ )
a__ =tokenizer.encode('''multi-sequence build''', add_special_tokens=lowercase_ )
a__ =tokenizer.build_inputs_with_special_tokens(lowercase_ )
a__ =tokenizer.build_inputs_with_special_tokens(lowercase_, lowercase_ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 188 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __UpperCamelCase ( _lowercase ):
A_ = 42
class __UpperCamelCase ( _lowercase , _lowercase ):
@register_to_config
def __init__( self , __a = 32 , __a = 64 , __a = 20 , __a = 768 , __a=77 , __a=4 , __a = 0.0 , __a = "silu" , __a = None , __a = None , __a = "linear" , __a = "prd" , __a = None , __a = None , __a = None , ):
'''simple docstring'''
super().__init__()
__a : str = num_attention_heads
__a : Tuple = attention_head_dim
__a : Any = num_attention_heads * attention_head_dim
__a : str = additional_embeddings
__a : int = time_embed_dim or inner_dim
__a : Any = embedding_proj_dim or embedding_dim
__a : Optional[int] = clip_embed_dim or embedding_dim
__a : List[str] = Timesteps(__a , __a , 0 )
__a : Dict = TimestepEmbedding(__a , __a , out_dim=__a , act_fn=__a )
__a : Optional[int] = nn.Linear(__a , __a )
if embedding_proj_norm_type is None:
__a : List[str] = None
elif embedding_proj_norm_type == "layer":
__a : Union[str, Any] = nn.LayerNorm(__a )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__a : Optional[int] = nn.Linear(__a , __a )
if encoder_hid_proj_type is None:
__a : int = None
elif encoder_hid_proj_type == "linear":
__a : Tuple = nn.Linear(__a , __a )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__a : str = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __a ) )
if added_emb_type == "prd":
__a : Union[str, Any] = nn.Parameter(torch.zeros(1 , 1 , __a ) )
elif added_emb_type is None:
__a : List[Any] = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__a : Union[str, Any] = nn.ModuleList(
[
BasicTransformerBlock(
__a , __a , __a , dropout=__a , activation_fn='gelu' , attention_bias=__a , )
for d in range(__a )
] )
if norm_in_type == "layer":
__a : Dict = nn.LayerNorm(__a )
elif norm_in_type is None:
__a : List[str] = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__a : List[Any] = nn.LayerNorm(__a )
__a : Tuple = nn.Linear(__a , __a )
__a : Union[str, Any] = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 )
causal_attention_mask.triu_(1 )
__a : Union[str, Any] = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , __a , persistent=__a )
__a : List[Any] = nn.Parameter(torch.zeros(1 , __a ) )
__a : Optional[Any] = nn.Parameter(torch.zeros(1 , __a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Optional[int] = {}
def fn_recursive_add_processors(__a , __a , __a ):
if hasattr(__a , 'set_processor' ):
__a : int = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , __a , __a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__a , __a , __a )
return processors
def __UpperCAmelCase ( self , __a ):
'''simple docstring'''
__a : Optional[Any] = len(self.attn_processors.keys() )
if isinstance(__a , __a ) and len(__a ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(__a )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(__a , __a , __a ):
if hasattr(__a , 'set_processor' ):
if not isinstance(__a , __a ):
module.set_processor(__a )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , __a , __a )
for name, module in self.named_children():
fn_recursive_attn_processor(__a , __a , __a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def __UpperCAmelCase ( self , __a , __a , __a , __a = None , __a = None , __a = True , ):
'''simple docstring'''
__a : Union[str, Any] = hidden_states.shape[0]
__a : Any = timestep
if not torch.is_tensor(__a ):
__a : int = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0:
__a : Dict = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a : List[Any] = timesteps * torch.ones(__a , dtype=timesteps.dtype , device=timesteps.device )
__a : Any = self.time_proj(__a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a : Optional[Any] = timesteps_projected.to(dtype=self.dtype )
__a : str = self.time_embedding(__a )
if self.embedding_proj_norm is not None:
__a : List[Any] = self.embedding_proj_norm(__a )
__a : Optional[int] = self.embedding_proj(__a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a : Dict = self.encoder_hidden_states_proj(__a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__a : Optional[Any] = self.proj_in(__a )
__a : Optional[Any] = self.positional_embedding.to(hidden_states.dtype )
__a : Tuple = []
__a : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(__a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a : Optional[int] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a : Union[str, Any] = hidden_states[:, None, :]
__a : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a : Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(__a , -1 , -1 )
additional_embeds.append(__a )
__a : Tuple = torch.cat(
__a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a : List[Any] = F.pad(
__a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a : int = hidden_states + positional_embeddings
if attention_mask is not None:
__a : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0
__a : Optional[int] = F.pad(__a , (0, self.additional_embeddings) , value=0.0 )
__a : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a : Any = self.norm_in(__a )
for block in self.transformer_blocks:
__a : str = block(__a , attention_mask=__a )
__a : Optional[int] = self.norm_out(__a )
if self.prd_embedding is not None:
__a : Any = hidden_states[:, -1]
else:
__a : Dict = hidden_states[:, additional_embeddings_len:]
__a : Optional[int] = self.proj_to_clip_embeddings(__a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__a )
def __UpperCAmelCase ( self , __a ):
'''simple docstring'''
__a : Dict = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 27 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 0 |
import random
class _lowerCamelCase :
"""simple docstring"""
@staticmethod
def _snake_case ( _SCREAMING_SNAKE_CASE )->Union[str, Any]:
'''simple docstring'''
A_ : int = [ord(_SCREAMING_SNAKE_CASE ) for i in text]
A_ : List[Any] = []
A_ : Tuple = []
for i in plain:
A_ : Optional[Any] = random.randint(1 , 300 )
A_ : Optional[int] = (i + k) * k
cipher.append(_SCREAMING_SNAKE_CASE )
key.append(_SCREAMING_SNAKE_CASE )
return cipher, key
@staticmethod
def _snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int:
'''simple docstring'''
A_ : List[str] = []
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
A_ : List[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_SCREAMING_SNAKE_CASE ) )
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = Onepad().encrypt("""Hello""")
print(c, k)
print(Onepad().decrypt(c, k))
| 186 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 0 |
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase__ : List[Any] = logging.getLogger(__name__)
lowerCAmelCase__ : List[Any] = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case :
"""simple docstring"""
snake_case__ = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class snake_case :
"""simple docstring"""
snake_case__ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
snake_case__ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "A csv or a json file containing the validation data."} )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "The name of the task to train on."} , )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case :
"""simple docstring"""
snake_case__ = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
snake_case__ = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
snake_case__ = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
snake_case__ = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
snake_case__ = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
snake_case__ = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
snake_case__ = dataclasses.field(
default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
snake_case__ = dataclasses.field(
default=_lowercase , metadata={"help": "Random seed for initialization."} , )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
UpperCAmelCase__ = dataset.filter(lambda lowerCamelCase : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
UpperCAmelCase__ = int(eval_result * len(_lowercase ) )
print(_lowercase )
UpperCAmelCase__ = dataset.sort('probability' , reverse=_lowercase )
UpperCAmelCase__ = dataset.select(range(_lowercase ) )
UpperCAmelCase__ = dataset.remove_columns(['label', 'probability'] )
UpperCAmelCase__ = dataset.rename_column('prediction' , 'label' )
UpperCAmelCase__ = dataset.map(lambda lowerCamelCase : {"label": idalabel[example["label"]]} )
UpperCAmelCase__ = dataset.shuffle(seed=args.seed )
UpperCAmelCase__ = os.path.join(_lowercase , f'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(_lowercase , index=_lowercase )
else:
dataset.to_json(_lowercase )
def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ):
UpperCAmelCase__ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase__ = STModelArguments(model_name_or_path=_lowercase )
UpperCAmelCase__ = STDataArguments(train_file=_lowercase , infer_file=_lowercase )
UpperCAmelCase__ = STTrainingArguments(output_dir=_lowercase )
UpperCAmelCase__ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(_lowercase ).items():
setattr(_lowercase , _lowercase , _lowercase )
for key, value in kwargs.items():
if hasattr(_lowercase , _lowercase ):
setattr(_lowercase , _lowercase , _lowercase )
# Sanity checks
UpperCAmelCase__ = {}
UpperCAmelCase__ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
UpperCAmelCase__ = args.train_file
UpperCAmelCase__ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
UpperCAmelCase__ = args.eval_file
for key in data_files:
UpperCAmelCase__ = data_files[key].split('.' )[-1]
assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
UpperCAmelCase__ = extension
else:
assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('Creating the initial data directory for self-training...' )
UpperCAmelCase__ = f'''{args.output_dir}/self-train_iter-{{}}'''.format
UpperCAmelCase__ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=_lowercase )
os.makedirs(_lowercase , exist_ok=_lowercase )
accelerator.wait_for_everyone()
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
# Show the progress bar
UpperCAmelCase__ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
UpperCAmelCase__ = data_dir_format(_lowercase )
assert os.path.exists(_lowercase )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
UpperCAmelCase__ = os.path.join(_lowercase , 'stage-1' )
UpperCAmelCase__ = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(_lowercase , _lowercase ):
arguments_dict.update({key: value} )
UpperCAmelCase__ = os.path.join(_lowercase , 'best-checkpoint' , _lowercase )
if os.path.exists(_lowercase ):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _lowercase , _lowercase , )
else:
logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _lowercase )
finetune(**_lowercase )
accelerator.wait_for_everyone()
assert os.path.exists(_lowercase )
logger.info('Self-training job completed: iteration: %d, stage: 1.' , _lowercase )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
UpperCAmelCase__ = os.path.join(_lowercase , 'best-checkpoint' )
UpperCAmelCase__ = os.path.join(_lowercase , 'stage-2' )
# Update arguments_dict
UpperCAmelCase__ = model_path
UpperCAmelCase__ = data_files['''train''']
UpperCAmelCase__ = current_output_dir
UpperCAmelCase__ = os.path.join(_lowercase , 'best-checkpoint' , _lowercase )
if os.path.exists(_lowercase ):
logger.info(
'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _lowercase , _lowercase , )
else:
logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _lowercase )
finetune(**_lowercase )
accelerator.wait_for_everyone()
assert os.path.exists(_lowercase )
logger.info('Self-training job completed: iteration: %d, stage: 2.' , _lowercase )
UpperCAmelCase__ = iteration
UpperCAmelCase__ = data_dir_format(iteration + 1 )
UpperCAmelCase__ = AutoConfig.from_pretrained(os.path.join(_lowercase , 'best-checkpoint' ) )
UpperCAmelCase__ = config.idalabel
UpperCAmelCase__ = os.path.join(_lowercase , 'eval_results_best-checkpoint.json' )
UpperCAmelCase__ = os.path.join(_lowercase , 'test_results_best-checkpoint.json' )
assert os.path.exists(_lowercase )
with open(_lowercase , 'r' ) as f:
UpperCAmelCase__ = float(json.load(_lowercase )[args.eval_metric] )
UpperCAmelCase__ = os.path.join(_lowercase , 'infer_output_best-checkpoint.csv' )
assert os.path.exists(_lowercase )
# Loading the dataset from local csv or json files.
UpperCAmelCase__ = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['''data''']
UpperCAmelCase__ = load_dataset('csv' , data_files={'data': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(_lowercase , exist_ok=_lowercase )
shutil.copy(_lowercase , os.path.join(_lowercase , f'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(_lowercase ):
shutil.copy(_lowercase , os.path.join(_lowercase , f'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
accelerator.wait_for_everyone()
UpperCAmelCase__ = os.path.join(_lowercase , f'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
UpperCAmelCase__ = eval_result
if best_iteration is None:
UpperCAmelCase__ = new_iteration
UpperCAmelCase__ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
UpperCAmelCase__ = new_iteration
UpperCAmelCase__ = new_eval_result
UpperCAmelCase__ = 0
else:
if new_eval_result == best_eval_result:
UpperCAmelCase__ = new_iteration
UpperCAmelCase__ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
UpperCAmelCase__ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('Best iteration: %d' , _lowercase )
logger.info('Best evaluation result: %s = %f' , args.eval_metric , _lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(_lowercase , 'eval_results_best-iteration.json' ) , )
else:
# Assume that the last iteration is the best
logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 )
logger.info('Best evaluation result: %s = %f' , args.eval_metric , _lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_lowercase , 'eval_results_best-iteration.json' ) , )
| 98 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 0 |
"""simple docstring"""
from collections.abc import Sequence
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_lowercase ) )
def _snake_case ( _snake_case : Dict , _snake_case : Dict ) -> float:
'''simple docstring'''
_A = 0.0
for coeff in reversed(_lowercase ):
_A = result * x + coeff
return result
if __name__ == "__main__":
a = (0.0, 0.0, 5.0, 9.3, 7.0)
a = 1_0.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 315 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[str] , __snake_case : str , __snake_case : Any ):
'''simple docstring'''
if isinstance(_lowercase , _lowercase ):
lowercase = np.full((len(_lowercase ), sequence_length, 2) , _lowercase )
else:
lowercase = np.full((len(_lowercase ), sequence_length) , _lowercase )
for i, tensor in enumerate(_lowercase ):
if padding_side == "right":
if isinstance(_lowercase , _lowercase ):
lowercase = tensor[:sequence_length]
else:
lowercase = tensor[:sequence_length]
else:
if isinstance(_lowercase , _lowercase ):
lowercase = tensor[:sequence_length]
else:
lowercase = tensor[:sequence_length]
return out_tensor.tolist()
def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ):
'''simple docstring'''
lowercase = ord(_lowercase )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26):
return True
lowercase = unicodedata.category(_lowercase )
if cat.startswith('P' ):
return True
return False
@dataclass
class a ( _lowercase ):
UpperCAmelCase_ : PreTrainedTokenizerBase
UpperCAmelCase_ : Union[bool, str, PaddingStrategy] =True
UpperCAmelCase_ : Optional[int] =None
UpperCAmelCase_ : Optional[int] =None
UpperCAmelCase_ : int =-100
UpperCAmelCase_ : str ="pt"
def UpperCamelCase_ ( self , _lowerCamelCase ):
import torch
lowercase = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
lowercase = self.tokenizer.pad(
_lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , )
if labels is None:
return batch
lowercase = torch.tensor(batch['entity_ids'] ).shape[1]
lowercase = self.tokenizer.padding_side
if padding_side == "right":
lowercase = [
list(_lowerCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCamelCase )) for label in labels
]
else:
lowercase = [
[self.label_pad_token_id] * (sequence_length - len(_lowerCamelCase )) + list(_lowerCamelCase ) for label in labels
]
lowercase = [feature['''ner_tags'''] for feature in features]
lowercase = padding_tensor(_lowerCamelCase , -1 , _lowerCamelCase , _lowerCamelCase )
lowercase = [feature['''original_entity_spans'''] for feature in features]
lowercase = padding_tensor(_lowerCamelCase , (-1, -1) , _lowerCamelCase , _lowerCamelCase )
lowercase = {k: torch.tensor(_lowerCamelCase , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 220 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowercase ( _lowercase , unittest.TestCase ):
'''simple docstring'''
__lowerCAmelCase = AudioLDMPipeline
__lowerCAmelCase = TEXT_TO_AUDIO_PARAMS
__lowerCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS
__lowerCAmelCase = frozenset(
[
'''num_inference_steps''',
'''num_waveforms_per_prompt''',
'''generator''',
'''latents''',
'''output_type''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def _lowerCamelCase ( self ):
torch.manual_seed(0 )
__a : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_UpperCAmelCase , )
__a : List[Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
__a : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__a : str = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
__a : List[str] = ClapTextModelWithProjection(_UpperCAmelCase )
__a : Optional[Any] = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 )
__a : Tuple = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_UpperCAmelCase , )
__a : List[Any] = SpeechTaHifiGan(_UpperCAmelCase )
__a : Dict = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''vocoder''': vocoder,
}
return components
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ):
if str(_UpperCAmelCase ).startswith('''mps''' ):
__a : Union[str, Any] = torch.manual_seed(_UpperCAmelCase )
else:
__a : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__a : List[str] = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
}
return inputs
def _lowerCamelCase ( self ):
__a : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a : Any = self.get_dummy_components()
__a : str = AudioLDMPipeline(**_UpperCAmelCase )
__a : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : str = self.get_dummy_inputs(_UpperCAmelCase )
__a : List[Any] = audioldm_pipe(**_UpperCAmelCase )
__a : str = output.audios[0]
assert audio.ndim == 1
assert len(_UpperCAmelCase ) == 256
__a : Any = audio[:10]
__a : List[str] = np.array(
[-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ):
__a : Union[str, Any] = self.get_dummy_components()
__a : str = AudioLDMPipeline(**_UpperCAmelCase )
__a : Dict = audioldm_pipe.to(_UpperCAmelCase )
__a : Tuple = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Optional[int] = self.get_dummy_inputs(_UpperCAmelCase )
__a : str = 3 * [inputs['''prompt''']]
# forward
__a : List[str] = audioldm_pipe(**_UpperCAmelCase )
__a : Tuple = output.audios[0]
__a : Any = self.get_dummy_inputs(_UpperCAmelCase )
__a : Any = 3 * [inputs.pop('''prompt''' )]
__a : List[str] = audioldm_pipe.tokenizer(
_UpperCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='''pt''' , )
__a : Dict = text_inputs['''input_ids'''].to(_UpperCAmelCase )
__a : Dict = audioldm_pipe.text_encoder(
_UpperCAmelCase , )
__a : Tuple = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
__a : Optional[Any] = F.normalize(_UpperCAmelCase , dim=-1 )
__a : Tuple = prompt_embeds
# forward
__a : Optional[Any] = audioldm_pipe(**_UpperCAmelCase )
__a : List[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def _lowerCamelCase ( self ):
__a : List[Any] = self.get_dummy_components()
__a : List[str] = AudioLDMPipeline(**_UpperCAmelCase )
__a : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase )
__a : Union[str, Any] = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : str = self.get_dummy_inputs(_UpperCAmelCase )
__a : Optional[Any] = 3 * ['''this is a negative prompt''']
__a : Dict = negative_prompt
__a : Tuple = 3 * [inputs['''prompt''']]
# forward
__a : List[str] = audioldm_pipe(**_UpperCAmelCase )
__a : Any = output.audios[0]
__a : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase )
__a : int = 3 * [inputs.pop('''prompt''' )]
__a : Union[str, Any] = []
for p in [prompt, negative_prompt]:
__a : Any = audioldm_pipe.tokenizer(
_UpperCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='''pt''' , )
__a : Any = text_inputs['''input_ids'''].to(_UpperCAmelCase )
__a : Dict = audioldm_pipe.text_encoder(
_UpperCAmelCase , )
__a : int = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
__a : int = F.normalize(_UpperCAmelCase , dim=-1 )
embeds.append(_UpperCAmelCase )
__a : Union[str, Any] = embeds
# forward
__a : Dict = audioldm_pipe(**_UpperCAmelCase )
__a : List[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def _lowerCamelCase ( self ):
__a : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a : int = self.get_dummy_components()
__a : Any = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
__a : List[Any] = AudioLDMPipeline(**_UpperCAmelCase )
__a : Union[str, Any] = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Tuple = self.get_dummy_inputs(_UpperCAmelCase )
__a : List[str] = '''egg cracking'''
__a : List[str] = audioldm_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase )
__a : str = output.audios[0]
assert audio.ndim == 1
assert len(_UpperCAmelCase ) == 256
__a : Optional[Any] = audio[:10]
__a : List[str] = np.array(
[-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ):
__a : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a : Any = self.get_dummy_components()
__a : str = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
__a : Optional[int] = AudioLDMPipeline(**_UpperCAmelCase )
__a : str = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Optional[int] = '''A hammer hitting a wooden surface'''
# test num_waveforms_per_prompt=1 (default)
__a : Union[str, Any] = audioldm_pipe(_UpperCAmelCase , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
__a : Any = 2
__a : str = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
__a : Any = 2
__a : str = audioldm_pipe(_UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCAmelCase ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
__a : Optional[Any] = 2
__a : Union[str, Any] = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCAmelCase ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def _lowerCamelCase ( self ):
__a : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a : str = self.get_dummy_components()
__a : Any = AudioLDMPipeline(**_UpperCAmelCase )
__a : Any = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Dict = audioldm_pipe.vocoder.config.sampling_rate
__a : Optional[Any] = self.get_dummy_inputs(_UpperCAmelCase )
__a : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_1_6 , **_UpperCAmelCase )
__a : Dict = output.audios[0]
assert audio.ndim == 1
assert len(_UpperCAmelCase ) / vocoder_sampling_rate == 0.0_1_6
__a : Optional[Any] = audioldm_pipe(audio_length_in_s=0.0_3_2 , **_UpperCAmelCase )
__a : Optional[int] = output.audios[0]
assert audio.ndim == 1
assert len(_UpperCAmelCase ) / vocoder_sampling_rate == 0.0_3_2
def _lowerCamelCase ( self ):
__a : Union[str, Any] = self.get_dummy_components()
__a : List[Any] = AudioLDMPipeline(**_UpperCAmelCase )
__a : Tuple = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Dict = ['''hey''']
__a : int = audioldm_pipe(_UpperCAmelCase , num_inference_steps=1 )
__a : Optional[Any] = output.audios.shape
assert audio_shape == (1, 256)
__a : Any = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
__a : Tuple = SpeechTaHifiGan(_UpperCAmelCase ).to(_UpperCAmelCase )
__a : int = audioldm_pipe(_UpperCAmelCase , num_inference_steps=1 )
__a : Tuple = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def _lowerCamelCase ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase )
def _lowerCamelCase ( self ):
self._test_inference_batch_single_identical(test_mean_pixel_difference=_UpperCAmelCase )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def _lowerCamelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase )
@slow
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
def _lowerCamelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase="cpu" , _UpperCAmelCase=torch.floataa , _UpperCAmelCase=0 ):
__a : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__a : Tuple = np.random.RandomState(_UpperCAmelCase ).standard_normal((1, 8, 128, 16) )
__a : Optional[int] = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
__a : Tuple = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 2.5,
}
return inputs
def _lowerCamelCase ( self ):
__a : List[str] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
__a : List[str] = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Optional[Any] = self.get_inputs(_UpperCAmelCase )
__a : Any = 25
__a : int = audioldm_pipe(**_UpperCAmelCase ).audios[0]
assert audio.ndim == 1
assert len(_UpperCAmelCase ) == 81920
__a : Tuple = audio[77230:77240]
__a : Optional[int] = np.array(
[-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] )
__a : List[Any] = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def _lowerCamelCase ( self ):
__a : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
__a : int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
__a : Tuple = audioldm_pipe.to(_UpperCAmelCase )
audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__a : Any = self.get_inputs(_UpperCAmelCase )
__a : Optional[int] = audioldm_pipe(**_UpperCAmelCase ).audios[0]
assert audio.ndim == 1
assert len(_UpperCAmelCase ) == 81920
__a : List[str] = audio[27780:27790]
__a : List[Any] = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] )
__a : List[str] = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 160 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 0 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
lowerCAmelCase :List[Any] = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
lowerCAmelCase :Tuple = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
lowerCAmelCase :Union[str, Any] = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[str] ) -> Optional[int]:
if version.parse(scb.__version__ ) < version.parse('1.4.12' ):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[
'https://github.com/jhclark/tercom',
] , )
def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] , _A : List[str] , _A : Union[str, Any] = False , _A : int = False , _A : Optional[int] = False , _A : Optional[Any] = False , ) -> Any:
__magic_name__ : List[Any] = len(references[0] )
if any(len(_A ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
__magic_name__ : Union[str, Any] = [[refs[i] for refs in references] for i in range(_A )]
__magic_name__ : Optional[int] = TER(
normalized=_A , no_punct=_A , asian_support=_A , case_sensitive=_A , )
__magic_name__ : Union[str, Any] = sb_ter.corpus_score(_A , _A )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 331 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 0 |
'''simple docstring'''
from collections.abc import Sequence
from queue import Queue
class snake_case :
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None ):
"""simple docstring"""
lowerCamelCase_ = start
lowerCamelCase_ = end
lowerCamelCase_ = val
lowerCamelCase_ = (start + end) // 2
lowerCamelCase_ = left
lowerCamelCase_ = right
def __repr__( self ):
"""simple docstring"""
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class snake_case :
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = collection
lowerCamelCase_ = function
if self.collection:
lowerCamelCase_ = self._build_tree(0 , len(UpperCamelCase ) - 1 )
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
self._update_tree(self.root , UpperCamelCase , UpperCamelCase )
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
return self._query_range(self.root , UpperCamelCase , UpperCamelCase )
def snake_case ( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if start == end:
return SegmentTreeNode(UpperCamelCase , UpperCamelCase , self.collection[start] )
lowerCamelCase_ = (start + end) // 2
lowerCamelCase_ = self._build_tree(UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = self._build_tree(mid + 1 , UpperCamelCase )
return SegmentTreeNode(UpperCamelCase , UpperCamelCase , self.fn(left.val , right.val ) , UpperCamelCase , UpperCamelCase )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if node.start == i and node.end == i:
lowerCamelCase_ = val
return
if i <= node.mid:
self._update_tree(node.left , UpperCamelCase , UpperCamelCase )
else:
self._update_tree(node.right , UpperCamelCase , UpperCamelCase )
lowerCamelCase_ = self.fn(node.left.val , node.right.val )
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , UpperCamelCase , UpperCamelCase )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , UpperCamelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase ) , )
else:
# range in right child tree
return self._query_range(node.right , UpperCamelCase , UpperCamelCase )
def snake_case ( self ):
"""simple docstring"""
if self.root is not None:
lowerCamelCase_ = Queue()
queue.put(self.root )
while not queue.empty():
lowerCamelCase_ = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("""*""" * 50)
a_ : List[str] = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 55 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 0 |
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''',
'''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''',
'''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''ctc_proj''',
'''mask_emb''': '''masked_spec_embed''',
}
lowercase_ = [
'''ctc_proj''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
for attribute in key.split('''.''' ):
__SCREAMING_SNAKE_CASE : int = getattr(_lowercase , _lowercase )
if weight_type is not None:
__SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_lowercase , _lowercase ).shape
else:
__SCREAMING_SNAKE_CASE : List[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__SCREAMING_SNAKE_CASE : str = value
elif weight_type == "weight_g":
__SCREAMING_SNAKE_CASE : str = value
elif weight_type == "weight_v":
__SCREAMING_SNAKE_CASE : Dict = value
elif weight_type == "bias":
__SCREAMING_SNAKE_CASE : Union[str, Any] = value
else:
__SCREAMING_SNAKE_CASE : Dict = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def a__ ( snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = []
__SCREAMING_SNAKE_CASE : str = fairseq_model.state_dict()
__SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.feature_extractor
for name, value in fairseq_dict.items():
__SCREAMING_SNAKE_CASE : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == '''group''' , )
__SCREAMING_SNAKE_CASE : int = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__SCREAMING_SNAKE_CASE : str = True
if "*" in mapped_key:
__SCREAMING_SNAKE_CASE : Tuple = name.split(_lowercase )[0].split('''.''' )[-2]
__SCREAMING_SNAKE_CASE : Tuple = mapped_key.replace('''*''' , _lowercase )
if "weight_g" in name:
__SCREAMING_SNAKE_CASE : Dict = '''weight_g'''
elif "weight_v" in name:
__SCREAMING_SNAKE_CASE : Optional[int] = '''weight_v'''
elif "bias" in name and "relative_attention_bias" not in name:
__SCREAMING_SNAKE_CASE : Tuple = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__SCREAMING_SNAKE_CASE : Dict = '''weight'''
else:
__SCREAMING_SNAKE_CASE : int = None
set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
continue
if not is_used:
unused_weights.append(_lowercase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = full_name.split('''conv_layers.''' )[-1]
__SCREAMING_SNAKE_CASE : Union[str, Any] = name.split('''.''' )
__SCREAMING_SNAKE_CASE : Any = int(items[0] )
__SCREAMING_SNAKE_CASE : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__SCREAMING_SNAKE_CASE : str = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__SCREAMING_SNAKE_CASE : List[Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__SCREAMING_SNAKE_CASE : Any = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__SCREAMING_SNAKE_CASE : Optional[int] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowercase )
@torch.no_grad()
def a__ ( snake_case , snake_case , snake_case=None ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = torch.load(_lowercase )
__SCREAMING_SNAKE_CASE : Optional[Any] = WavLMConfigOrig(checkpoint['''cfg'''] )
__SCREAMING_SNAKE_CASE : List[Any] = WavLMOrig(_lowercase )
model.load_state_dict(checkpoint['''model'''] )
model.eval()
if config_path is not None:
__SCREAMING_SNAKE_CASE : Any = WavLMConfig.from_pretrained(_lowercase )
else:
__SCREAMING_SNAKE_CASE : List[Any] = WavLMConfig()
__SCREAMING_SNAKE_CASE : Union[str, Any] = WavLMModel(_lowercase )
recursively_load_weights(_lowercase , _lowercase )
hf_wavlm.save_pretrained(_lowercase )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowercase_ = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 303 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 0 |
"""simple docstring"""
from __future__ import annotations
import queue
class _UpperCAmelCase :
def __init__( self : Optional[int] , lowercase_ : str ):
snake_case_ : Optional[int] = data
snake_case_ : str = None
snake_case_ : int = None
def __lowercase ( ):
print('''\n********Press N to stop entering at any point of time********\n''' )
snake_case_ : List[str] = input('''Enter the value of the root node: ''' ).strip().lower()
snake_case_ : queue.Queue = queue.Queue()
snake_case_ : Optional[int] = TreeNode(int(_lowercase ) )
q.put(_lowercase )
while not q.empty():
snake_case_ : Optional[Any] = q.get()
snake_case_ : Dict = f"Enter the left node of {node_found.data}: "
snake_case_ : Optional[int] = input(_lowercase ).strip().lower() or '''n'''
if check == "n":
return tree_node
snake_case_ : Optional[Any] = TreeNode(int(_lowercase ) )
snake_case_ : str = left_node
q.put(_lowercase )
snake_case_ : int = f"Enter the right node of {node_found.data}: "
snake_case_ : List[str] = input(_lowercase ).strip().lower() or '''n'''
if check == "n":
return tree_node
snake_case_ : Union[str, Any] = TreeNode(int(_lowercase ) )
snake_case_ : Optional[Any] = right_node
q.put(_lowercase )
raise
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
snake_case_ : queue.Queue = queue.Queue()
q.put(_lowercase )
while not q.empty():
snake_case_ : Optional[int] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
snake_case_ : queue.Queue = queue.Queue()
q.put(_lowercase )
while not q.empty():
snake_case_ : List[str] = []
while not q.empty():
snake_case_ : Optional[Any] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(_lowercase )
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
snake_case_ : list[TreeNode] = []
snake_case_ : int = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(_lowercase )
snake_case_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
snake_case_ : List[Any] = stack.pop()
# start to traverse its right child
snake_case_ : Any = n.right
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
snake_case_ : list[TreeNode] = []
snake_case_ : List[Any] = node
while n or stack:
while n:
stack.append(_lowercase )
snake_case_ : Tuple = n.left
snake_case_ : int = stack.pop()
print(n.data , end=''',''' )
snake_case_ : List[str] = n.right
def __lowercase ( _a ):
if not isinstance(_lowercase , _lowercase ) or not node:
return
snake_case_ : Optional[Any] = [], []
snake_case_ : str = node
stacka.append(_lowercase )
while stacka: # to find the reversed order of post order, store it in stack2
snake_case_ : Tuple = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(_lowercase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def __lowercase ( _a = "" , _a=50 , _a="*" ):
if not s:
return "\n" + width * char
snake_case_ : Tuple = divmod(width - len(_lowercase ) - 2 , 2 )
return f"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
lowercase__ : TreeNode = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 50 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 264 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase = {
'''configuration_rag''': ['''RagConfig'''],
'''retrieval_rag''': ['''RagRetriever'''],
'''tokenization_rag''': ['''RagTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
'''RagModel''',
'''RagPreTrainedModel''',
'''RagSequenceForGeneration''',
'''RagTokenForGeneration''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
'''TFRagModel''',
'''TFRagPreTrainedModel''',
'''TFRagSequenceForGeneration''',
'''TFRagTokenForGeneration''',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 188 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
__lowercase : List[str] = logging.getLogger(__name__)
def lowerCamelCase ():
__a : str = argparse.ArgumentParser(
description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' )
parser.add_argument('--file_path' , type=_lowercase , default='data/dump.txt' , help='The path to the data.' )
parser.add_argument('--tokenizer_type' , type=_lowercase , default='bert' , choices=['bert', 'roberta', 'gpt2'] )
parser.add_argument('--tokenizer_name' , type=_lowercase , default='bert-base-uncased' , help='The tokenizer to use.' )
parser.add_argument('--dump_file' , type=_lowercase , default='data/dump' , help='The dump file prefix.' )
__a : Tuple = parser.parse_args()
logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" )
if args.tokenizer_type == "bert":
__a : Optional[int] = BertTokenizer.from_pretrained(args.tokenizer_name )
__a : Union[str, Any] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]`
__a : Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]`
elif args.tokenizer_type == "roberta":
__a : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
__a : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `<s>`
__a : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>`
elif args.tokenizer_type == "gpt2":
__a : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name )
__a : Dict = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>`
__a : Union[str, Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>`
logger.info(F"""Loading text from {args.file_path}""" )
with open(args.file_path , 'r' , encoding='utf8' ) as fp:
__a : Union[str, Any] = fp.readlines()
logger.info('Start encoding' )
logger.info(F"""{len(_lowercase )} examples to process.""" )
__a : Union[str, Any] = []
__a : Optional[int] = 0
__a : Optional[int] = 10_000
__a : List[Any] = time.time()
for text in data:
__a : List[str] = F"""{bos} {text.strip()} {sep}"""
__a : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
rslt.append(_lowercase )
iter += 1
if iter % interval == 0:
__a : Union[str, Any] = time.time()
logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" )
__a : int = time.time()
logger.info('Finished binarization' )
logger.info(F"""{len(_lowercase )} examples processed.""" )
__a : Tuple = F"""{args.dump_file}.{args.tokenizer_name}.pickle"""
__a : Any = tokenizer.vocab_size
if vocab_size < (1 << 16):
__a : Optional[Any] = [np.uintaa(_lowercase ) for d in rslt]
else:
__a : Dict = [np.intaa(_lowercase ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"""Dump to {dp_file}""" )
with open(_lowercase , 'wb' ) as handle:
pickle.dump(rslt_ , _lowercase , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 27 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def _snake_case ( self )->Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _snake_case ( self )->Dict:
'''simple docstring'''
A_ : Tuple = 1
A_ : Optional[Any] = 3
A_ : List[Any] = (32, 32)
A_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
return image
@property
def _snake_case ( self )->Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
A_ : int = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_SCREAMING_SNAKE_CASE , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def _snake_case ( self )->str:
'''simple docstring'''
torch.manual_seed(0 )
A_ : int = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def _snake_case ( self )->List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
A_ : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
return CLIPTextModel(_SCREAMING_SNAKE_CASE )
def _snake_case ( self )->int:
'''simple docstring'''
A_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A_ : Any = self.dummy_cond_unet_upscale
A_ : Optional[Any] = DDPMScheduler()
A_ : List[str] = DDIMScheduler(prediction_type='''v_prediction''' )
A_ : Optional[int] = self.dummy_vae
A_ : Tuple = self.dummy_text_encoder
A_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
A_ : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
A_ : Optional[Any] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
A_ : Optional[int] = StableDiffusionUpscalePipeline(
unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , max_noise_level=350 , )
A_ : List[Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
A_ : Tuple = '''A painting of a squirrel eating a burger'''
A_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 )
A_ : Dict = sd_pipe(
[prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
A_ : Union[str, Any] = output.images
A_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 )
A_ : Union[str, Any] = sd_pipe(
[prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , )[0]
A_ : str = image[0, -3:, -3:, -1]
A_ : str = image_from_tuple[0, -3:, -3:, -1]
A_ : Tuple = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
A_ : Any = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self )->Any:
'''simple docstring'''
A_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A_ : str = self.dummy_cond_unet_upscale
A_ : Optional[Any] = DDPMScheduler()
A_ : Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''' )
A_ : str = self.dummy_vae
A_ : str = self.dummy_text_encoder
A_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
A_ : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
A_ : Dict = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
A_ : List[str] = StableDiffusionUpscalePipeline(
unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , max_noise_level=350 , )
A_ : Union[str, Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
A_ : int = '''A painting of a squirrel eating a burger'''
A_ : List[Any] = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
A_ : List[Any] = output.images
assert image.shape[0] == 2
A_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 )
A_ : List[str] = sd_pipe(
[prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
A_ : Dict = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def _snake_case ( self )->Optional[Any]:
'''simple docstring'''
A_ : int = self.dummy_cond_unet_upscale
A_ : int = DDPMScheduler()
A_ : Optional[Any] = DDIMScheduler(prediction_type='''v_prediction''' )
A_ : Any = self.dummy_vae
A_ : Optional[Any] = self.dummy_text_encoder
A_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
A_ : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
A_ : Tuple = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
A_ : int = unet.half()
A_ : Tuple = text_encoder.half()
# make sure here that pndm scheduler skips prk
A_ : str = StableDiffusionUpscalePipeline(
unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , max_noise_level=350 , )
A_ : Union[str, Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
A_ : int = '''A painting of a squirrel eating a burger'''
A_ : Tuple = torch.manual_seed(0 )
A_ : Optional[int] = sd_pipe(
[prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ).images
A_ : Any = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def _snake_case ( self )->int:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self )->str:
'''simple docstring'''
A_ : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
A_ : Any = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat.npy''' )
A_ : Union[str, Any] = '''stabilityai/stable-diffusion-x4-upscaler'''
A_ : List[str] = StableDiffusionUpscalePipeline.from_pretrained(_SCREAMING_SNAKE_CASE )
pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
A_ : Tuple = '''a cat sitting on a park bench'''
A_ : int = torch.manual_seed(0 )
A_ : str = pipe(
prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , )
A_ : Tuple = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _snake_case ( self )->Optional[Any]:
'''simple docstring'''
A_ : Dict = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
A_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat_fp16.npy''' )
A_ : List[str] = '''stabilityai/stable-diffusion-x4-upscaler'''
A_ : List[str] = StableDiffusionUpscalePipeline.from_pretrained(
_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , )
pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
A_ : Optional[int] = '''a cat sitting on a park bench'''
A_ : Optional[Any] = torch.manual_seed(0 )
A_ : Dict = pipe(
prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , )
A_ : int = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _snake_case ( self )->List[Any]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''' )
A_ : Any = '''stabilityai/stable-diffusion-x4-upscaler'''
A_ : Dict = StableDiffusionUpscalePipeline.from_pretrained(
_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , )
pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
A_ : Union[str, Any] = '''a cat sitting on a park bench'''
A_ : Optional[int] = torch.manual_seed(0 )
A_ : Optional[Any] = pipe(
prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type='''np''' , )
A_ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 186 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 0 |
"""simple docstring"""
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case :
"""simple docstring"""
def __init__( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any]=13 ,lowerCamelCase__ : int=10 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : List[Any]=2 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Optional[int]=32 ,lowerCamelCase__ : List[str]=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Union[str, Any]=37 ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Tuple=10 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : List[str]=0.9 ,lowerCamelCase__ : Dict=None ,):
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = mask_ratio
UpperCAmelCase__ = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
UpperCAmelCase__ = (image_size // patch_size) ** 2
UpperCAmelCase__ = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
UpperCAmelCase__ = int(mask_ratio * self.seq_length )
def __lowerCAmelCase ( self : List[str] ):
UpperCAmelCase__ = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self : Optional[int] ):
return VideoMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,)
def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ):
UpperCAmelCase__ = VideoMAEModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
UpperCAmelCase__ = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ):
UpperCAmelCase__ = VideoMAEForPreTraining(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
UpperCAmelCase__ = torch.ones((self.num_masks,) )
UpperCAmelCase__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
UpperCAmelCase__ = mask.expand(self.batch_size ,-1 ).bool()
UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ )
# model only returns predictions for masked patches
UpperCAmelCase__ = mask.sum().item()
UpperCAmelCase__ = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) )
def __lowerCAmelCase ( self : int ):
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class snake_case ( _lowercase , _lowercase , unittest.TestCase ):
"""simple docstring"""
snake_case__ = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
snake_case__ = (
{"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def __lowerCAmelCase ( self : Dict ):
UpperCAmelCase__ = VideoMAEModelTester(self )
UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 )
def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int=False ):
UpperCAmelCase__ = copy.deepcopy(lowerCamelCase__ )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
UpperCAmelCase__ = torch.ones((self.model_tester.num_masks,) )
UpperCAmelCase__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
UpperCAmelCase__ = mask.expand(self.model_tester.batch_size ,-1 ).bool()
UpperCAmelCase__ = bool_masked_pos.to(lowerCamelCase__ )
if return_labels:
if model_class in [
*get_values(lowerCamelCase__ ),
]:
UpperCAmelCase__ = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ )
return inputs_dict
def __lowerCAmelCase ( self : Dict ):
self.config_tester.run_common_tests()
@unittest.skip(reason='VideoMAE does not use inputs_embeds' )
def __lowerCAmelCase ( self : str ):
pass
def __lowerCAmelCase ( self : int ):
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(lowerCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) )
def __lowerCAmelCase ( self : List[str] ):
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(lowerCamelCase__ )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,lowerCamelCase__ )
def __lowerCAmelCase ( self : Dict ):
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def __lowerCAmelCase ( self : Union[str, Any] ):
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ )
@slow
def __lowerCAmelCase ( self : List[str] ):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = VideoMAEModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def __lowerCAmelCase ( self : Optional[int] ):
if not self.has_attentions:
pass
else:
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks
UpperCAmelCase__ = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,)
UpperCAmelCase__ = len(lowerCamelCase__ )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) )
self.assertEqual(out_len + 1 ,len(lowerCamelCase__ ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,)
def __lowerCAmelCase ( self : Tuple ):
def check_hidden_states_output(lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ):
UpperCAmelCase__ = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ )
UpperCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks
UpperCAmelCase__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,)
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __lowerCAmelCase ( self : Optional[int] ):
pass
def a_ ( ):
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
UpperCAmelCase__ = np.load(_lowercase )
return list(_lowercase )
@require_torch
@require_vision
class snake_case ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowerCAmelCase ( self : int ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self : int ):
UpperCAmelCase__ = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to(
lowerCamelCase__ )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = prepare_video()
UpperCAmelCase__ = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**lowerCamelCase__ )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 400) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase__ )
UpperCAmelCase__ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self : int ):
UpperCAmelCase__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCamelCase__ )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = prepare_video()
UpperCAmelCase__ = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ )
# add boolean mask, indicating which patches to mask
UpperCAmelCase__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' )
UpperCAmelCase__ = torch.load(lowerCamelCase__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**lowerCamelCase__ )
# verify the logits
UpperCAmelCase__ = torch.Size([1, 1_408, 1_536] )
UpperCAmelCase__ = torch.tensor(
[[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowerCamelCase__ )
self.assertEqual(outputs.logits.shape ,lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
UpperCAmelCase__ = torch.tensor([0.5_1_4_2] ,device=lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
UpperCAmelCase__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=lowerCamelCase__ ).to(
lowerCamelCase__ )
with torch.no_grad():
UpperCAmelCase__ = model(**lowerCamelCase__ )
UpperCAmelCase__ = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1e-4 ) )
| 98 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 0 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( _lowercase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : str = XLNetTokenizer
UpperCAmelCase : Optional[int] = XLNetTokenizerFast
UpperCAmelCase : str = True
UpperCAmelCase : Dict = True
def lowerCAmelCase_ ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = XLNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Any ):
_A = '''<s>'''
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , '<eod>' )
self.assertEqual(len(_UpperCAmelCase ) , 1_006 )
def lowerCAmelCase_ ( self : List[str] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_000 )
def lowerCAmelCase_ ( self : Tuple ):
_A = XLNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
_A = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = XLNetTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + '',
'i',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
'se',
'.',
] , )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] )
def lowerCAmelCase_ ( self : int ):
_A = XLNetTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
'se',
'.',
] , )
@slow
def lowerCAmelCase_ ( self : Any ):
_A = XLNetTokenizer.from_pretrained('xlnet-base-cased' )
_A = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
_A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def lowerCAmelCase_ ( self : Union[str, Any] ):
# fmt: off
_A = {'''input_ids''': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
| 315 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
_UpperCamelCase : List[str] = {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'''
),
'''distilbert-base-uncased-finetuned-sst-2-english''': (
'''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'''
),
}
class a ( _lowercase ):
UpperCAmelCase_ : Dict ="distilbert"
UpperCAmelCase_ : Optional[Any] ={
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ):
lowercase = vocab_size
lowercase = max_position_embeddings
lowercase = sinusoidal_pos_embds
lowercase = n_layers
lowercase = n_heads
lowercase = dim
lowercase = hidden_dim
lowercase = dropout
lowercase = attention_dropout
lowercase = activation
lowercase = initializer_range
lowercase = qa_dropout
lowercase = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class a ( _lowercase ):
@property
def UpperCamelCase_ ( self ):
if self.task == "multiple-choice":
lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 220 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
def __A ( a_ :Tuple , a_ :str , a_ :Optional[Any] , a_ :Union[str, Any] = 1_00 , ) -> float:
__a : int = x_start
__a : Optional[int] = fnc(_lowercase)
__a : Any = 0.0
for _ in range(_lowercase):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__a : Optional[int] = (x_end - x_start) / steps + xa
__a : Any = fnc(_lowercase)
area += abs(fxa + fxa) * (xa - xa) / 2
# Increment step
__a : List[str] = xa
__a : List[Any] = fxa
return area
if __name__ == "__main__":
def __A ( a_ :int) -> Optional[int]:
return x**3 + x**2
print('''f(x) = x^3 + x^2''')
print('''The area between the curve, x = -5, x = 5 and the x axis is:''')
A = 10
while i <= 100_000:
print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}')
i *= 10
| 160 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 0 |
'''simple docstring'''
lowerCAmelCase :Tuple = {
'''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''',
'''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''',
'''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''',
'''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''',
'''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''',
'''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''',
''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''',
'''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''',
'''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/'''
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
lowerCAmelCase :Any = {value: key for key, value in MORSE_CODE_DICT.items()}
def lowerCamelCase ( lowerCAmelCase : List[Any] ):
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def lowerCamelCase ( lowerCAmelCase : List[str] ):
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def lowerCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[int] = '''Morse code here!'''
print(_lowercase )
__magic_name__ : List[str] = encrypt(_lowercase )
print(_lowercase )
__magic_name__ : Tuple = decrypt(_lowercase )
print(_lowercase )
if __name__ == "__main__":
main()
| 331 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class snake_case ( _lowercase ):
"""simple docstring"""
_lowerCamelCase = "SpeechT5FeatureExtractor"
_lowerCamelCase = "SpeechT5Tokenizer"
def __init__( self , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
super().__init__(UpperCamelCase , UpperCamelCase )
def __call__( self , *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = kwargs.pop("audio" , UpperCamelCase )
lowerCamelCase_ = kwargs.pop("text" , UpperCamelCase )
lowerCamelCase_ = kwargs.pop("text_target" , UpperCamelCase )
lowerCamelCase_ = kwargs.pop("audio_target" , UpperCamelCase )
lowerCamelCase_ = kwargs.pop("sampling_rate" , UpperCamelCase )
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" )
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." )
if audio is not None:
lowerCamelCase_ = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase )
elif text is not None:
lowerCamelCase_ = self.tokenizer(UpperCamelCase , **UpperCamelCase )
else:
lowerCamelCase_ = None
if audio_target is not None:
lowerCamelCase_ = self.feature_extractor(audio_target=UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase )
lowerCamelCase_ = targets['''input_values''']
elif text_target is not None:
lowerCamelCase_ = self.tokenizer(UpperCamelCase , **UpperCamelCase )
lowerCamelCase_ = targets['''input_ids''']
else:
lowerCamelCase_ = None
if inputs is None:
return targets
if targets is not None:
lowerCamelCase_ = labels
lowerCamelCase_ = targets.get("attention_mask" )
if decoder_attention_mask is not None:
lowerCamelCase_ = decoder_attention_mask
return inputs
def snake_case ( self , *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = kwargs.pop("input_values" , UpperCamelCase )
lowerCamelCase_ = kwargs.pop("input_ids" , UpperCamelCase )
lowerCamelCase_ = kwargs.pop("labels" , UpperCamelCase )
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs." )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." )
if input_values is not None:
lowerCamelCase_ = self.feature_extractor.pad(UpperCamelCase , *UpperCamelCase , **UpperCamelCase )
elif input_ids is not None:
lowerCamelCase_ = self.tokenizer.pad(UpperCamelCase , **UpperCamelCase )
else:
lowerCamelCase_ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCamelCase , UpperCamelCase ) and "input_ids" in labels[0]):
lowerCamelCase_ = self.tokenizer.pad(UpperCamelCase , **UpperCamelCase )
lowerCamelCase_ = targets['''input_ids''']
else:
lowerCamelCase_ = self.feature_extractor.feature_size
lowerCamelCase_ = self.feature_extractor.num_mel_bins
lowerCamelCase_ = self.feature_extractor.pad(UpperCamelCase , *UpperCamelCase , **UpperCamelCase )
lowerCamelCase_ = feature_size_hack
lowerCamelCase_ = targets['''input_values''']
else:
lowerCamelCase_ = None
if inputs is None:
return targets
if targets is not None:
lowerCamelCase_ = labels
lowerCamelCase_ = targets.get("attention_mask" )
if decoder_attention_mask is not None:
lowerCamelCase_ = decoder_attention_mask
return inputs
def snake_case ( self , *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def snake_case ( self , *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
| 55 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 0 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCamelCase ( _lowercase , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase_ = MgpstrTokenizer
lowerCAmelCase_ = False
lowerCAmelCase_ = {}
lowerCAmelCase_ = False
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
# fmt: off
__SCREAMING_SNAKE_CASE : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
__SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) )
__SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_A ) + '''\n''' )
def UpperCAmelCase__ ( self : List[str] , **_A : Union[str, Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A )
def UpperCAmelCase__ ( self : Tuple , _A : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = '''tester'''
__SCREAMING_SNAKE_CASE : Optional[int] = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''' )
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
pass
def UpperCAmelCase__ ( self : List[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__SCREAMING_SNAKE_CASE : Optional[int] = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token} )
__SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode([special_token] , add_special_tokens=_A )
self.assertEqual(len(_A ) , 1 )
__SCREAMING_SNAKE_CASE : str = tokenizer.decode(_A , skip_special_tokens=_A )
self.assertTrue(special_token not in decoded )
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__SCREAMING_SNAKE_CASE : str = self.get_input_output_texts(_A )
__SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(_A )
__SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(_A )
__SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(_A )
self.assertNotEqual(len(_A ) , 0 )
__SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(_A )
self.assertIsInstance(_A , _A )
self.assertEqual(text_a.replace(''' ''' , '''''' ) , _A )
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''' )
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' )
def UpperCAmelCase__ ( self : List[Any] ):
"""simple docstring"""
pass
| 303 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 0 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _UpperCAmelCase ( unittest.TestCase):
def _snake_case ( self : int ):
snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ )
snake_case_ : Dict = -1
snake_case_ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ )
snake_case_ : Dict = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ )
snake_case_ : str = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
snake_case_ : List[Any] = TextStreamer(lowercase_ )
model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
snake_case_ : Optional[int] = cs.out[:-1]
self.assertEqual(lowercase_ , lowercase_ )
def _snake_case ( self : Union[str, Any] ):
snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ )
snake_case_ : Optional[Any] = -1
snake_case_ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ )
snake_case_ : Tuple = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ )
snake_case_ : Dict = tokenizer.decode(greedy_ids[0] )
snake_case_ : Union[str, Any] = TextIteratorStreamer(lowercase_ )
snake_case_ : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
snake_case_ : List[Any] = Thread(target=model.generate , kwargs=lowercase_ )
thread.start()
snake_case_ : Dict = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowercase_ , lowercase_ )
def _snake_case ( self : Optional[Any] ):
snake_case_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ )
snake_case_ : List[Any] = -1
snake_case_ : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ )
snake_case_ : Optional[int] = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ )
snake_case_ : List[Any] = greedy_ids[:, input_ids.shape[1] :]
snake_case_ : List[str] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
snake_case_ : Optional[int] = TextStreamer(lowercase_ , skip_prompt=lowercase_ )
model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
snake_case_ : Optional[Any] = cs.out[:-1]
self.assertEqual(lowercase_ , lowercase_ )
def _snake_case ( self : str ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
snake_case_ : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowercase_ )
snake_case_ : Tuple = -1
snake_case_ : str = torch.ones((1, 5) , device=lowercase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
snake_case_ : List[str] = TextStreamer(lowercase_ , skip_special_tokens=lowercase_ )
model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
snake_case_ : Union[str, Any] = cs.out[:-1] # Remove the final "\n"
snake_case_ : int = tokenizer(lowercase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : str ):
snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ )
snake_case_ : str = -1
snake_case_ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ )
snake_case_ : int = TextIteratorStreamer(lowercase_ , timeout=0.0_01 )
snake_case_ : Union[str, Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer}
snake_case_ : int = Thread(target=model.generate , kwargs=lowercase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowercase_ ):
snake_case_ : Dict = ''''''
for new_text in streamer:
streamer_text += new_text
| 264 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.