code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = { 'nielsr/canine-s': 2_048, } # Unicode defines 1,114,112 total “codepoints” _a = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _a = 0 _a = 0xe000 _a = 0xe001 _a = 0xe002 _a = 0xe003 _a = 0xe004 # Maps special codepoints to human-readable names. _a = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _a = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=chr(lowercase_ ) , lowercase_=False , lowercase_=2048 , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token UpperCAmelCase_ : Union[str, Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token UpperCAmelCase_ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token UpperCAmelCase_ : Any = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , model_max_length=lowercase_ , **lowercase_ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase_ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase_ : Union[str, Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase_ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase_ : str = UNICODE_VOCAB_SIZE UpperCAmelCase_ : Optional[int] = len(self._special_codepoints ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._unicode_vocab_size def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return list(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" try: return ord(lowercase_ ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase_ ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return "".join(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : List[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) UpperCAmelCase_ : Any = [1] + ([0] * len(lowercase_ )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase_ )) + [1] return result def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Union[str, Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" return ()
61
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
import os import time import numpy as np import onnxruntime as ort _A = '1' _A = '0' _A = '1' _A = ort.SessionOptions() _A = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') _A = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] _A = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) _A = ort.RunOptions() _A = 128 _A = 1 _A = np.ones((batch, sequence), dtype=np.intaa) _A = np.ones((batch, sequence), dtype=np.intaa) _A = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') _A = time.time() _A = 2000 _A = {} for iter in range(max_iters): _A = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
62
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' from math import factorial lowerCAmelCase_ : Optional[int] = {str(d): factorial(d) for d in range(10)} def _lowerCamelCase ( lowercase : int ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) ) def _lowerCamelCase ( ) -> int: _a = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
63
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowercase( __a ): '''simple docstring''' lowercase__ = "biogpt" def __init__( self: Dict, a_: List[Any]=42_384, a_: int=1_024, a_: Optional[int]=24, a_: List[str]=16, a_: Optional[Any]=4_096, a_: int="gelu", a_: int=0.1, a_: List[Any]=0.1, a_: Any=1_024, a_: Optional[Any]=0.02, a_: Dict=1E-12, a_: Tuple=True, a_: Any=True, a_: Tuple=0.0, a_: str=0.0, a_: int=1, a_: Any=0, a_: List[str]=2, **a_: Optional[int], ): '''simple docstring''' _snake_case : Dict = vocab_size _snake_case : int = max_position_embeddings _snake_case : Optional[int] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Dict = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : Optional[Any] = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : List[str] = scale_embedding _snake_case : Dict = use_cache _snake_case : Optional[int] = layerdrop _snake_case : Any = activation_dropout super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
64
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
from collections import namedtuple import requests from lxml import html # type: ignore UpperCamelCase__ = namedtuple('covid_data', 'cases deaths recovered') def lowerCAmelCase_ ( __A = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' UpperCAmelCase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__A ).content ).xpath(__A ) ) UpperCamelCase__ = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
65
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case_ :Union[str, Any] = tempfile.mkdtemp() snake_case_ :Any = SamImageProcessor() snake_case_ :Tuple = SamProcessor(snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self: Any , **snake_case: Optional[Any] ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def lowerCAmelCase_ ( self: Dict ) -> int: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self: List[Any] ) -> Tuple: snake_case_ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ :List[str] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]: snake_case_ :Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ :Optional[int] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) snake_case_ :Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: snake_case_ :Dict = self.get_image_processor() snake_case_ :List[Any] = SamProcessor(image_processor=snake_case ) snake_case_ :int = self.prepare_image_inputs() snake_case_ :Dict = image_processor(snake_case , return_tensors="""np""" ) snake_case_ :Optional[Any] = processor(images=snake_case , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case_ :str = self.get_image_processor() snake_case_ :str = SamProcessor(image_processor=snake_case ) snake_case_ :Dict = [torch.ones((1, 3, 5, 5) )] snake_case_ :int = [[1_764, 2_646]] snake_case_ :Optional[Any] = [[683, 1_024]] snake_case_ :Any = processor.post_process_masks(snake_case , snake_case , snake_case ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case_ :Dict = processor.post_process_masks( snake_case , torch.tensor(snake_case ) , torch.tensor(snake_case ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np snake_case_ :str = [np.ones((1, 3, 5, 5) )] snake_case_ :Union[str, Any] = processor.post_process_masks(snake_case , np.array(snake_case ) , np.array(snake_case ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case_ :List[str] = [[1, 0], [0, 1]] with self.assertRaises(snake_case ): snake_case_ :int = processor.post_process_masks(snake_case , np.array(snake_case ) , np.array(snake_case ) ) @require_vision @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: List[Any] ) -> str: snake_case_ :Dict = tempfile.mkdtemp() snake_case_ :Dict = SamImageProcessor() snake_case_ :int = SamProcessor(snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self: Optional[Any] , **snake_case: Tuple ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def lowerCAmelCase_ ( self: str ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case_ :List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ :Optional[Any] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self: List[Any] ) -> int: snake_case_ :Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ :Optional[int] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) snake_case_ :Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case_ :Any = self.get_image_processor() snake_case_ :int = SamProcessor(image_processor=snake_case ) snake_case_ :List[Any] = self.prepare_image_inputs() snake_case_ :Optional[Any] = image_processor(snake_case , return_tensors="""np""" ) snake_case_ :List[str] = processor(images=snake_case , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: snake_case_ :Dict = self.get_image_processor() snake_case_ :Any = SamProcessor(image_processor=snake_case ) snake_case_ :Optional[int] = [tf.ones((1, 3, 5, 5) )] snake_case_ :Dict = [[1_764, 2_646]] snake_case_ :Dict = [[683, 1_024]] snake_case_ :Union[str, Any] = processor.post_process_masks(snake_case , snake_case , snake_case , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case_ :List[str] = processor.post_process_masks( snake_case , tf.convert_to_tensor(snake_case ) , tf.convert_to_tensor(snake_case ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np snake_case_ :Dict = [np.ones((1, 3, 5, 5) )] snake_case_ :str = processor.post_process_masks( snake_case , np.array(snake_case ) , np.array(snake_case ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case_ :Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case_ :List[str] = processor.post_process_masks( snake_case , np.array(snake_case ) , np.array(snake_case ) , return_tensors="""tf""" ) @require_vision @require_torchvision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case_ :int = tempfile.mkdtemp() snake_case_ :str = SamImageProcessor() snake_case_ :Optional[int] = SamProcessor(snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self: str , **snake_case: int ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def lowerCAmelCase_ ( self: str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case_ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ :str = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: snake_case_ :int = self.get_image_processor() snake_case_ :Optional[Any] = SamProcessor(image_processor=snake_case ) snake_case_ :Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case_ :Optional[int] = [tf.convert_to_tensor(snake_case )] snake_case_ :Optional[int] = [torch.tensor(snake_case )] snake_case_ :Dict = [[1_764, 2_646]] snake_case_ :Optional[Any] = [[683, 1_024]] snake_case_ :List[str] = processor.post_process_masks( snake_case , snake_case , snake_case , return_tensors="""tf""" ) snake_case_ :Union[str, Any] = processor.post_process_masks( snake_case , snake_case , snake_case , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCAmelCase_ ( self: List[str] ) -> int: snake_case_ :Optional[Any] = self.get_image_processor() snake_case_ :Any = SamProcessor(image_processor=snake_case ) snake_case_ :Union[str, Any] = self.prepare_image_inputs() snake_case_ :Optional[Any] = image_processor(snake_case , return_tensors="""pt""" )["""pixel_values"""].numpy() snake_case_ :Dict = processor(images=snake_case , return_tensors="""pt""" )["""pixel_values"""].numpy() snake_case_ :int = image_processor(snake_case , return_tensors="""tf""" )["""pixel_values"""].numpy() snake_case_ :Optional[Any] = processor(images=snake_case , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertTrue(np.allclose(snake_case , snake_case ) )
66
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =StableDiffusionSAGPipeline lowerCamelCase : List[str] =TEXT_TO_IMAGE_PARAMS lowerCamelCase : List[Any] =TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : List[str] =TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Tuple =TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Optional[int] =False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase = CLIPTextModel(a ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str , a : str=0 ): """simple docstring""" if str(a ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(a ) else: __lowerCamelCase = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __lowerCamelCase = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = '''.''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __lowerCamelCase = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = '''.''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __lowerCamelCase = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = '''.''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) __lowerCamelCase = output.images assert image.shape == (1, 5_12, 7_68, 3)
67
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=False , ) -> List[Any]: '''simple docstring''' A__ = size if size is not None else {"height": 20, "width": 20} A__ = crop_size if crop_size is not None else {"height": 18, "width": 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_reduce_labels def UpperCamelCase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' A__ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) A__ = Image.open(dataset[0]["file"] ) A__ = Image.open(dataset[1]["file"] ) return image, map def lowerCAmelCase__ ( ) -> int: '''simple docstring''' A__ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) A__ = Image.open(ds[0]["file"] ) A__ = Image.open(ds[1]["file"] ) A__ = Image.open(ds[2]["file"] ) A__ = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = BeitImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase , "center_crop" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , lowercase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) A__ = [] for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A__ = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) A__ , A__ = prepare_semantic_single_inputs() A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) A__ , A__ = prepare_semantic_batch_inputs() A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A__ , A__ = prepare_semantic_single_inputs() A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) A__ = True A__ = image_processing(lowercase , lowercase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
68
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __UpperCamelCase = logging.getLogger() def UpperCAmelCase ( ) -> List[str]: snake_case_ = argparse.ArgumentParser() parser.add_argument('-f' ) snake_case_ = parser.parse_args() return args.f def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = {} snake_case_ = os.path.join(UpperCAmelCase , 'all_results.json' ) if os.path.exists(UpperCAmelCase ): with open(UpperCAmelCase , 'r' ) as f: snake_case_ = json.load(UpperCAmelCase ) else: raise ValueError(f'can\'t find {path}' ) return results def UpperCAmelCase ( ) -> Tuple: snake_case_ = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() __UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase ( lowerCAmelCase__ ): @classmethod def a_ ( cls) -> Optional[int]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls.tmpdir, 'default_config.yml') write_basic_config(save_location=cls.configPath) snake_case_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def a_ ( cls) -> Optional[int]: shutil.rmtree(cls.tmpdir) @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('--fp16') run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_accuracy'], 0.75) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'glue_no_trainer'))) @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertLess(result['perplexity'], 100) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'clm_no_trainer'))) @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> List[Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertLess(result['perplexity'], 42) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'mlm_no_trainer'))) @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> List[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ = 7 if get_gpu_count() > 1 else 2 snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_accuracy'], 0.75) self.assertLess(result['train_loss'], 0.5) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'ner_no_trainer'))) @unittest.skip(reason='Fix me @muellerzr') @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Optional[int]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'], 28) self.assertGreaterEqual(result['eval_exact'], 28) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'qa_no_trainer'))) @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_accuracy'], 0.8) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'swag_no_trainer'))) @slow @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Any: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_rouge1'], 10) self.assertGreaterEqual(result['eval_rouge2'], 2) self.assertGreaterEqual(result['eval_rougeL'], 7) self.assertGreaterEqual(result['eval_rougeLsum'], 7) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'summarization_no_trainer'))) @slow @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> str: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_bleu'], 30) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'epoch_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'translation_no_trainer'))) @slow def a_ ( self) -> Optional[Any]: snake_case_ = logging.StreamHandler(sys.stdout) logger.addHandler(lowerCAmelCase__) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) self.assertGreaterEqual(result['eval_overall_accuracy'], 0.10) @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> List[Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('--fp16') run_command(self._launch_args + testargs) snake_case_ = get_results(lowerCAmelCase__) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'], 0.6) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'step_1'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'image_classification_no_trainer')))
69
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Union[str, Any] =logging.get_logger(__name__) A__ : Optional[Any] ='''▁''' A__ : List[str] ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } A__ : Tuple ={ '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } A__ : List[Any] ={ '''facebook/s2t-small-librispeech-asr''': 10_24, } A__ : Optional[int] =['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] A__ : Tuple ={'''mustc''': MUSTC_LANGS} class UpperCAmelCase ( snake_case_ ): _lowercase: Union[str, Any] = VOCAB_FILES_NAMES _lowercase: str = PRETRAINED_VOCAB_FILES_MAP _lowercase: str = MAX_MODEL_INPUT_SIZES _lowercase: int = ['''input_ids''', '''attention_mask'''] _lowercase: List[int] = [] def __init__( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : Union[str, Any]="<s>" , __snake_case : Any="</s>" , __snake_case : List[str]="<pad>" , __snake_case : Optional[int]="<unk>" , __snake_case : Optional[Any]=False , __snake_case : Any=False , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : List[str] , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _lowerCAmelCase = do_upper_case _lowerCAmelCase = do_lower_case _lowerCAmelCase = load_json(__snake_case ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = spm_file _lowerCAmelCase = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: _lowerCAmelCase = lang_codes _lowerCAmelCase = LANGUAGES[lang_codes] _lowerCAmelCase = [f"<lang:{lang}>" for lang in self.langs] _lowerCAmelCase = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} _lowerCAmelCase = self.lang_tokens _lowerCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _lowerCAmelCase = {} @property def lowercase__ ( self : str ) -> int: return len(self.encoder ) @property def lowercase__ ( self : Optional[int] ) -> str: return self._tgt_lang @tgt_lang.setter def lowercase__ ( self : Tuple , __snake_case : int ) -> None: _lowerCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : str ) -> None: _lowerCAmelCase = self.lang_code_to_id[tgt_lang] _lowerCAmelCase = [lang_code_id] def lowercase__ ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : Any , __snake_case : int ) -> List[str]: return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def lowercase__ ( self : Union[str, Any] , __snake_case : int ) -> str: return self.decoder.get(__snake_case , self.unk_token ) def lowercase__ ( self : Any , __snake_case : List[str] ) -> str: _lowerCAmelCase = [] _lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _lowerCAmelCase = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _lowerCAmelCase = [] else: current_sub_tokens.append(__snake_case ) _lowerCAmelCase = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase__ ( self : str , __snake_case : Optional[int] , __snake_case : Any=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase__ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self : Tuple , __snake_case : Dict ) -> None: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: _lowerCAmelCase = Path(__snake_case ) assert save_dir.is_dir(), f"{save_directory} should be a directory" _lowerCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = sentencepiece.SentencePieceProcessor(**lowerCAmelCase ) spm.Load(str(lowerCAmelCase ) ) return spm def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" with open(lowerCAmelCase , """r""" ) as f: return json.load(lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with open(lowerCAmelCase , """w""" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase , indent=2 )
70
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A_ :Optional[int] = None A_ :Any = logging.get_logger(__name__) A_ :List[str] = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ :Any = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } A_ :int = { '''google/rembert''': 256, } A_ :Tuple = '''▁''' class __A ( a ): """simple docstring""" UpperCamelCase__ : str =VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[str] =RemBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="[CLS]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : str =do_lower_case __UpperCamelCase : List[str] =remove_space __UpperCamelCase : Dict =keep_accents __UpperCamelCase : Tuple =vocab_file __UpperCamelCase : Optional[int] =False if not self.vocab_file else True def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =[self.sep_token_id] __UpperCamelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =[self.sep_token_id] __UpperCamelCase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase__ ) ) return __UpperCamelCase : List[str] =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
71
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
"""simple docstring""" def snake_case_ ( A_ : list[int], A_ : str ): '''simple docstring''' _lowerCamelCase : Tuple = int(A_ ) # Initialize Result _lowerCamelCase : Dict = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase__ = [] lowerCAmelCase__ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): lowerCAmelCase__ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowerCAmelCase__ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase__ = [1, 2, 5, 10, 20, 50, 100, 500, 2000] lowerCAmelCase__ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) lowerCAmelCase__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
72
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = ['''pixel_values'''] def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = size if size is not None else {'shortest_edge': 3_8_4} __lowerCamelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = do_resize __lowerCamelCase : Optional[Any] = size # Default value set here for backwards compatibility where the value in config is None __lowerCamelCase : Optional[int] = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 __lowerCamelCase : str = resample __lowerCamelCase : Optional[int] = do_rescale __lowerCamelCase : int = rescale_factor __lowerCamelCase : Union[str, Any] = do_normalize __lowerCamelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : float ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,): __lowerCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}") __lowerCamelCase : List[str] = size['shortest_edge'] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __lowerCamelCase : Tuple = int(shortest_edge / crop_pct) __lowerCamelCase : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : Any ,): __lowerCamelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : str = crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase : int = resample if resample is not None else self.resample __lowerCamelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : str = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : Any = image_std if image_std is not None else self.image_std __lowerCamelCase : List[Any] = size if size is not None else self.size __lowerCamelCase : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE__) if not valid_images(SCREAMING_SNAKE_CASE__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. __lowerCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE__) for image in images] if do_resize: __lowerCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__) for image in images] if do_rescale: __lowerCamelCase : List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__) for image in images] if do_normalize: __lowerCamelCase : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__) for image in images] __lowerCamelCase : List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) for image in images] __lowerCamelCase : Tuple = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__)
73
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
"""simple docstring""" import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Optional[int] ) -> str: A = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ,A_ : Optional[int] ,*A_ : int ,**A_ : str ) -> Union[str, Any]: if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) A = kwargs.pop('main_process_only' ,A_ ) A = kwargs.pop('in_order' ,A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): A , A = self.process(A_ ,A_ ) self.logger.log(A_ ,A_ ,*A_ ,**A_ ) elif in_order: A = PartialState() for i in range(state.num_processes ): if i == state.process_index: A , A = self.process(A_ ,A_ ) self.logger.log(A_ ,A_ ,*A_ ,**A_ ) state.wait_for_everyone() def _snake_case ( snake_case__ : str , snake_case__ : str = None ): if log_level is None: A = os.environ.get('ACCELERATE_LOG_LEVEL' , snake_case__ ) A = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__ , {} )
74
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =13 lowerCamelCase_ =7 lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =99 lowerCamelCase_ =384 lowerCamelCase_ =2 lowerCamelCase_ =4 lowerCamelCase_ =37 lowerCamelCase_ ='''gelu''' lowerCamelCase_ =0.1 lowerCamelCase_ =0.1 lowerCamelCase_ =512 lowerCamelCase_ =16 lowerCamelCase_ =2 lowerCamelCase_ =0.0_2 lowerCamelCase_ =3 lowerCamelCase_ =4 lowerCamelCase_ =128 lowerCamelCase_ =2 lowerCamelCase_ =9 lowerCamelCase_ =1 lowerCamelCase_ =None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCAmelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertModel(config=lowerCAmelCase ) lowerCamelCase_ ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ =[input_ids, input_mask] lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertForMaskedLM(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFConvBertForSequenceClassification(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =TFConvBertForMultipleChoice(config=lowerCAmelCase ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFConvBertForTokenClassification(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertForQuestionAnswering(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase : List[str] =( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase : int =False lowercase : List[Any] =False lowercase : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =True lowerCamelCase_ =True if hasattr(lowerCAmelCase, '''use_cache''' ): lowerCamelCase_ =True lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =len(model(lowerCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase, saved_model=lowerCAmelCase ) lowerCamelCase_ =os.path.join(lowerCAmelCase, '''saved_model''', '''1''' ) lowerCamelCase_ =tf.keras.models.load_model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) if self.is_encoder_decoder: lowerCamelCase_ =outputs['''encoder_hidden_states'''] lowerCamelCase_ =outputs['''encoder_attentions'''] else: lowerCamelCase_ =outputs['''hidden_states'''] lowerCamelCase_ =outputs['''attentions'''] self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) lowerCamelCase_ =getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =True lowerCamelCase_ =getattr(self.model_tester, '''decoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) def check_decoder_attentions_output(lowerCAmelCase ): lowerCamelCase_ =len(lowerCAmelCase ) self.assertEqual(out_len % 2, 0 ) lowerCamelCase_ =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(lowerCAmelCase ): lowerCamelCase_ =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) lowerCamelCase_ =len(lowerCAmelCase ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) if self.is_encoder_decoder: lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_decoder_attentions_output(lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ =True lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) # Check attention is always last and order is fine lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowerCamelCase_ =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =[1, 6, 768] self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase, atol=1e-4 )
75
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
76
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
"""simple docstring""" def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Optional[Any] = len(_lowerCAmelCase ) lowercase__ : Any = len(_lowerCAmelCase ) lowercase__ : Optional[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowercase__ : Any = True for i in range(_lowerCAmelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowercase__ : Tuple = True if a[i].islower(): lowercase__ : Optional[int] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
77
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) UpperCAmelCase = precision UpperCAmelCase = ceil(precision / 14 ) UpperCAmelCase = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase = 1 UpperCAmelCase = 13591409 UpperCAmelCase = Decimal(lowercase_ ) for k in range(1 , lowercase_ ): UpperCAmelCase = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case_ = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
78
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
'''simple docstring''' from math import factorial lowerCamelCase_ = {str(digit): factorial(digit) for digit in range(10)} def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowercase ) ) def __lowercase ( __lowercase = 60 , __lowercase = 100_0000 ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ) or not isinstance(__lowercase , __lowercase ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length _A = 0 # the cached sizes of the previous chains _A = {} for start_chain_element in range(1 , __lowercase ): # The temporary set will contain the elements of the chain _A = set() _A = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _A = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowercase ) chain_set_length += 1 _A = digit_factorial_sum(__lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _A = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
79
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : Union[str, Any] = '▁' a__ : Tuple = {'vocab_file': 'spiece.model'} a__ : Optional[Any] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } a__ : List[Any] = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , a , a="</s>" , a="<unk>" , a=[] , a = None , **a , ): UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def __a ( self ): return self.sp_model.get_piece_size() def __a ( self ): UpperCamelCase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , a ): UpperCamelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , a ): return self.sp_model.encode(a , out_type=a ) def __a ( self , a ): return self.sp_model.piece_to_id(a ) def __a ( self , a ): if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(a ) return token def __a ( self , a ): UpperCamelCase__ = [] UpperCamelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token UpperCamelCase__ = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def __a ( self , a , a = None ): if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
80
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
"""simple docstring""" def _A ( lowercase ): """simple docstring""" if not head: return True # split the list to two parts a , a =head.next, head while fast and fast.next: a =fast.next.next a =slow.next a =slow.next a =None # Don't forget here! But forget still works! # reverse the second part a =None while second: a =second.next a =node a =second a =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False a =node.next a =head.next return True def _A ( lowercase ): """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) a =a =a =head while fast and fast.next: a , a =fast.next.next, slow.next # 2. Push the second half into the stack a =[slow.val] while slow.next: a =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False a =cur.next return True def _A ( lowercase ): """simple docstring""" if not head or not head.next: return True a ={} a =0 while head: if head.val in d: d[head.val].append(lowercase ) else: a =[pos] a =head.next pos += 1 a =pos - 1 a =0 for v in d.values(): if len(lowercase ) % 2 != 0: middle += 1 else: a =0 for i in range(0 , len(lowercase ) ): if v[i] + v[len(lowercase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
81
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , _snake_case ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.ModuleList(_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(_snake_case , _snake_case , self.nets ) ): _lowerCAmelCase , _lowerCAmelCase = controlnet( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) # merge samples if i == 0: _lowerCAmelCase , _lowerCAmelCase = down_samples, mid_sample else: _lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_snake_case , _snake_case ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case ( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( _snake_case , is_main_process=_snake_case , save_function=_snake_case , safe_serialization=_snake_case , variant=_snake_case , ) idx += 1 _lowerCAmelCase = model_path_to_save + F'_{idx}' @classmethod def snake_case ( cls , _snake_case , **_snake_case ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCAmelCase = pretrained_model_path while os.path.isdir(_snake_case ): _lowerCAmelCase = ControlNetModel.from_pretrained(_snake_case , **_snake_case ) controlnets.append(_snake_case ) idx += 1 _lowerCAmelCase = pretrained_model_path + F'_{idx}' logger.info(F'{len(_snake_case )} controlnets loaded from {pretrained_model_path}.' ) if len(_snake_case ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_snake_case )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_snake_case )
82
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) _UpperCamelCase : Tuple = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _UpperCamelCase : Optional[Any] = 1 if upper_limit > 0: _UpperCamelCase : Optional[Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: snake_case_ : Optional[Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
83
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = multiprocessing.Manager() lowerCAmelCase_ :Union[str, Any] = manager.list() lowerCAmelCase_ :Any = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple ) -> List[str]: '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowerCAmelCase_ :Union[str, Any] = shutil.rmtree lowerCAmelCase_ :str = os.rmdir lowerCAmelCase_ :Any = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowerCAmelCase_ :Any = {} with swallow_io(): with time_limit(lowercase__ ): exec(lowercase__ , lowercase__ ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. lowerCAmelCase_ :Dict = rmtree lowerCAmelCase_ :List[str] = rmdir lowerCAmelCase_ :int = chdir @contextlib.contextmanager def _snake_case ( lowercase__ : Tuple ) -> Optional[int]: '''simple docstring''' def signal_handler(lowercase__ : List[Any] , lowercase__ : Dict ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , lowercase__ ) signal.signal(signal.SIGALRM , lowercase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase__ ): with contextlib.redirect_stderr(lowercase__ ): with redirect_stdin(lowercase__ ): yield @contextlib.contextmanager def _snake_case ( ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase__ ): yield dirname class _SCREAMING_SNAKE_CASE ( A__ ): pass class _SCREAMING_SNAKE_CASE ( io.StringIO ): def __lowerCAmelCase ( self , *__A , **__A ) -> List[str]: raise OSError def __lowerCAmelCase ( self , *__A , **__A ) -> Optional[int]: raise OSError def __lowerCAmelCase ( self , *__A , **__A ) -> List[Any]: raise OSError def __lowerCAmelCase ( self , *__A , **__A ) -> Dict: return False class _SCREAMING_SNAKE_CASE ( contextlib._RedirectStream ): # type: ignore UpperCAmelCase_ :Union[str, Any] = "stdin" @contextlib.contextmanager def _snake_case ( lowercase__ : Dict ) -> Dict: '''simple docstring''' if root == ".": yield return lowerCAmelCase_ :List[Any] = os.getcwd() os.chdir(lowercase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase__ ) def _snake_case ( lowercase__ : List[str]=None ) -> List[str]: '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowerCAmelCase_ :Any = None lowerCAmelCase_ :Optional[int] = None import os lowerCAmelCase_ :List[str] = """1""" lowerCAmelCase_ :Tuple = None lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :Dict = None lowerCAmelCase_ :Dict = None lowerCAmelCase_ :Any = None lowerCAmelCase_ :Dict = None lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ :Optional[Any] = None lowerCAmelCase_ :Dict = None lowerCAmelCase_ :Any = None lowerCAmelCase_ :str = None lowerCAmelCase_ :Optional[Any] = None lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :int = None lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :Any = None lowerCAmelCase_ :Optional[Any] = None lowerCAmelCase_ :Dict = None lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Optional[Any] = None lowerCAmelCase_ :List[str] = None lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :Dict = None import shutil lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :int = None lowerCAmelCase_ :int = None import subprocess lowerCAmelCase_ :Dict = None # type: ignore lowerCAmelCase_ :Dict = None import sys lowerCAmelCase_ :Tuple = None lowerCAmelCase_ :int = None lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :Optional[Any] = None
84
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = len(snake_case ) while cur > 1: # Find the maximum number in arr snake_case_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case_ = arr[mi::-1] + arr[mi + 1 : len(snake_case )] # Reverse whole list snake_case_ = arr[cur - 1 :: -1] + arr[cur : len(snake_case )] cur -= 1 return arr if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE : int = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
85
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def __lowerCamelCase ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): pass @is_pipeline_test @require_vision @require_timm @require_torch class A__ ( unittest.TestCase): A_ : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } , ) import datasets __lowerCAmelCase : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __lowerCAmelCase : int = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __lowerCAmelCase : Union[str, Any] = object_detector(_SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowerCamelCase ( self ): pass @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = 'hf-internal-testing/tiny-detr-mobilenetsv3' __lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) __lowerCAmelCase : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'facebook/detr-resnet-50' __lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) __lowerCAmelCase : Any = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = 'facebook/detr-resnet-50' __lowerCAmelCase : Any = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) __lowerCAmelCase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): __lowerCAmelCase : int = 0.9985 __lowerCAmelCase : List[str] = 'facebook/detr-resnet-50' __lowerCAmelCase : Tuple = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = 'Narsil/layoutlmv3-finetuned-funsd' __lowerCAmelCase : Optional[Any] = 0.9993 __lowerCAmelCase : Tuple = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
86
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class snake_case_ ( __A ): __A : Dict = "M-CLIP" def __init__( self : Union[str, Any] , lowercase_ : Optional[Any]=10_24 , lowercase_ : Optional[int]=7_68 , **lowercase_ : Tuple ) -> Optional[int]: lowercase__ : Tuple = transformerDimSize lowercase__ : Union[str, Any] = imageDimSize super().__init__(**lowercase_ ) class snake_case_ ( __A ): __A : int = MCLIPConfig def __init__( self : int , lowercase_ : Any , *lowercase_ : Dict , **lowercase_ : Dict ) -> Any: super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) lowercase__ : Dict = XLMRobertaModel(lowercase_ ) lowercase__ : Optional[int] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any ) -> str: lowercase__ : Dict = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] lowercase__ : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
87
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __lowerCAmelCase : int = False class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[Any]=32 ) -> List[str]: """simple docstring""" set_seed(0 ) __magic_name__ = UNetaDModel(sample_size=UpperCamelCase__ , in_channels=3 , out_channels=3 ) __magic_name__ = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" __magic_name__ = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __magic_name__ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , ) __magic_name__ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __magic_name__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCamelCase__ ) for _ in range(4 )] __magic_name__ = [torch.randn((4, 3, 32, 32) ).to(UpperCamelCase__ ) for _ in range(4 )] __magic_name__ = [torch.randint(0 , 1000 , (4,) ).long().to(UpperCamelCase__ ) for _ in range(4 )] # train with a DDPM scheduler __magic_name__ , __magic_name__ = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() __magic_name__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __magic_name__ = model(UpperCamelCase__ , timesteps[i] ).sample __magic_name__ = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __magic_name__ , __magic_name__ = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() __magic_name__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __magic_name__ = model(UpperCamelCase__ , timesteps[i] ).sample __magic_name__ = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) )
88
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ = 4000000 ) -> int: _a : Optional[Any] = [0, 1] _a : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _a : List[Any] = 0 for j in range(len(lowerCAmelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
89
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = logging.get_logger() # the current default level is logging.WARNING __lowerCamelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = logging.get_verbosity() __lowerCamelCase = logging.get_logger('transformers.models.bart.tokenization_bart' ) __lowerCamelCase = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCamelCase__ ) as cl: logger.warning(lowerCamelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCamelCase__ ) as cl: logger.warning(lowerCamelCase__ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCamelCase__ ) as cl: logger.warning(lowerCamelCase__ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCamelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowerCamelCase = logging.get_logger('transformers.models.bart.tokenization_bart' ) __lowerCamelCase = os.getenv('TRANSFORMERS_VERBOSITY' , lowerCamelCase__ ) __lowerCamelCase = logging.log_levels[env_level_str] __lowerCamelCase = logging.get_verbosity() self.assertEqual( lowerCamelCase__ , lowerCamelCase__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __lowerCamelCase = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowerCamelCase = logging.logging.getLogger() with CaptureLogger(lowerCamelCase__ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def lowercase_ ( self ) -> Dict: '''simple docstring''' # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowerCamelCase = logging.get_logger('transformers.models.bart.tokenization_bart' ) __lowerCamelCase = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCamelCase__ ) as cl: logger.warning_advice(lowerCamelCase__ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCamelCase__ ) as cl: logger.warning_advice(lowerCamelCase__ ) self.assertEqual(cl.out , msg + '\n' ) def lowerCamelCase_ ( ) -> Dict: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
90
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : int = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "mctct" def __init__( self : Union[str, Any] , lowercase_ : str=8065 , lowercase_ : Optional[Any]=1536 , lowercase_ : str=36 , lowercase_ : List[str]=6144 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[Any]=384 , lowercase_ : Tuple=920 , lowercase_ : Any=1e-5 , lowercase_ : Optional[Any]=0.3 , lowercase_ : Any="relu" , lowercase_ : Any=0.02 , lowercase_ : Dict=0.3 , lowercase_ : int=0.3 , lowercase_ : Union[str, Any]=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0.3 , lowercase_ : Optional[int]=1 , lowercase_ : Dict=(7,) , lowercase_ : Union[str, Any]=(3,) , lowercase_ : Tuple=80 , lowercase_ : Union[str, Any]=1 , lowercase_ : Any=None , lowercase_ : Any="sum" , lowercase_ : List[Any]=False , **lowercase_ : Any , ): '''simple docstring''' super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = attention_head_dim SCREAMING_SNAKE_CASE_ : int = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = layerdrop SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = pad_token_id SCREAMING_SNAKE_CASE_ : Tuple = bos_token_id SCREAMING_SNAKE_CASE_ : int = eos_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = conv_glu_dim SCREAMING_SNAKE_CASE_ : List[str] = conv_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = num_conv_layers SCREAMING_SNAKE_CASE_ : Tuple = input_feat_per_channel SCREAMING_SNAKE_CASE_ : Optional[int] = input_channels SCREAMING_SNAKE_CASE_ : List[str] = conv_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = ctc_loss_reduction SCREAMING_SNAKE_CASE_ : str = ctc_zero_infinity # prevents config testing fail with exporting to json SCREAMING_SNAKE_CASE_ : Optional[Any] = list(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = list(lowercase_) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F'but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.')
91
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class a__ ( snake_case__ ): _a : Optional[Any] = """dpt""" def __init__( self , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.0 , _A=0.0 , _A=0.02 , _A=1E-1_2 , _A=3_8_4 , _A=1_6 , _A=3 , _A=False , _A=True , _A=[2, 5, 8, 1_1] , _A="project" , _A=[4, 2, 1, 0.5] , _A=[9_6, 1_9_2, 3_8_4, 7_6_8] , _A=2_5_6 , _A=-1 , _A=False , _A=True , _A=0.4 , _A=2_5_5 , _A=0.1 , _A=[1, 1_0_2_4, 2_4, 2_4] , _A=[0, 1] , _A=None , **_A , ): """simple docstring""" super().__init__(**_A ) __lowerCAmelCase = hidden_size __lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) __lowerCAmelCase = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } __lowerCAmelCase = BitConfig(**_A ) elif isinstance(_A , _A ): logger.info("Initializing the config with a `BiT` backbone." ) __lowerCAmelCase = BitConfig(**_A ) elif isinstance(_A , _A ): __lowerCAmelCase = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __lowerCAmelCase = backbone_featmap_shape __lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = [] __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = qkv_bias __lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) __lowerCAmelCase = readout_type __lowerCAmelCase = reassemble_factors __lowerCAmelCase = neck_hidden_sizes __lowerCAmelCase = fusion_hidden_size __lowerCAmelCase = head_in_index __lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = semantic_loss_ignore_index __lowerCAmelCase = semantic_classifier_dropout def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
92
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowercase : int = get_logger(__name__) class lowerCAmelCase__ : lowerCAmelCase_ = '''dummy_data''' lowerCAmelCase_ = '''datasets''' lowerCAmelCase_ = False def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" lowercase_ : Any = 0 lowercase_ : List[Any] = dataset_name lowercase_ : int = cache_dir lowercase_ : str = use_local_dummy_data lowercase_ : int = config # download_callbacks take a single url as input lowercase_ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase_ : Optional[int] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase_ : Optional[Any] = str(__SCREAMING_SNAKE_CASE ) # to be downloaded lowercase_ : Union[str, Any] = None lowercase_ : int = None @property def _snake_case ( self ): """simple docstring""" if self._dummy_file is None: lowercase_ : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def _snake_case ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def _snake_case ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def _snake_case ( self ): """simple docstring""" lowercase_ : Any = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase_ : int = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def _snake_case ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _snake_case ( self ): """simple docstring""" if self._bucket_url is None: lowercase_ : Optional[int] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def _snake_case ( self ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase_ : Optional[int] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase_ : int = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return path def _snake_case ( self ): """simple docstring""" return {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Any = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: lowercase_ : Any = single_urls lowercase_ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) lowercase_ : Optional[Any] = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase_ : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase_ : Dict = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) lowercase_ : Union[str, Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase_ : Any = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase_ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase_ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" def _iter_archive_members(__SCREAMING_SNAKE_CASE ): # this preserves the order of the members inside the ZIP archive lowercase_ : List[str] = Path(self.dummy_file ).parent lowercase_ : str = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase_ : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = Path(__SCREAMING_SNAKE_CASE ) lowercase_ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open('''rb''' ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : int = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
93
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : str = logging.get_logger(__name__) snake_case : Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'markuplm' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=256 , _lowerCamelCase=1024 , _lowerCamelCase=216 , _lowerCamelCase=1001 , _lowerCamelCase=32 , _lowerCamelCase=50 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[Any] = vocab_size a :int = hidden_size a :List[Any] = num_hidden_layers a :str = num_attention_heads a :Tuple = hidden_act a :Any = intermediate_size a :Optional[int] = hidden_dropout_prob a :Optional[Any] = attention_probs_dropout_prob a :Any = max_position_embeddings a :Union[str, Any] = type_vocab_size a :Optional[int] = initializer_range a :Any = layer_norm_eps a :Any = position_embedding_type a :Optional[Any] = use_cache a :Optional[Any] = classifier_dropout # additional properties a :Optional[int] = max_depth a :int = max_xpath_tag_unit_embeddings a :Optional[Any] = max_xpath_subs_unit_embeddings a :Union[str, Any] = tag_pad_id a :str = subs_pad_id a :List[str] = xpath_unit_hidden_size
94
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Dict = AudioLDMPipeline _lowercase : Tuple = TEXT_TO_AUDIO_PARAMS _lowercase : str = TEXT_TO_AUDIO_BATCH_PARAMS _lowercase : Optional[Any] = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ]) def _lowercase ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) a__ : List[Any] =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(3_2, 6_4) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=lowerCAmelCase__ , ) a__ : Optional[int] =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) a__ : str =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) a__ : int =ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) a__ : str =ClapTextModelWithProjection(lowerCAmelCase__ ) a__ : int =RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=7_7 ) a__ : Any =SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCAmelCase__ , ) a__ : Dict =SpeechTaHifiGan(lowerCAmelCase__ ) a__ : Dict ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): a__ : str =torch.manual_seed(lowerCAmelCase__ ) else: a__ : List[Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : Union[str, Any] ={ "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Tuple ="cpu" # ensure determinism for the device-dependent torch.Generator a__ : List[Any] =self.get_dummy_components() a__ : List[Any] =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : int =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Optional[int] =audioldm_pipe(**lowerCAmelCase__ ) a__ : Union[str, Any] =output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase__ ) == 2_5_6 a__ : Optional[Any] =audio[:1_0] a__ : Optional[int] =np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[str] =self.get_dummy_components() a__ : Union[str, Any] =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ ) a__ : List[str] =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[int] =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Tuple =3 * [inputs["prompt"]] # forward a__ : List[Any] =audioldm_pipe(**lowerCAmelCase__ ) a__ : Optional[int] =output.audios[0] a__ : int =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : List[Any] =3 * [inputs.pop("prompt" )] a__ : str =audioldm_pipe.tokenizer( lowerCAmelCase__ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="pt" , ) a__ : Any =text_inputs["input_ids"].to(lowerCAmelCase__ ) a__ : int =audioldm_pipe.text_encoder( lowerCAmelCase__ , ) a__ : Any =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state a__ : Any =F.normalize(lowerCAmelCase__ , dim=-1 ) a__ : List[Any] =prompt_embeds # forward a__ : int =audioldm_pipe(**lowerCAmelCase__ ) a__ : Optional[Any] =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Any =self.get_dummy_components() a__ : Union[str, Any] =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : Optional[Any] =audioldm_pipe.to(lowerCAmelCase__ ) a__ : str =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Any =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Optional[int] =3 * ["this is a negative prompt"] a__ : int =negative_prompt a__ : List[str] =3 * [inputs["prompt"]] # forward a__ : List[str] =audioldm_pipe(**lowerCAmelCase__ ) a__ : List[Any] =output.audios[0] a__ : int =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Dict =3 * [inputs.pop("prompt" )] a__ : Tuple =[] for p in [prompt, negative_prompt]: a__ : Any =audioldm_pipe.tokenizer( lowerCAmelCase__ , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="pt" , ) a__ : Dict =text_inputs["input_ids"].to(lowerCAmelCase__ ) a__ : int =audioldm_pipe.text_encoder( lowerCAmelCase__ , ) a__ : str =text_embeds.text_embeds # additional L_2 normalization over each hidden-state a__ : int =F.normalize(lowerCAmelCase__ , dim=-1 ) embeds.append(lowerCAmelCase__ ) a__ , a__ : str =embeds # forward a__ : List[Any] =audioldm_pipe(**lowerCAmelCase__ ) a__ : str =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Tuple ="cpu" # ensure determinism for the device-dependent torch.Generator a__ : Tuple =self.get_dummy_components() a__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) a__ : List[Any] =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : int ="egg cracking" a__ : str =audioldm_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) a__ : List[str] =output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase__ ) == 2_5_6 a__ : Optional[Any] =audio[:1_0] a__ : List[str] =np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] ="cpu" # ensure determinism for the device-dependent torch.Generator a__ : List[Any] =self.get_dummy_components() a__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) a__ : str =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : Any =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : int ="A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) a__ : int =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts a__ : Dict =2 a__ : Any =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt a__ : List[Any] =2 a__ : Any =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts a__ : List[str] =2 a__ : Any =audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[Any] ="cpu" # ensure determinism for the device-dependent torch.Generator a__ : Any =self.get_dummy_components() a__ : Any =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : Tuple =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Union[str, Any] =audioldm_pipe.vocoder.config.sampling_rate a__ : str =self.get_dummy_inputs(lowerCAmelCase__ ) a__ : Union[str, Any] =audioldm_pipe(audio_length_in_s=0.0_16 , **lowerCAmelCase__ ) a__ : Optional[int] =output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase__ ) / vocoder_sampling_rate == 0.0_16 a__ : Dict =audioldm_pipe(audio_length_in_s=0.0_32 , **lowerCAmelCase__ ) a__ : List[str] =output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase__ ) / vocoder_sampling_rate == 0.0_32 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] =self.get_dummy_components() a__ : Tuple =AudioLDMPipeline(**lowerCAmelCase__ ) a__ : List[str] =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : str =["hey"] a__ : int =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=1 ) a__ : str =output.audios.shape assert audio_shape == (1, 2_5_6) a__ : Any =audioldm_pipe.vocoder.config config.model_in_dim *= 2 a__ : Dict =SpeechTaHifiGan(lowerCAmelCase__ ).to(lowerCAmelCase__ ) a__ : List[str] =audioldm_pipe(lowerCAmelCase__ , num_inference_steps=1 ) a__ : Optional[Any] =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def _lowercase ( self ) -> str: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCAmelCase__ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase__ ) @slow class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> List[str]: '''simple docstring''' a__ : Optional[Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : str =np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 8, 1_2_8, 1_6) ) a__ : Optional[Any] =torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) a__ : List[str] ={ "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Any =AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) a__ : str =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Any =self.get_inputs(lowerCAmelCase__ ) a__ : Optional[Any] =2_5 a__ : Union[str, Any] =audioldm_pipe(**lowerCAmelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase__ ) == 8_1_9_2_0 a__ : Union[str, Any] =audio[7_7_2_3_0:7_7_2_4_0] a__ : Union[str, Any] =np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) a__ : Optional[Any] =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : int =AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) a__ : Optional[int] =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) a__ : str =audioldm_pipe.to(lowerCAmelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Any =self.get_inputs(lowerCAmelCase__ ) a__ : List[Any] =audioldm_pipe(**lowerCAmelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase__ ) == 8_1_9_2_0 a__ : int =audio[2_7_7_8_0:2_7_7_9_0] a__ : Optional[int] =np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) a__ : Any =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
95
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _snake_case ( lowercase__ , lowercase__ , lowercase__=[] ): _lowerCamelCase : Dict = size[0] - overlap_pixels * 2 _lowerCamelCase : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowerCamelCase : Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowerCamelCase : List[str] = np.pad(lowercase__ , mode='linear_ramp' , pad_width=lowercase__ , end_values=0 ) if "l" in remove_borders: _lowerCamelCase : Tuple = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowerCamelCase : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowerCamelCase : Optional[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowerCamelCase : Union[str, Any] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return max(lowercase__ , min(lowercase__ , lowercase__ ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Any = list(lowercase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowerCamelCase : str = clamp_rect(lowercase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowercase__ , (original_slice, 0) ) return result def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowerCamelCase : Optional[int] = tile.crop(lowercase__ ) return tile def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = n % d return n - divisor class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = 350 , ): super().__init__( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , low_res_scheduler=lowercase , scheduler=lowercase , max_noise_level=lowercase , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _lowerCamelCase : str = add_overlap_rect(lowercase , lowercase , image.size ) _lowerCamelCase : Dict = image.crop(lowercase ) _lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowerCamelCase : List[str] = translated_slice_x - (original_image_slice / 2) _lowerCamelCase : List[Any] = max(0 , lowercase ) _lowerCamelCase : Optional[Any] = squeeze_tile(lowercase , lowercase , lowercase , lowercase ) _lowerCamelCase : int = to_input.size _lowerCamelCase : Union[str, Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _lowerCamelCase : Union[str, Any] = super(lowercase , self ).__call__(image=lowercase , **lowercase ).images[0] _lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _lowerCamelCase : List[Any] = unsqueeze_tile(lowercase , lowercase ) _lowerCamelCase : Dict = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _lowerCamelCase : Dict = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _lowerCamelCase : str = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowercase ) , mode='L' , ) final_image.paste( lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowercase ) @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase = 75 , lowercase = 9.0 , lowercase = 50 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = None , lowercase = 1 , lowercase = 128 , lowercase = 32 , lowercase = 32 , ): _lowerCamelCase : Any = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) _lowerCamelCase : Optional[int] = math.ceil(image.size[0] / tile_size ) _lowerCamelCase : Optional[Any] = math.ceil(image.size[1] / tile_size ) _lowerCamelCase : Dict = tcx * tcy _lowerCamelCase : List[str] = 0 for y in range(lowercase ): for x in range(lowercase ): self._process_tile( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , prompt=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , noise_level=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _snake_case ( ): # Run a demo _lowerCamelCase : int = 'stabilityai/stable-diffusion-x4-upscaler' _lowerCamelCase : Optional[Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(lowercase__ , revision='fp16' , torch_dtype=torch.floataa ) _lowerCamelCase : Optional[int] = pipe.to('cuda' ) _lowerCamelCase : List[Any] = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(lowercase__ ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) _lowerCamelCase : str = pipe(image=lowercase__ , prompt='Black font, white background, vector' , noise_level=40 , callback=lowercase__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
96
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
97
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase__ : Dict = pytest.mark.integration @require_faiss class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCamelCase__ ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[Any] ): import faiss UpperCAmelCase__ = self._create_dummy_dataset() UpperCAmelCase__ = dset.map( lambda lowerCamelCase__ ,lowerCamelCase__ : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=lowerCamelCase__ ,keep_in_memory=lowerCamelCase__ ) UpperCAmelCase__ = dset.add_faiss_index('vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : List[str] ): import faiss UpperCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def __lowerCAmelCase ( self : List[Any] ): import faiss UpperCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase__ ) as tmp_file: dset.save_faiss_index('vecs' ,tmp_file.name ) dset.load_faiss_index('vecs2' ,tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('vecs2' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowerCamelCase__ ,partial(dset.get_nearest_examples ,'vecs2' ,np.ones(5 ,dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : str ): from elasticsearch import Elasticsearch UpperCAmelCase__ = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCAmelCase__ = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} UpperCAmelCase__ = Elasticsearch() dset.add_elasticsearch_index('filename' ,es_client=lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ = dset.get_nearest_examples('filename' ,'my_name-train_29' ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) @require_faiss class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ): import faiss UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query UpperCAmelCase__ = np.zeros(5 ,dtype=np.floataa ) UpperCAmelCase__ = 1 UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ ) self.assertRaises(lowerCamelCase__ ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries UpperCAmelCase__ = np.eye(5 ,dtype=np.floataa )[::-1] UpperCAmelCase__ , UpperCAmelCase__ = index.search_batch(lowerCamelCase__ ) self.assertRaises(lowerCamelCase__ ,index.search_batch ,queries[0] ) UpperCAmelCase__ = [scores[0] for scores in total_scores] UpperCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase__ ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ): import faiss UpperCAmelCase__ = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) UpperCAmelCase__ = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__ = FaissIndex(string_factory='Flat' ,custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : str ): import faiss UpperCAmelCase__ = faiss.IndexFlat(5 ) UpperCAmelCase__ = FaissIndex(custom_index=lowerCamelCase__ ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def __lowerCAmelCase ( self : List[Any] ): import faiss UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase__ ) as tmp_file: index.save(tmp_file.name ) UpperCAmelCase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase__ = np.zeros(5 ,dtype=np.floataa ) UpperCAmelCase__ = 1 UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def a_ ( lowerCamelCase ): import faiss UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCAmelCase__ = 'index.faiss' UpperCAmelCase__ = f'''mock://{index_name}''' index.save(lowerCamelCase , storage_options=mockfs.storage_options ) UpperCAmelCase__ = FaissIndex.load(lowerCamelCase , storage_options=mockfs.storage_options ) UpperCAmelCase__ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase__ = 1 UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ): from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCAmelCase__ = Elasticsearch() UpperCAmelCase__ = {'acknowledged': True} UpperCAmelCase__ = ElasticSearchIndex(es_client=lowerCamelCase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query UpperCAmelCase__ = 'foo' UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout UpperCAmelCase__ = 'foo' UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCAmelCase__ , UpperCAmelCase__ = index.search(lowerCamelCase__ ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries UpperCAmelCase__ = ['foo', 'bar', 'foobar'] UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCAmelCase__ , UpperCAmelCase__ = index.search_batch(lowerCamelCase__ ) UpperCAmelCase__ = [scores[0] for scores in total_scores] UpperCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase__ ) ,0 ) self.assertListEqual([1, 1, 1] ,lowerCamelCase__ ) # batched queries with timeout UpperCAmelCase__ = ['foo', 'bar', 'foobar'] UpperCAmelCase__ = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCAmelCase__ , UpperCAmelCase__ = index.search_batch(lowerCamelCase__ ,request_timeout=30 ) UpperCAmelCase__ = [scores[0] for scores in total_scores] UpperCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase__ ) ,0 ) self.assertListEqual([1, 1, 1] ,lowerCamelCase__ )
98
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def A_ ( ) -> int: a__ : Dict = torch.nn.Linear(2 , 4 ) a__ : Dict = torch.optim.AdamW(model.parameters() , lr=1.0 ) a__ : Any = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) a__ : Tuple = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a__ : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def A_ ( A__ ) -> Optional[Any]: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def A_ ( A__ ) -> str: a__ : List[Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class A__ ( __UpperCAmelCase ): """simple docstring""" @require_cuda def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase): a__ : Union[str, Any] = Accelerator(cpu=lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Tuple = Accelerator() a__ : Optional[Any] = GradientState() assert state.num_steps == 1 a__ : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True a__ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Tuple = Accelerator() a__ , a__ , a__ , a__ , a__ : Tuple = create_components() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : List[Any] = accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = Accelerator() a__ , a__ , a__ , a__ , a__ : List[str] = create_components() accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def __lowercase ( self) -> str: '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase , **lowercase): pass with patch('torch.cuda.set_device' , lowercase), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64'): a__ : Tuple = Accelerator() self.assertEqual(str(accelerator.state.device) , 'cuda:64') def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = Accelerator() a__ , a__ , a__ , a__ , a__ : Union[str, Any] = create_components() accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase) a__ : Tuple = get_signature(lowercase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase) # make sure random weights don't match load_random_weights(lowercase) self.assertTrue(abs(model_signature - get_signature(lowercase)) > 1e-3) # make sure loaded weights match accelerator.load_state(lowercase) self.assertTrue(abs(model_signature - get_signature(lowercase)) < 1e-3) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = Accelerator() a__ , a__ , a__ , a__ , a__ : Optional[int] = create_components() accelerator.prepare(lowercase , lowercase , lowercase , lowercase , lowercase) a__ : List[str] = get_signature(lowercase) # saving hook def save_config(lowercase , lowercase , lowercase): a__ : int = {'class_name': models[0].__class__.__name__} with open(os.path.join(lowercase , 'data.json') , 'w') as f: json.dump(lowercase , lowercase) # loading hook def load_config(lowercase , lowercase): with open(os.path.join(lowercase , 'data.json') , 'r') as f: a__ : List[Any] = json.load(lowercase) a__ : Union[str, Any] = config['class_name'] a__ : Optional[Any] = accelerator.register_save_state_pre_hook(lowercase) a__ : str = accelerator.register_load_state_pre_hook(lowercase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase) # make sure random weights don't match with hooks load_random_weights(lowercase) self.assertTrue(abs(model_signature - get_signature(lowercase)) > 1e-3) # random class name to verify correct one is loaded a__ : int = 'random' # make sure loaded weights match with hooks accelerator.load_state(lowercase) self.assertTrue(abs(model_signature - get_signature(lowercase)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase) # make sure random weights don't match with hooks removed load_random_weights(lowercase) self.assertTrue(abs(model_signature - get_signature(lowercase)) > 1e-3) # random class name to verify correct one is loaded a__ : Union[str, Any] = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(lowercase) self.assertTrue(abs(model_signature - get_signature(lowercase)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = Accelerator() a__ , a__ , a__ , a__ , a__ : str = create_components() a__ : Dict = None # This should work a__ , a__ , a__ , a__ , a__ , a__ : Tuple = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) self.assertTrue(dummy_obj is None) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[Any] = Accelerator() a__ , a__ , a__ , a__ , a__ : int = create_components() a__ : int = [1, 2, 3] # This should work a__ , a__ , a__ , a__ , a__ , a__ : Any = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) self.assertEqual( getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowercase , '_is_accelerate_prepared' , lowercase) , lowercase , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def __lowercase ( self) -> Optional[int]: '''simple docstring''' from transformers import AutoModelForCausalLM a__ : List[str] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=lowercase , device_map={'': 0} , ) a__ : Union[str, Any] = Accelerator() # This should work a__ : Union[str, Any] = accelerator.prepare(lowercase) @slow @require_bnb def __lowercase ( self) -> Any: '''simple docstring''' from transformers import AutoModelForCausalLM a__ : Dict = Accelerator() with init_empty_weights(): a__ : Dict = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() a__ : Optional[int] = infer_auto_device_map(lowercase) a__ : Optional[Any] = 'cpu' a__ : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=lowercase , load_in_abit=lowercase , llm_inta_enable_fpaa_cpu_offload=lowercase) # This should not work and get value error with self.assertRaises(lowercase): a__ : List[str] = accelerator.prepare(lowercase) @slow @require_bnb @require_multi_gpu def __lowercase ( self) -> str: '''simple docstring''' from transformers import AutoModelForCausalLM a__ : int = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): a__ : Optional[int] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() a__ : Optional[int] = infer_auto_device_map(lowercase) a__ : Optional[Any] = 1 a__ : List[str] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=lowercase , device_map=lowercase , ) a__ : Optional[Any] = Accelerator() # This should not work and get value error with self.assertRaises(lowercase): a__ : int = accelerator.prepare(lowercase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowercase ( self) -> Optional[int]: '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): a__ : int = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) a__ : List[str] = infer_auto_device_map(lowercase) a__ : List[str] = 1 a__ : List[str] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=lowercase , device_map=lowercase , ) a__ : int = Accelerator() # This should work a__ : Optional[Any] = accelerator.prepare(lowercase) @require_cuda def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[int] = torch.nn.Linear(10 , 10) a__ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01) a__ : Optional[int] = Accelerator(cpu=lowercase) a__ : str = accelerator.prepare(lowercase)
99
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name __magic_name__ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=8 ): __SCREAMING_SNAKE_CASE = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __SCREAMING_SNAKE_CASE = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): super().__init__() self.register_modules( text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels) - 1) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): if latents is None: __SCREAMING_SNAKE_CASE = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") __SCREAMING_SNAKE_CASE = latents.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else 1 # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=7_7 , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}") __SCREAMING_SNAKE_CASE = text_input_ids.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = text_inputs.attention_mask.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.text_encoder( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = text_encoder_hidden_states.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = text_mask.repeat_interleave(lowerCAmelCase__ , dim=0) if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""""""] * batch_size elif type(lowerCAmelCase__) is not type(lowerCAmelCase__): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__)} !=" f" {type(lowerCAmelCase__)}.") elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(lowerCAmelCase__): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""") else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , padding="""max_length""" , max_length=7_7 , truncation=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = uncond_input.input_ids.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = uncond_input.attention_mask.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.text_encoder( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = negative_prompt_embeds.shape[1] __SCREAMING_SNAKE_CASE = negative_prompt_embeds.repeat(1 , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.shape[1] __SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.repeat(1 , lowerCAmelCase__ , 1) __SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCAmelCase__ , -1) __SCREAMING_SNAKE_CASE = uncond_text_mask.repeat_interleave(lowerCAmelCase__ , dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([negative_prompt_embeds, prompt_embeds]) __SCREAMING_SNAKE_CASE = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) __SCREAMING_SNAKE_CASE = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask def snake_case_ ( self , lowerCAmelCase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") __SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}") __SCREAMING_SNAKE_CASE = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__=0): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") __SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__) if self.safety_checker is not None: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cpu_offload_with_hook(self.safety_checker , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self): if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__)}") __SCREAMING_SNAKE_CASE = self._execution_device __SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self._encode_prompt( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=0) if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.cat(lowerCAmelCase__ , dim=0) if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) __SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0).to( dtype=prompt_embeds.dtype , device=lowerCAmelCase__) self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.scheduler.timesteps __SCREAMING_SNAKE_CASE = self.unet.config.in_channels __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = get_new_h_w(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor) # create initial latent __SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__)): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} __SCREAMING_SNAKE_CASE = self.unet( sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.chunk(2) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = variance_pred.chunk(2) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , ).prev_sample # post-processing __SCREAMING_SNAKE_CASE = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE = image.clamp(0 , 1) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__)
100
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = checkpoint lowercase = {} lowercase = vae_state_dict['''encoder.conv_in.weight'''] lowercase = vae_state_dict['''encoder.conv_in.bias'''] lowercase = vae_state_dict['''encoder.conv_out.weight'''] lowercase = vae_state_dict['''encoder.conv_out.bias'''] lowercase = vae_state_dict['''encoder.norm_out.weight'''] lowercase = vae_state_dict['''encoder.norm_out.bias'''] lowercase = vae_state_dict['''decoder.conv_in.weight'''] lowercase = vae_state_dict['''decoder.conv_in.bias'''] lowercase = vae_state_dict['''decoder.conv_out.weight'''] lowercase = vae_state_dict['''decoder.conv_out.bias'''] lowercase = vae_state_dict['''decoder.norm_out.weight'''] lowercase = vae_state_dict['''decoder.norm_out.bias'''] lowercase = vae_state_dict['''quant_conv.weight'''] lowercase = vae_state_dict['''quant_conv.bias'''] lowercase = vae_state_dict['''post_quant_conv.weight'''] lowercase = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) lowercase = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) lowercase = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): lowercase = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: lowercase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) lowercase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) lowercase = renew_vae_resnet_paths(lowerCAmelCase__ ) lowercase = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowercase = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowercase = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] lowercase = renew_vae_resnet_paths(lowerCAmelCase__ ) lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowercase = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowercase = renew_vae_attention_paths(lowerCAmelCase__ ) lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): lowercase = num_up_blocks - 1 - i lowercase = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: lowercase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] lowercase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] lowercase = renew_vae_resnet_paths(lowerCAmelCase__ ) lowercase = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowercase = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowercase = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] lowercase = renew_vae_resnet_paths(lowerCAmelCase__ ) lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) lowercase = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowercase = renew_vae_attention_paths(lowerCAmelCase__ ) lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , ): '''simple docstring''' # Only support V1 lowercase = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) lowercase = io.BytesIO(r.content ) lowercase = OmegaConf.load(lowerCAmelCase__ ) lowercase = 512 lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open lowercase = {} with safe_open(lowerCAmelCase__ , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): lowercase = f.get_tensor(lowerCAmelCase__ ) else: lowercase = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )['''state_dict'''] # Convert the VAE model. lowercase = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) lowercase = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ :List[str] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") lowercase__ :int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
101
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = """▁""" SCREAMING_SNAKE_CASE : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE : str = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } SCREAMING_SNAKE_CASE : Tuple = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } SCREAMING_SNAKE_CASE : Optional[int] = { """ernie-m-base""": 514, """ernie-m-large""": 514, } SCREAMING_SNAKE_CASE : Optional[Any] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =["input_ids"] lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =RESOURCE_FILES_NAMES def __init__(self , a_ , a_=None , a_=False , a_="utf8" , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , vocab_file=a_ , encoding=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case : str = do_lower_case __snake_case : int = sentencepiece_model_ckpt __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=a_ ) else: __snake_case : Any = {self.sp_model.id_to_piece(a_ ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : Optional[int] = {v: k for k, v in self.vocab.items()} def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if text is None: return None __snake_case : Union[str, Any] = self.tokenize(a_ ) __snake_case , __snake_case : Tuple = '''''', [] for i, ch in enumerate(a_ ): if ch in self.SP_CHAR_MAPPING: __snake_case : List[Any] = self.SP_CHAR_MAPPING.get(a_ ) else: __snake_case : List[Any] = unicodedata.normalize('''NFKC''' , a_ ) if self.is_whitespace(a_ ): continue normalized_text += ch char_mapping.extend([i] * len(a_ ) ) __snake_case , __snake_case , __snake_case : Tuple = normalized_text, [], 0 if self.do_lower_case: __snake_case : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : List[str] = text[offset:].index(a_ ) + offset __snake_case : int = start + len(a_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : List[Any] = end return token_mapping @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return len(self.vocab ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self ): '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__(self , a_ ): '''simple docstring''' __snake_case : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __snake_case : List[str] = {} __snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(a_ , a_ ) for c in text) ) def SCREAMING_SNAKE_CASE (self , a_ , a_=False , a_=64 , a_=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: __snake_case : Tuple = True if self.sp_model_kwargs.get('''alpha''' ) is not None: __snake_case : Tuple = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: __snake_case : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: __snake_case : Optional[Any] = self.sp_model.EncodeAsPieces(a_ ) else: __snake_case : int = self.sp_model.SampleEncodeAsPieces(a_ , a_ , a_ ) __snake_case : Dict = [] for pi, piece in enumerate(a_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(a_ ) and pi != 0: new_pieces.append(a_ ) continue else: continue __snake_case : Dict = 0 for i, chunk in enumerate(a_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(a_ ) or self.is_punct(a_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(a_ ) __snake_case : Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Optional[int] = i if len(a_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = ''''''.join(a_ ).replace(a_ , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = self.convert_ids_to_tokens(a_ ) __snake_case : Tuple = ''''''.join(a_ ).replace(a_ , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.vocab.get(a_ , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.reverse_vocab.get(a_ , self.unk_token ) def SCREAMING_SNAKE_CASE (self , a_ , a_=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def SCREAMING_SNAKE_CASE (self , a_ , a_=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def SCREAMING_SNAKE_CASE (self , a_ , a_=None , a_=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(a_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(a_ ) + 1) + [1] * (len(a_ ) + 3) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(a_ ) == 1: __snake_case : Tuple = unicodedata.category(a_ ) if cat == "Zs": return True return False def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : str = {} with io.open(a_ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(a_ ): __snake_case : Union[str, Any] = line.rstrip('''\n''' ) __snake_case : Dict = int(a_ ) return token_to_idx def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Optional[Any] = 0 if os.path.isdir(a_ ): __snake_case : Any = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __snake_case : Dict = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(a_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __snake_case : Tuple = token_index writer.write(token + '''\n''' ) index += 1 __snake_case : Tuple = os.path.join(a_ , '''sentencepiece.bpe.model''' ) with open(a_ , '''wb''' ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (vocab_file,)
102
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) A__ : str = '''bert-base-cased''' A__ : Optional[int] = '''fp16''' A__ : Optional[int] = '''bf16''' A__ : Any = [FPaa, BFaa] @require_fsdp @require_cuda class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : str): super().setUp() lowerCAmelCase_ : int = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def UpperCAmelCase__ ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(A_): lowerCAmelCase_ : Optional[int] = self.dist_env.copy() lowerCAmelCase_ : Optional[Any] = F"""{i + 1}""" lowerCAmelCase_ : List[Any] = strategy with mockenv_context(**A_): lowerCAmelCase_ : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def UpperCAmelCase__ ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(A_): lowerCAmelCase_ : Tuple = self.dist_env.copy() lowerCAmelCase_ : str = prefetch_policy with mockenv_context(**A_): lowerCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def UpperCAmelCase__ ( self : int): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(A_): lowerCAmelCase_ : Optional[int] = self.dist_env.copy() lowerCAmelCase_ : str = state_dict_type with mockenv_context(**A_): lowerCAmelCase_ : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : str = AutoModel.from_pretrained(A_) for policy in FSDP_AUTO_WRAP_POLICY: lowerCAmelCase_ : Tuple = self.dist_env.copy() lowerCAmelCase_ : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCAmelCase_ : List[str] = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": lowerCAmelCase_ : Optional[int] = '''2000''' with mockenv_context(**A_): lowerCAmelCase_ : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A_) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) lowerCAmelCase_ : str = self.dist_env.copy() lowerCAmelCase_ : List[str] = '''TRANSFORMER_BASED_WRAP''' lowerCAmelCase_ : Optional[int] = '''T5Layer''' with mockenv_context(**A_): lowerCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() with self.assertRaises(A_) as cm: fsdp_plugin.set_auto_wrap_policy(A_) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception)) lowerCAmelCase_ : Union[str, Any] = self.dist_env.copy() lowerCAmelCase_ : List[Any] = '''SIZE_BASED_WRAP''' lowerCAmelCase_ : List[Any] = '''0''' with mockenv_context(**A_): lowerCAmelCase_ : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A_) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def UpperCAmelCase__ ( self : Optional[Any]): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCAmelCase_ : Dict = self.dist_env.copy() lowerCAmelCase_ : List[str] = mp_dtype with mockenv_context(**A_): lowerCAmelCase_ : List[Any] = Accelerator() if mp_dtype == "fp16": lowerCAmelCase_ : Optional[Any] = torch.floataa elif mp_dtype == "bf16": lowerCAmelCase_ : Any = torch.bfloataa lowerCAmelCase_ : Optional[Any] = MixedPrecision(param_dtype=A_ , reduce_dtype=A_ , buffer_dtype=A_) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A_) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , A_)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(A_) def UpperCAmelCase__ ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCAmelCase_ : Any = self.dist_env.copy() lowerCAmelCase_ : Union[str, Any] = str(A_).lower() with mockenv_context(**A_): lowerCAmelCase_ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A_)) @require_fsdp @require_multi_gpu @slow class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : List[Any]): super().setUp() lowerCAmelCase_ : Optional[Any] = 0.82 lowerCAmelCase_ : Union[str, Any] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] lowerCAmelCase_ : Union[str, Any] = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCAmelCase_ : Union[str, Any] = 1_6_0 lowerCAmelCase_ : List[Any] = 1_6_0 lowerCAmelCase_ : Dict = inspect.getfile(accelerate.test_utils) lowerCAmelCase_ : str = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''']) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Tuple = os.path.join(self.test_scripts_folder , '''test_performance.py''') lowerCAmelCase_ : Tuple = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: lowerCAmelCase_ : Union[str, Any] = cmd.copy() for i, strategy in enumerate(A_): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") break if "fp32" in config: cmd_config.append('''--mixed_precision=no''') else: cmd_config.append('''--mixed_precision=fp16''') if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy()) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''') lowerCAmelCase_ : List[str] = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(A_): lowerCAmelCase_ : List[Any] = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") if strategy != "FULL_SHARD": continue lowerCAmelCase_ : int = len(A_) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCAmelCase_ : List[str] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""") cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy()) lowerCAmelCase_ : int = cmd_config[:-1] lowerCAmelCase_ : List[str] = os.path.join(self.tmpdir , '''epoch_0''') cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy()) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : int = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''') lowerCAmelCase_ : Dict = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCAmelCase_ : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16''']) else: cmd_config.extend(['''--mixed_precision=no''']) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp''']) for i, strategy in enumerate(A_): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy())
103
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _A ( A__=None ): """simple docstring""" if subparsers is not None: __lowercase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __lowercase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=A__ , default=A__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=A__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=A__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __lowercase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=A__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def _A ( A__ ): """simple docstring""" __lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(A__ ): __lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase = defaults.command_file if not args.command and defaults.commands is not None: __lowercase = defaults.commands if not args.tpu_name: __lowercase = defaults.tpu_name if not args.tpu_zone: __lowercase = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __lowercase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , A__ ): __lowercase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , A__ ): __lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase = '''; '''.join(A__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(A__ )}" ) return subprocess.run(A__ ) print('''Successfully setup pod.''' ) def _A ( ): """simple docstring""" __lowercase = tpu_command_parser() __lowercase = parser.parse_args() tpu_command_launcher(A__ )
104
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
105
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCamelCase : int = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): # save results if os.path.exists(A_ ): if os.path.exists(os.path.join(A_ , '''config.json''' ) ) and os.path.isfile( os.path.join(A_ , '''config.json''' ) ): os.remove(os.path.join(A_ , '''config.json''' ) ) if os.path.exists(os.path.join(A_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(A_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(A_ , '''pytorch_model.bin''' ) ) else: os.makedirs(A_ ) model.save_pretrained(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : Optional[Any] = 2 if unlogit: lowerCAmelCase__ : Union[str, Any] = torch.pow(A_ , A_ ) lowerCAmelCase__ : Optional[Any] = p * torch.log(A_ ) lowerCAmelCase__ : List[Any] = 0 return -plogp.sum(dim=-1 ) def __SCREAMING_SNAKE_CASE ( A_ ): logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(A_ ) ) ) ) for row in range(len(A_ ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ : Dict = torch.zeros(A_ , A_ ).to(args.device ) lowerCAmelCase__ : int = torch.zeros(A_ , A_ ).to(args.device ) if head_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(A_ , A_ ).to(args.device ) head_mask.requires_grad_(requires_grad=A_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(A_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ : Any = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) ,) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ : Any = model(A_ , labels=A_ , head_mask=A_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A_ ): lowerCAmelCase__ : Dict = entropy(attn.detach() , A_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Dict = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(A_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(A_ ) logger.info('''Head ranked by importance scores''' ) lowerCAmelCase__ : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ : int = head_ranks.view_as(A_ ) print_ad_tensor(A_ ) return attn_entropy, head_importance, total_loss def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ ) lowerCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , A_ , original_score * args.masking_threshold ) lowerCAmelCase__ : Union[str, Any] = torch.ones_like(A_ ) lowerCAmelCase__ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ : int = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ : str = float('''Inf''' ) lowerCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(A_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowerCAmelCase__ : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ : int = new_head_mask.view(-1 ) lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Union[str, Any] = new_head_mask.view_as(A_ ) lowerCAmelCase__ : Tuple = new_head_mask.clone().detach() print_ad_tensor(A_ ) # Compute metric and head importance again lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ ) lowerCAmelCase__ : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(A_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Optional[Any] = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ ) lowerCAmelCase__ : Optional[Any] = 1 / loss lowerCAmelCase__ : Tuple = datetime.now() - before_time lowerCAmelCase__ : int = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) ) } for k, v in heads_to_prune.items(): if isinstance(A_ , A_ ): lowerCAmelCase__ : int = [ v, ] assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A_ ) lowerCAmelCase__ : List[Any] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : int = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , ) lowerCAmelCase__ : int = 1 / loss lowerCAmelCase__ : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A_ , A_ , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A_ , A_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(A_ , args.output_dir ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=A_ , type=A_ , required=A_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A_ , type=A_ , required=A_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=A_ , type=A_ , required=A_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=A_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=A_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=A_ , type=A_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=A_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=A_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=A_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=A_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=A_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=A_ , default=42 ) parser.add_argument('''--local_rank''' , type=A_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A_ , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowerCAmelCase__ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ : Dict = torch.device('''cuda''' , args.local_rank ) lowerCAmelCase__ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ : Dict = nn.parallel.DistributedDataParallel( A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ ) elif args.n_gpu > 1: lowerCAmelCase__ : List[Any] = nn.DataParallel(A_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A_ ) torch.save(A_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , A_ ) # Prepare dataset lowerCAmelCase__ : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ : Union[str, Any] = (torch.from_numpy(A_ ),) lowerCAmelCase__ : Tuple = TensorDataset(*A_ ) lowerCAmelCase__ : Optional[int] = RandomSampler(A_ ) lowerCAmelCase__ : Dict = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A_ , A_ , A_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ : Tuple = mask_heads(A_ , A_ , A_ ) prune_heads(A_ , A_ , A_ , A_ ) if __name__ == "__main__": main()
106
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCAmelCase : Tuple = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def __magic_name__ ( A : Optional[int] ): '''simple docstring''' a = list(s_dict.keys() ) for key in keys: a = R".*/layers_(\d+)" a = key if re.match(A, A ): a = re.sub(R"layers_(\d+)", R"block/\1/layer", A ) a = R"(encoder|decoder)\/" if re.match(A, A ): a = re.match(A, A ).groups() if groups[0] == "encoder": a = re.sub(R"/mlp/", R"/1/mlp/", A ) a = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", A ) elif groups[0] == "decoder": a = re.sub(R"/mlp/", R"/2/mlp/", A ) a = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", A ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: a = new_key.replace(A, A ) print(F"""{key} -> {new_key}""" ) a = s_dict.pop(A ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: a = s_dict[key].shape[0] a = s_dict[key] for idx in range(A ): a = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/", "nested fstring" )}""" ) s_dict.pop(A ) return s_dict __lowerCAmelCase : Optional[int] = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def __magic_name__ ( A : Dict, A : Optional[Any] ): '''simple docstring''' import regex as re with open(A, "r" ) as f: a = f.read() a = re.findall(R"(.*) = ([0-9.]*)", A ) a = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": a = float(A ) if "." in value else int(A ) a = re.findall(R"(.*activations) = \(\'(.*)\',\)", A )[0] a = str(activation[1] ) a = num_experts a = SwitchTransformersConfig(**A ) return config def __magic_name__ ( A : Union[str, Any], A : Union[str, Any], A : List[str]=None, A : List[Any]="./", A : str=8 ): '''simple docstring''' print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) a = checkpoints.load_tax_checkpoint(A ) if gin_file is not None: a = convert_gin_to_config(A, A ) else: a = SwitchTransformersConfig.from_pretrained(A ) a = SwitchTransformersForConditionalGeneration(A ) a = flax_params["target"] a = flatten_dict(A, sep="/" ) a = rename_keys(A ) a = unflatten_dict(A, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(A, A ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(A ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') __lowerCAmelCase : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
107
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = mock.Mock() lowerCAmelCase : Any = 500 lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : int = HTTPError lowerCAmelCase : Optional[int] = {} # Download this model to make sure it's in the cache. lowerCAmelCase : List[str] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: lowerCAmelCase : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = mock.Mock() lowerCAmelCase : int = 500 lowerCAmelCase : Dict = {} lowerCAmelCase : List[Any] = HTTPError lowerCAmelCase : Any = {} # Download this model to make sure it's in the cache. lowerCAmelCase : Optional[Any] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: lowerCAmelCase : Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self ): """simple docstring""" try: lowerCAmelCase : Optional[int] = tempfile.mktemp() with open(snake_case__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , snake_case__ ) lowerCAmelCase : Union[str, Any] = AlbertTokenizer.from_pretrained(snake_case__ ) finally: os.remove(snake_case__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , snake_case__ ) lowerCAmelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Any =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : List[str] = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def lowercase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[Any] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase : Optional[Any] = BertTokenizer(snake_case__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) lowerCAmelCase : List[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ , repo_id="test-tokenizer" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase : Any = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : str = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase : Tuple = BertTokenizer(snake_case__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) lowerCAmelCase : Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[str] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase : Tuple = CustomTokenizer(snake_case__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[Any] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase : str = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : Optional[int] = CustomTokenizerFast.from_pretrained(snake_case__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( f"""{USER}/test-dynamic-tokenizer""" , use_fast=snake_case__ , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = Trie() lowerCAmelCase : Optional[int] = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case__ , ["AB", "C"] )
108
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A: Any = get_logger(__name__) A: Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class SCREAMING_SNAKE_CASE__ : @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE__ : @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' for processor in self: UpperCAmelCase : List[Any] = inspect.signature(processor.__call__ ).parameters if len(_SCREAMING_SNAKE_CASE ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys() )} for " F"{processor.__class__} are passed to the logits processor." ) UpperCAmelCase : Dict = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Any = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" ) UpperCAmelCase : str = temperature def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase : List[Any] = scores / self.temperature return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float("""Inf""" ) , _SCREAMING_SNAKE_CASE = 1 ) -> List[str]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) UpperCAmelCase : int = top_p UpperCAmelCase : Optional[int] = filter_value UpperCAmelCase : Optional[int] = min_tokens_to_keep def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1] ) UpperCAmelCase : Tuple = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value ) UpperCAmelCase : Tuple = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase : Optional[Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase : List[str] = jnp.roll(_SCREAMING_SNAKE_CASE , 1 ) score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE ) # min tokens to keep UpperCAmelCase : Tuple = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[-1] return next_scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float("""Inf""" ) , _SCREAMING_SNAKE_CASE = 1 ) -> Any: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" ) UpperCAmelCase : Optional[int] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = filter_value def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[Any] = scores.shape UpperCAmelCase : Optional[int] = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase : int = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase , UpperCAmelCase : List[str] = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase : Union[str, Any] = topk_scores.flatten() UpperCAmelCase : Optional[int] = topk_indices.flatten() + shift UpperCAmelCase : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return next_scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = bos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase : Optional[int] = jnp.full(scores.shape , -float("""inf""" ) ) UpperCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase : Optional[int] = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = max_length UpperCAmelCase : Optional[int] = eos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase : Any = jnp.full(scores.shape , -float("""inf""" ) ) UpperCAmelCase : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase : int = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) UpperCAmelCase : List[Any] = min_length UpperCAmelCase : Any = eos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase : List[Any] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = begin_index def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase : Optional[Any] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase : List[Any] = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = dict(_SCREAMING_SNAKE_CASE ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase : List[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase : List[Any] = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = jnp.intaa(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray: '''simple docstring''' def _force_token(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = scores.shape[0] UpperCAmelCase : List[Any] = self.force_token_array[generation_idx] UpperCAmelCase : int = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float("""inf""" ) UpperCAmelCase : List[str] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase : List[Any] = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token) ) return new_scores UpperCAmelCase : Dict = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple = generate_config.eos_token_id UpperCAmelCase : List[Any] = generate_config.no_timestamps_token_id UpperCAmelCase : str = generate_config.no_timestamps_token_id + 1 UpperCAmelCase : int = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_SCREAMING_SNAKE_CASE , """max_initial_timestamp_index""" ): UpperCAmelCase : Union[str, Any] = generate_config.max_initial_timestamp_index else: UpperCAmelCase : Dict = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase : Union[str, Any] = model_config.vocab_size def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return jnp.where( _SCREAMING_SNAKE_CASE , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , _SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase : Any = jnp.where( _SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase : Dict = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) def handle_cumulative_probs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , _SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores
109
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
"""simple docstring""" import argparse from collections import defaultdict import yaml a = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' _A = defaultdict(_lowercase ) for doc in model_doc: counts[doc["local"]] += 1 _A = [key for key, value in counts.items() if value > 1] _A = [] for duplicate_key in duplicates: _A = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_lowercase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_lowercase , key=lambda _snake_case : s["title"].lower() ) def _snake_case ( _snake_case : Any=False ) -> Tuple: '''simple docstring''' with open(_lowercase , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['''sections'''] # Then to the model doc _A = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _A = api_doc[model_idx]['''sections'''] _A = [(idx, section) for idx, section in enumerate(_lowercase ) if '''sections''' in section] _A = False for idx, modality_doc in modalities_docs: _A = modality_doc['''sections'''] _A = clean_model_doc_toc(_lowercase ) if old_modality_doc != new_modality_doc: _A = True if overwrite: _A = new_modality_doc if diff: if overwrite: _A = model_doc _A = api_doc with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a = parser.parse_args() check_model_doc(args.fix_and_overwrite)
315
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : str = '''T5Config''' def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Dict , __snake_case : List[str] ): '''simple docstring''' lowercase = jnp.zeros_like(_lowercase ) lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowercase = shifted_input_ids.at[:, 0].set(_lowercase ) lowercase = jnp.where(shifted_input_ids == -1_00 , _lowercase , _lowercase ) return shifted_input_ids class a ( _lowercase ): UpperCAmelCase_ : Optional[int] ="mt5" UpperCAmelCase_ : Dict =MTaConfig class a ( _lowercase ): UpperCAmelCase_ : Tuple ="mt5" UpperCAmelCase_ : int =MTaConfig class a ( _lowercase ): UpperCAmelCase_ : Optional[int] ="mt5" UpperCAmelCase_ : Union[str, Any] =MTaConfig
220
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowercase ( _lowercase ): '''simple docstring''' __lowerCAmelCase = "" __lowerCAmelCase = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): super().__init__(self , **_UpperCAmelCase ) __a : List[str] = repo_info __a : Optional[int] = token __a : int = None def _lowerCamelCase ( self ): if self.dir_cache is None: __a : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : Union[str, Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_UpperCAmelCase ): {'''name''': str(_UpperCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = "rb" , **_UpperCAmelCase , ): if not isinstance(self.repo_info , _UpperCAmelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Optional[int] = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): self._get_dirs() __a : Dict = self._strip_protocol(_UpperCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): self._get_dirs() __a : Any = PurePosixPath(path.strip('''/''' ) ) __a : List[Any] = {} for p, f in self.dir_cache.items(): __a : Union[str, Any] = PurePosixPath(p.strip('''/''' ) ) __a : Union[str, Any] = p.parent if root == path: __a : List[str] = f __a : Dict = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
160
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Tuple = x __magic_name__ : Any = y for step in range(_lowercase ): # noqa: B007 __magic_name__ : str = a * a - b * b + x __magic_name__ : Optional[int] = 2 * a * b + y __magic_name__ : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def lowerCamelCase ( lowerCAmelCase : Any = 800 , lowerCAmelCase : List[Any] = 600 , lowerCAmelCase : Optional[Any] = -0.6 , lowerCAmelCase : Optional[Any] = 0 , lowerCAmelCase : Any = 3.2 , lowerCAmelCase : int = 50 , lowerCAmelCase : int = True , ): """simple docstring""" __magic_name__ : Dict = Image.new('RGB' , (image_width, image_height) ) __magic_name__ : str = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates __magic_name__ : Tuple = figure_width / image_width * image_height __magic_name__ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __magic_name__ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height __magic_name__ : List[Any] = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __magic_name__ : Dict = get_color_coded_rgb(_lowercase ) else: __magic_name__ : List[str] = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase :Optional[int] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
331
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a_ : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = torch.load(_lowercase , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE : int = torch.load(_lowercase , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) __SCREAMING_SNAKE_CASE : int = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE : Any = sd.pop(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE : int = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE : List[str] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE : str = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE : Tuple = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE : str = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE : List[str] = torch.split(_lowercase , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = q __SCREAMING_SNAKE_CASE : Optional[Any] = k __SCREAMING_SNAKE_CASE : int = v del sd[key] return sd @torch.no_grad() def a__ ( snake_case , snake_case , snake_case=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = load_checkpoint(_lowercase ) if config is not None: __SCREAMING_SNAKE_CASE : List[str] = OPTConfig.from_pretrained(_lowercase ) else: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig() __SCREAMING_SNAKE_CASE : int = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowercase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
303
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowercase__ : Tuple = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase__ : str = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' lowercase__ : List[Any] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __lowercase ( _a ): def remove_articles(_a ): snake_case_ : List[str] = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_lowercase , ''' ''' , _lowercase ) def white_space_fix(_a ): return " ".join(text.split() ) def remove_punc(_a ): snake_case_ : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def __lowercase ( _a , _a ): return int(normalize_answer(_lowercase ) == normalize_answer(_lowercase ) ) def __lowercase ( _a , _a ): snake_case_ : int = [any(compute_exact(_lowercase , _lowercase ) for ref in refs ) for pred, refs in zip(_lowercase , _lowercase )] return (sum(_lowercase ) / len(_lowercase )) * 100 def __lowercase ( _a , _a , _a , _a ): snake_case_ : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case_ : Dict = Counter(_lowercase ) snake_case_ : List[str] = Counter(_lowercase ) snake_case_ : List[Any] = Counter() for sgram, scount in sgramcounter.items(): snake_case_ : Any = scount * numref snake_case_ : List[Any] = Counter(_lowercase ) snake_case_ : List[Any] = Counter() for cgram, ccount in cgramcounter.items(): snake_case_ : Dict = ccount * numref # KEEP snake_case_ : str = sgramcounter_rep & cgramcounter_rep snake_case_ : int = keepgramcounter_rep & rgramcounter snake_case_ : List[str] = sgramcounter_rep & rgramcounter snake_case_ : str = 0 snake_case_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : str = 1 snake_case_ : Dict = 1 if len(_lowercase ) > 0: snake_case_ : Union[str, Any] = keeptmpscorea / len(_lowercase ) if len(_lowercase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case_ : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case_ : Optional[int] = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case_ : Optional[int] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case_ : int = sgramcounter_rep - cgramcounter_rep snake_case_ : Tuple = delgramcounter_rep - rgramcounter snake_case_ : Any = sgramcounter_rep - rgramcounter snake_case_ : str = 0 snake_case_ : int = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : Any = 1 if len(_lowercase ) > 0: snake_case_ : Union[str, Any] = deltmpscorea / len(_lowercase ) # ADDITION snake_case_ : Optional[Any] = set(_lowercase ) - set(_lowercase ) snake_case_ : str = set(_lowercase ) & set(_lowercase ) snake_case_ : Optional[int] = set(_lowercase ) - set(_lowercase ) snake_case_ : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : str = 1 snake_case_ : Dict = 1 if len(_lowercase ) > 0: snake_case_ : List[Any] = addtmpscore / len(_lowercase ) if len(_lowercase ) > 0: snake_case_ : Optional[Any] = addtmpscore / len(_lowercase ) snake_case_ : Union[str, Any] = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case_ : Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowercase ( _a , _a , _a ): snake_case_ : Union[str, Any] = len(_lowercase ) snake_case_ : Union[str, Any] = ssent.split(''' ''' ) snake_case_ : Tuple = csent.split(''' ''' ) snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = [] snake_case_ : List[Any] = [] snake_case_ : Any = [] snake_case_ : List[str] = [] snake_case_ : List[str] = [] snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = [] snake_case_ : Dict = [] snake_case_ : int = [] for rsent in rsents: snake_case_ : Dict = rsent.split(''' ''' ) snake_case_ : Union[str, Any] = [] snake_case_ : List[Any] = [] snake_case_ : str = [] ragramslist.append(_lowercase ) for i in range(0 , len(_lowercase ) - 1 ): if i < len(_lowercase ) - 1: snake_case_ : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowercase ) if i < len(_lowercase ) - 2: snake_case_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowercase ) if i < len(_lowercase ) - 3: snake_case_ : Optional[int] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowercase ) ragramslist.append(_lowercase ) ragramslist.append(_lowercase ) ragramslist.append(_lowercase ) for i in range(0 , len(_lowercase ) - 1 ): if i < len(_lowercase ) - 1: snake_case_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowercase ) if i < len(_lowercase ) - 2: snake_case_ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowercase ) if i < len(_lowercase ) - 3: snake_case_ : Tuple = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowercase ) for i in range(0 , len(_lowercase ) - 1 ): if i < len(_lowercase ) - 1: snake_case_ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowercase ) if i < len(_lowercase ) - 2: snake_case_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowercase ) if i < len(_lowercase ) - 3: snake_case_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowercase ) (snake_case_) : Dict = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase ) (snake_case_) : Any = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase ) (snake_case_) : Optional[Any] = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase ) (snake_case_) : List[Any] = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase ) snake_case_ : str = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case_ : List[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case_ : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case_ : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowercase ( _a , _a = True , _a = "13a" , _a = True ): if lowercase: snake_case_ : Optional[int] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case_ : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(_lowercase )()(_lowercase ) else: snake_case_ : str = sacrebleu.TOKENIZERS[tokenizer]()(_lowercase ) elif tokenizer == "moses": snake_case_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(_lowercase , return_str=_lowercase , escape=_lowercase ) elif tokenizer == "penn": snake_case_ : Optional[Any] = sacremoses.MosesTokenizer().penn_tokenize(_lowercase , return_str=_lowercase ) else: snake_case_ : List[Any] = sentence if not return_str: snake_case_ : Any = normalized_sent.split() return normalized_sent def __lowercase ( _a , _a , _a ): if not (len(_lowercase ) == len(_lowercase ) == len(_lowercase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) snake_case_ : str = 0 for src, pred, refs in zip(_lowercase , _lowercase , _lowercase ): sari_score += SARIsent(normalize(_lowercase ) , normalize(_lowercase ) , [normalize(_lowercase ) for sent in refs] ) snake_case_ : List[str] = sari_score / len(_lowercase ) return 100 * sari_score def __lowercase ( _a , _a , _a="exp" , _a=None , _a=False , _a=False , _a=False , ): snake_case_ : Any = len(references[0] ) if any(len(_lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) snake_case_ : Optional[int] = [[refs[i] for refs in references] for i in range(_lowercase )] snake_case_ : Union[str, Any] = sacrebleu.corpus_bleu( _lowercase , _lowercase , smooth_method=_lowercase , smooth_value=_lowercase , force=_lowercase , lowercase=_lowercase , use_effective_order=_lowercase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def _snake_case ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _snake_case ( self : str , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] ): snake_case_ : int = {} result.update({'''sari''': compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} ) result.update({'''exact''': compute_em(predictions=lowercase_ , references=lowercase_ )} ) return result
264
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
from __future__ import annotations import requests def UpperCAmelCase__ ( _A : List[str] ): '''simple docstring''' a__ =F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_lowercase ).json() def UpperCAmelCase__ ( _A : List[Any] = 10 ): '''simple docstring''' a__ ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' a__ =requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def UpperCAmelCase__ ( _A : Dict = 10 ): '''simple docstring''' a__ =hackernews_top_stories(_lowercase ) return "\n".join('''* [{title}]({url})'''.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
188
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
'''simple docstring''' __lowercase : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCamelCase (): __a : Union[str, Any] = input('Enter message: ' ) __a : Optional[Any] = input('Enter key [alphanumeric]: ' ) __a : Tuple = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): __a : Tuple = '''encrypt''' __a : Dict = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith('d' ): __a : Optional[int] = '''decrypt''' __a : Dict = decrypt_message(_lowercase , _lowercase ) print(F"""\n{mode.title()}ed message:""" ) print(_lowercase ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): return translate_message(_lowercase , _lowercase , 'encrypt' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): return translate_message(_lowercase , _lowercase , 'decrypt' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): __a : Tuple = [] __a : Optional[Any] = 0 __a : List[Any] = key.upper() for symbol in message: __a : Union[str, Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): __a : Tuple = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
27
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(_lowercase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
186
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : str = logging.get_logger(__name__) def a_ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False ): UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def a_ ( lowerCamelCase , lowerCamelCase ): for i in range(config.num_hidden_layers ): UpperCAmelCase__ = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def a_ ( lowerCamelCase ): UpperCAmelCase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = dct.pop(_lowercase ) UpperCAmelCase__ = val @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=_lowercase ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if "vqa" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = 3_1_2_9 UpperCAmelCase__ = '''huggingface/label-files''' UpperCAmelCase__ = '''vqa2-id2label.json''' UpperCAmelCase__ = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase__ = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = ViltForQuestionAnswering(_lowercase ) elif "nlvr" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = 2 UpperCAmelCase__ = {0: '''False''', 1: '''True'''} UpperCAmelCase__ = {v: k for k, v in config.idalabel.items()} UpperCAmelCase__ = 3 UpperCAmelCase__ = ViltForImagesAndTextClassification(_lowercase ) elif "irtr" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = ViltForImageAndTextRetrieval(_lowercase ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = ViltForMaskedLM(_lowercase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' )['''state_dict'''] UpperCAmelCase__ = create_rename_keys(_lowercase , _lowercase , _lowercase , _lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase ) if mlm_model or irtr_model: UpperCAmelCase__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase__ = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowercase ) # Define processor UpperCAmelCase__ = ViltImageProcessor(size=3_8_4 ) UpperCAmelCase__ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCAmelCase__ = ViltProcessor(_lowercase , _lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowercase ).raw ) UpperCAmelCase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowercase ).raw ) UpperCAmelCase__ = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' ) UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' ) UpperCAmelCase__ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase__ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_lowercase ).raw ) if mlm_model: UpperCAmelCase__ = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase__ = '''How many cats are there?''' UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' ) UpperCAmelCase__ = model(**_lowercase ) # Verify outputs if mlm_model: UpperCAmelCase__ = torch.Size([1, 1_1, 3_0_5_2_2] ) UpperCAmelCase__ = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 ) # verify masked token prediction equals "cats" UpperCAmelCase__ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase__ = torch.Size([1, 3_1_2_9] ) UpperCAmelCase__ = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 ) # verify vqa prediction equals "2" UpperCAmelCase__ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase__ = torch.Size([1, 2] ) UpperCAmelCase__ = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
98
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
"""simple docstring""" def _snake_case ( _snake_case : List[Any] = 10 , _snake_case : Any = 10_00 , _snake_case : Union[str, Any] = True ) -> int: '''simple docstring''' assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Dict ) -> None: '''simple docstring''' assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(_snake_case : List[str] ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) _A = lower _A = higher _A = [] while True: _A = get_avg(_lowercase , _lowercase ) last_numbers.append(_lowercase ) if answer(_lowercase ) == "low": _A = number elif answer(_lowercase ) == "high": _A = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def _snake_case ( ) -> None: '''simple docstring''' _A = int(input('Enter lower value : ' ).strip() ) _A = int(input('Enter high value : ' ).strip() ) _A = int(input('Enter value to guess : ' ).strip() ) guess_the_number(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
315
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
"""simple docstring""" from typing import Any import numpy as np def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' return np.array_equal(_lowercase , matrix.conjugate().T ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : int ): '''simple docstring''' lowercase = v.conjugate().T lowercase = v_star.dot(_lowercase ) assert isinstance(_lowercase , np.ndarray ) return (v_star_dot.dot(_lowercase )) / (v_star.dot(_lowercase )) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(_lowercase ), f'{a} is not hermitian.' print(rayleigh_quotient(_lowercase , _lowercase ) ) lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowercase ), f'{a} is not hermitian.' assert rayleigh_quotient(_lowercase , _lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
220
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( _lowercase ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( _lowercase , _lowercase ): '''simple docstring''' __lowerCAmelCase = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1348.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ): # standard deviation of the initial noise distribution __a : Tuple = sigma_max # setable values __a : Optional[Any] = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): return sample def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ): __a : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps __a : str = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ): __a : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min __a : Any = sigma_max if sigma_max is not None else self.config.sigma_max __a : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) __a : Any = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __a : Union[str, Any] = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) __a : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) __a : List[str] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __a : int = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __a : Optional[Any] = timesteps.to(self.discrete_sigmas.device ) __a : int = self.discrete_sigmas[timesteps].to(sample.device ) __a : str = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) __a : Dict = torch.zeros_like(_UpperCAmelCase ) __a : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __a : List[Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __a : Union[str, Any] = diffusion.unsqueeze(-1 ) __a : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __a : int = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) __a : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __a : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __a : Any = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __a : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __a : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __a : str = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __a : Union[str, Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __a : List[Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __a : Union[str, Any] = step_size.unsqueeze(-1 ) __a : Dict = sample + step_size * model_output __a : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a : List[str] = timesteps.to(original_samples.device ) __a : int = self.discrete_sigmas.to(original_samples.device )[timesteps] __a : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) __a : Optional[Any] = noise + original_samples return noisy_samples def __len__( self ): return self.config.num_train_timesteps
160
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :int = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
'''simple docstring''' from __future__ import annotations import time a_ : List[Any] = list[tuple[int, int]] a_ : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = pos_x lowerCamelCase_ = pos_y lowerCamelCase_ = (pos_y, pos_x) lowerCamelCase_ = goal_x lowerCamelCase_ = goal_y lowerCamelCase_ = parent class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCamelCase ) lowerCamelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCamelCase ) lowerCamelCase_ = [self.start] lowerCamelCase_ = False def snake_case ( self ): """simple docstring""" while self.node_queue: lowerCamelCase_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ = True return self.retrace_path(UpperCamelCase ) lowerCamelCase_ = self.get_successors(UpperCamelCase ) for node in successors: self.node_queue.append(UpperCamelCase ) if not self.reached: return [self.start.pos] return None def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] for action in delta: lowerCamelCase_ = parent.pos_x + action[1] lowerCamelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCamelCase , UpperCamelCase , self.target.pos_y , self.target.pos_x , UpperCamelCase ) ) return successors def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = node lowerCamelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ = current_node.parent path.reverse() return path class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = BreadthFirstSearch(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = BreadthFirstSearch(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = False def snake_case ( self ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ = True return self.retrace_bidirectional_path( UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = current_bwd_node lowerCamelCase_ = current_fwd_node lowerCamelCase_ = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.fwd_bfs.retrace_path(UpperCamelCase ) lowerCamelCase_ = self.bwd_bfs.retrace_path(UpperCamelCase ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a_ : List[str] = (0, 0) a_ : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a_ : Tuple = time.time() a_ : int = BreadthFirstSearch(init, goal) a_ : Dict = bfs.search() a_ : Dict = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a_ : int = time.time() a_ : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) a_ : Any = bd_bfs.search() a_ : Dict = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
55
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowercase_ = Lock() def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __SCREAMING_SNAKE_CASE : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __SCREAMING_SNAKE_CASE : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __SCREAMING_SNAKE_CASE : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __SCREAMING_SNAKE_CASE : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __SCREAMING_SNAKE_CASE : str = Pipe() __SCREAMING_SNAKE_CASE : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = temp_rs __SCREAMING_SNAKE_CASE : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): __SCREAMING_SNAKE_CASE : str = Pipe() __SCREAMING_SNAKE_CASE : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __SCREAMING_SNAKE_CASE : Dict = temp_rs __SCREAMING_SNAKE_CASE : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
303
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Tuple = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _UpperCAmelCase ( _lowercase): _lowerCAmelCase : Any = "xmod" def __init__( self : List[str] , lowercase_ : Optional[int]=30522 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : Any=12 , lowercase_ : Tuple=3072 , lowercase_ : int="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=512 , lowercase_ : str=2 , lowercase_ : List[Any]=0.02 , lowercase_ : Union[str, Any]=1E-12 , lowercase_ : Any=1 , lowercase_ : Tuple=0 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]="absolute" , lowercase_ : Optional[Any]=True , lowercase_ : Any=None , lowercase_ : List[str]=False , lowercase_ : str=2 , lowercase_ : Dict=False , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : str=("en_XX",) , lowercase_ : List[Any]=None , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ : List[str] = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Tuple = hidden_act snake_case_ : Any = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[Any] = type_vocab_size snake_case_ : Dict = initializer_range snake_case_ : Dict = layer_norm_eps snake_case_ : str = position_embedding_type snake_case_ : Tuple = use_cache snake_case_ : List[Any] = classifier_dropout snake_case_ : Dict = pre_norm snake_case_ : Union[str, Any] = adapter_reduction_factor snake_case_ : Optional[int] = adapter_layer_norm snake_case_ : List[str] = adapter_reuse_layer_norm snake_case_ : Any = ln_before_adapter snake_case_ : Tuple = list(lowercase_ ) snake_case_ : int = default_language class _UpperCAmelCase ( _lowercase): @property def _snake_case ( self : int ): if self.task == "multiple-choice": snake_case_ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
264
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
188
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : Dict = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return int((input_a, input_a).count(0 ) == 0 ) def _SCREAMING_SNAKE_CASE ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
186
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( lowerCamelCase , lowerCamelCase = True , lowerCamelCase = math.inf , lowerCamelCase = -math.inf , lowerCamelCase = math.inf , lowerCamelCase = -math.inf , lowerCamelCase = False , lowerCamelCase = 1_0_0 , lowerCamelCase = 0.01 , lowerCamelCase = 1 , ): UpperCAmelCase__ = False UpperCAmelCase__ = search_prob UpperCAmelCase__ = start_temperate UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = None while not search_end: UpperCAmelCase__ = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase__ = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase__ = None UpperCAmelCase__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase__ = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase__ = neighbors.pop(_lowercase ) UpperCAmelCase__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase__ = picked_neighbor else: UpperCAmelCase__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase__ = picked_neighbor UpperCAmelCase__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase__ = True else: UpperCAmelCase__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def a_ ( lowerCamelCase , lowerCamelCase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( lowerCamelCase , lowerCamelCase ): return (3 * x**2) - (6 * y) lowerCAmelCase__ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ : Optional[int] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) lowerCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ : int = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
98
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') a = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase : Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase : Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase : Optional[str] = field( default=_lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase : bool = field( default=_lowercase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : bool = field( default=_lowercase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field(default=_lowercase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCAmelCase : Optional[str] = field( default=_lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCAmelCase : bool = field( default=_lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCAmelCase : Optional[int] = field( default=_lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCAmelCase : Optional[int] = field( default=_lowercase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase : bool = field( default=_lowercase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=_lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=_lowercase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Tuple ): if self.train_file is not None: _A = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : PreTrainedTokenizerBase UpperCAmelCase : Union[bool, str, PaddingStrategy] = True UpperCAmelCase : Optional[int] = None UpperCAmelCase : Optional[int] = None def __call__( self : List[str] , _UpperCAmelCase : int ): _A = '''label''' if '''label''' in features[0].keys() else '''labels''' _A = [feature.pop(_UpperCAmelCase ) for feature in features] _A = len(_UpperCAmelCase ) _A = len(features[0]['input_ids'] ) _A = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] _A = list(chain(*_UpperCAmelCase ) ) _A = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten _A = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels _A = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A = {} if data_args.train_file is not None: _A = data_args.train_file if data_args.validation_file is not None: _A = data_args.validation_file _A = data_args.train_file.split('.' )[-1] _A = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A = [F'''ending{i}''' for i in range(4 )] _A = '''sent1''' _A = '''sent2''' if data_args.max_seq_length is None: _A = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _A = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _A = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_snake_case : Dict ): _A = [[context] * 4 for context in examples[context_name]] _A = examples[question_header_name] _A = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out _A = list(chain(*_lowercase ) ) _A = list(chain(*_lowercase ) ) # Tokenize _A = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _A = raw_datasets['''train'''] if data_args.max_train_samples is not None: _A = min(len(_lowercase ) , data_args.max_train_samples ) _A = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _A = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _A = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _A = min(len(_lowercase ) , data_args.max_eval_samples ) _A = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _A = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_snake_case : Union[str, Any] ): _A = eval_predictions _A = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload _A = train_result.metrics _A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) _A = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('train' , _lowercase ) trainer.save_metrics('train' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _A = trainer.evaluate() _A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) _A = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('eval' , _lowercase ) trainer.save_metrics('eval' , _lowercase ) _A = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def _snake_case ( _snake_case : List[Any] ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
315
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) _UpperCamelCase : Any = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class a ( _lowercase, _lowercase ): UpperCAmelCase_ : Tuple ="resnet" UpperCAmelCase_ : Optional[int] =["basic", "bottleneck"] def __init__( self , _lowerCamelCase=3 , _lowerCamelCase=6_4 , _lowerCamelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _lowerCamelCase=[3, 4, 6, 3] , _lowerCamelCase="bottleneck" , _lowerCamelCase="relu" , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowercase = num_channels lowercase = embedding_size lowercase = hidden_sizes lowercase = depths lowercase = layer_type lowercase = hidden_act lowercase = downsample_in_first_stage lowercase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] lowercase = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class a ( _lowercase ): UpperCAmelCase_ : List[str] =version.parse("1.11" ) @property def UpperCamelCase_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase_ ( self ): return 1e-3
220
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
"""simple docstring""" from itertools import product def __A ( a_ :Tuple , a_ :int) -> list[int]: __a : int = sides_number __a : Tuple = max_face_number * dice_number __a : int = [0] * (max_total + 1) __a : Tuple = 1 __a : Dict = range(_lowercase , max_face_number + 1) for dice_numbers in product(_lowercase , repeat=_lowercase): __a : Optional[Any] = sum(_lowercase) totals_frequencies[total] += 1 return totals_frequencies def __A ( ) -> float: __a : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9) __a : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6) __a : List[Any] = 0 __a : Tuple = 9 __a : Dict = 4 * 9 __a : Any = 6 for peter_total in range(_lowercase , max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) __a : str = (4**9) * (6**6) __a : List[str] = peter_wins_count / total_games_number __a : Dict = round(_lowercase , ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
160
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]="shi-labs/oneformer_demo" ): """simple docstring""" with open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) as f: __magic_name__ : Optional[Any] = json.load(_lowercase ) __magic_name__ : Dict = {} __magic_name__ : Optional[Any] = [] __magic_name__ : Union[str, Any] = [] for key, info in class_info.items(): __magic_name__ : List[Any] = info['''name'''] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(_lowercase ) ) __magic_name__ : Tuple = thing_ids __magic_name__ : List[Any] = class_names return metadata class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any]=7 , _A : List[Any]=3 , _A : Union[str, Any]=30 , _A : int=400 , _A : Union[str, Any]=None , _A : Optional[Any]=True , _A : Any=True , _A : List[str]=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : Optional[Any]=10 , _A : Union[str, Any]=False , _A : List[Any]=255 , _A : Union[str, Any]="shi-labs/oneformer_demo" , _A : Optional[int]="ade20k_panoptic.json" , _A : Any=10 , ) -> List[str]: __magic_name__ : str = parent __magic_name__ : Union[str, Any] = batch_size __magic_name__ : Dict = num_channels __magic_name__ : Tuple = min_resolution __magic_name__ : List[Any] = max_resolution __magic_name__ : List[Any] = do_resize __magic_name__ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : str = image_mean __magic_name__ : Optional[Any] = image_std __magic_name__ : Dict = class_info_file __magic_name__ : Any = prepare_metadata(_A , _A ) __magic_name__ : Dict = num_text __magic_name__ : Optional[int] = repo_path # for the post_process_functions __magic_name__ : List[str] = 2 __magic_name__ : List[Any] = 10 __magic_name__ : List[str] = 10 __magic_name__ : Any = 3 __magic_name__ : List[Any] = 4 __magic_name__ : Dict = num_labels __magic_name__ : Optional[int] = do_reduce_labels __magic_name__ : Optional[Any] = ignore_index def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : int=False ) -> Any: if not batched: __magic_name__ : Any = image_inputs[0] if isinstance(_A , Image.Image ): __magic_name__ : Optional[int] = image.size else: __magic_name__ : Optional[int] = image.shape[1], image.shape[2] if w < h: __magic_name__ : Tuple = int(self.size['shortest_edge'] * h / w ) __magic_name__ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: __magic_name__ : Tuple = self.size['''shortest_edge'''] __magic_name__ : Dict = int(self.size['shortest_edge'] * w / h ) else: __magic_name__ : Tuple = self.size['''shortest_edge'''] __magic_name__ : Optional[int] = self.size['''shortest_edge'''] else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] __magic_name__ : Optional[int] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def __lowerCAmelCase ( self : Optional[int] ) -> Dict: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCamelCase ( _lowercase , unittest.TestCase ): '''simple docstring''' A_ : List[str] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string A_ : Any = image_processing_class def __lowerCAmelCase ( self : str ) -> int: __magic_name__ : List[Any] = OneFormerImageProcessorTester(self ) @property def __lowerCAmelCase ( self : str ) -> Union[str, Any]: return self.image_processing_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'ignore_index' ) ) self.assertTrue(hasattr(_A , 'class_info_file' ) ) self.assertTrue(hasattr(_A , 'num_text' ) ) self.assertTrue(hasattr(_A , 'repo_path' ) ) self.assertTrue(hasattr(_A , 'metadata' ) ) self.assertTrue(hasattr(_A , 'do_reduce_labels' ) ) def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: # Initialize image_processor __magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __magic_name__ : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __magic_name__ : Optional[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Tuple = self.image_processing_tester.get_expected_values(_A , batched=_A ) __magic_name__ : List[str] = image_processor( _A , ['semantic'] * len(_A ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: # Initialize image_processor __magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __magic_name__ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) __magic_name__ : Union[str, Any] = image_processor( _A , ['semantic'] * len(_A ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : Optional[int] ) -> int: # Initialize image_processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __magic_name__ : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __magic_name__ : int = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = self.image_processing_tester.get_expected_values(_A , batched=_A ) __magic_name__ : Dict = image_processor( _A , ['semantic'] * len(_A ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : str , _A : Tuple=False , _A : Dict=False , _A : int="np" ) -> Dict: __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __magic_name__ : str = self.image_processing_tester.num_labels __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: __magic_name__ : Any = num_labels if is_instance_map: __magic_name__ : Union[str, Any] = list(range(_A ) ) * 2 __magic_name__ : int = dict(enumerate(_A ) ) __magic_name__ : Optional[int] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __magic_name__ : List[str] = [Image.fromarray(_A ) for annotation in annotations] __magic_name__ : Any = image_processor( _A , ['semantic'] * len(_A ) , _A , return_tensors='pt' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def __lowerCAmelCase ( self : Tuple ) -> List[str]: pass def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: def common(_A : Optional[Any]=False , _A : Tuple=None ): __magic_name__ : Union[str, Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) __magic_name__ : Union[str, Any] = inputs['''mask_labels'''] __magic_name__ : str = inputs['''class_labels'''] __magic_name__ : Union[str, Any] = inputs['''pixel_values'''] __magic_name__ : str = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='pil' ) common(is_instance_map=_A , segmentation_type='pil' ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Tuple = np.zeros((20, 50) ) __magic_name__ : Any = 1 __magic_name__ : Dict = 1 __magic_name__ : List[Any] = 1 __magic_name__ : Union[str, Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __magic_name__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() __magic_name__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __magic_name__ : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __magic_name__ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowerCAmelCase ( self : Union[str, Any] ) -> str: __magic_name__ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __magic_name__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() __magic_name__ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _A ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowerCAmelCase ( self : List[Any] ) -> Any: __magic_name__ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __magic_name__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() __magic_name__ : Dict = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _A ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
331
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Dict = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : List[Any] ): """simple docstring""" pass @is_pipeline_test @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __SCREAMING_SNAKE_CASE : int = image_classifier(_A , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_A ) , [ [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}], [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}], ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], ] , ) @require_tf def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __SCREAMING_SNAKE_CASE : List[Any] = image_classifier(_A , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_A ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , ) __SCREAMING_SNAKE_CASE : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, {'''score''': 0.3_33, '''label''': ANY(_A )}, ], ] , ) @slow @require_torch def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes __SCREAMING_SNAKE_CASE : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __SCREAMING_SNAKE_CASE : str = image_classifier(_A , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_A ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = image_classifier(_A , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_A ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) __SCREAMING_SNAKE_CASE : List[str] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_A ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , )
303
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Optional[Any] ): snake_case_ : Dict = tempfile.mkdtemp() snake_case_ : int = BlipImageProcessor() snake_case_ : List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) snake_case_ : List[Any] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) snake_case_ : Union[str, Any] = InstructBlipProcessor(lowercase_ , lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **lowercase_ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def _snake_case ( self : str , **lowercase_ : str ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self : Optional[Any] , **lowercase_ : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).qformer_tokenizer def _snake_case ( self : Dict ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : int ): snake_case_ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ : Union[str, Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : int ): snake_case_ : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) snake_case_ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ : int = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) snake_case_ : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowercase_ ) def _snake_case ( self : List[Any] ): snake_case_ : Optional[int] = self.get_image_processor() snake_case_ : str = self.get_tokenizer() snake_case_ : str = self.get_qformer_tokenizer() snake_case_ : Optional[Any] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) snake_case_ : Union[str, Any] = self.prepare_image_inputs() snake_case_ : Optional[int] = image_processor(lowercase_ , return_tensors='''np''' ) snake_case_ : Tuple = processor(images=lowercase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self : Any ): snake_case_ : Union[str, Any] = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : str = self.get_qformer_tokenizer() snake_case_ : Any = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) snake_case_ : Union[str, Any] = '''lower newer''' snake_case_ : Union[str, Any] = processor(text=lowercase_ ) snake_case_ : List[Any] = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) snake_case_ : str = qformer_tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Tuple = self.get_qformer_tokenizer() snake_case_ : Optional[Any] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) snake_case_ : Any = '''lower newer''' snake_case_ : int = self.prepare_image_inputs() snake_case_ : Optional[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _snake_case ( self : Optional[int] ): snake_case_ : Dict = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[str] = self.get_qformer_tokenizer() snake_case_ : List[str] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) snake_case_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Optional[int] = processor.batch_decode(lowercase_ ) snake_case_ : int = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self : Any ): snake_case_ : List[Any] = self.get_image_processor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : List[str] = self.get_qformer_tokenizer() snake_case_ : Union[str, Any] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) snake_case_ : Optional[int] = '''lower newer''' snake_case_ : Tuple = self.prepare_image_inputs() snake_case_ : Optional[int] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
264
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( _lowercase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = XLMTokenizer lowerCamelCase__ : Optional[Any] = False def _UpperCAmelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a__ =dict(zip(lowercase_, range(len(lowercase_ ) ) ) ) a__ =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''' ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file, '''w''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def _UpperCAmelCase ( self, lowercase_ ) -> List[Any]: """simple docstring""" a__ ='''lower newer''' a__ ='''lower newer''' return input_text, output_text def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =XLMTokenizer(self.vocab_file, self.merges_file ) a__ ='''lower''' a__ =['''low''', '''er</w>'''] a__ =tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_, lowercase_ ) a__ =tokens + ['''<unk>'''] a__ =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ), lowercase_ ) @slow def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" a__ =XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) a__ =tokenizer.encode('''sequence builders''', add_special_tokens=lowercase_ ) a__ =tokenizer.encode('''multi-sequence build''', add_special_tokens=lowercase_ ) a__ =tokenizer.build_inputs_with_special_tokens(lowercase_ ) a__ =tokenizer.build_inputs_with_special_tokens(lowercase_, lowercase_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
188
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( _lowercase ): A_ = 42 class __UpperCamelCase ( _lowercase , _lowercase ): @register_to_config def __init__( self , __a = 32 , __a = 64 , __a = 20 , __a = 768 , __a=77 , __a=4 , __a = 0.0 , __a = "silu" , __a = None , __a = None , __a = "linear" , __a = "prd" , __a = None , __a = None , __a = None , ): '''simple docstring''' super().__init__() __a : str = num_attention_heads __a : Tuple = attention_head_dim __a : Any = num_attention_heads * attention_head_dim __a : str = additional_embeddings __a : int = time_embed_dim or inner_dim __a : Any = embedding_proj_dim or embedding_dim __a : Optional[int] = clip_embed_dim or embedding_dim __a : List[str] = Timesteps(__a , __a , 0 ) __a : Dict = TimestepEmbedding(__a , __a , out_dim=__a , act_fn=__a ) __a : Optional[int] = nn.Linear(__a , __a ) if embedding_proj_norm_type is None: __a : List[str] = None elif embedding_proj_norm_type == "layer": __a : Union[str, Any] = nn.LayerNorm(__a ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __a : Optional[int] = nn.Linear(__a , __a ) if encoder_hid_proj_type is None: __a : int = None elif encoder_hid_proj_type == "linear": __a : Tuple = nn.Linear(__a , __a ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __a : str = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __a ) ) if added_emb_type == "prd": __a : Union[str, Any] = nn.Parameter(torch.zeros(1 , 1 , __a ) ) elif added_emb_type is None: __a : List[Any] = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __a : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock( __a , __a , __a , dropout=__a , activation_fn='gelu' , attention_bias=__a , ) for d in range(__a ) ] ) if norm_in_type == "layer": __a : Dict = nn.LayerNorm(__a ) elif norm_in_type is None: __a : List[str] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __a : List[Any] = nn.LayerNorm(__a ) __a : Tuple = nn.Linear(__a , __a ) __a : Union[str, Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) __a : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , __a , persistent=__a ) __a : List[Any] = nn.Parameter(torch.zeros(1 , __a ) ) __a : Optional[Any] = nn.Parameter(torch.zeros(1 , __a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = {} def fn_recursive_add_processors(__a , __a , __a ): if hasattr(__a , 'set_processor' ): __a : int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , __a , __a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__a , __a , __a ) return processors def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(__a , __a ) and len(__a ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(__a )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__a , __a , __a ): if hasattr(__a , 'set_processor' ): if not isinstance(__a , __a ): module.set_processor(__a ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , __a , __a ) for name, module in self.named_children(): fn_recursive_attn_processor(__a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __UpperCAmelCase ( self , __a , __a , __a , __a = None , __a = None , __a = True , ): '''simple docstring''' __a : Union[str, Any] = hidden_states.shape[0] __a : Any = timestep if not torch.is_tensor(__a ): __a : int = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0: __a : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a : List[Any] = timesteps * torch.ones(__a , dtype=timesteps.dtype , device=timesteps.device ) __a : Any = self.time_proj(__a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a : Optional[Any] = timesteps_projected.to(dtype=self.dtype ) __a : str = self.time_embedding(__a ) if self.embedding_proj_norm is not None: __a : List[Any] = self.embedding_proj_norm(__a ) __a : Optional[int] = self.embedding_proj(__a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a : Dict = self.encoder_hidden_states_proj(__a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __a : Optional[Any] = self.proj_in(__a ) __a : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) __a : Tuple = [] __a : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(__a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a : Union[str, Any] = hidden_states[:, None, :] __a : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a : Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(__a , -1 , -1 ) additional_embeds.append(__a ) __a : Tuple = torch.cat( __a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a : List[Any] = F.pad( __a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a : int = hidden_states + positional_embeddings if attention_mask is not None: __a : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 __a : Optional[int] = F.pad(__a , (0, self.additional_embeddings) , value=0.0 ) __a : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a : Any = self.norm_in(__a ) for block in self.transformer_blocks: __a : str = block(__a , attention_mask=__a ) __a : Optional[int] = self.norm_out(__a ) if self.prd_embedding is not None: __a : Any = hidden_states[:, -1] else: __a : Dict = hidden_states[:, additional_embeddings_len:] __a : Optional[int] = self.proj_to_clip_embeddings(__a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
27
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
import random class _lowerCamelCase : """simple docstring""" @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : int = [ord(_SCREAMING_SNAKE_CASE ) for i in text] A_ : List[Any] = [] A_ : Tuple = [] for i in plain: A_ : Optional[Any] = random.randint(1 , 300 ) A_ : Optional[int] = (i + k) * k cipher.append(_SCREAMING_SNAKE_CASE ) key.append(_SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : List[str] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): A_ : List[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_SCREAMING_SNAKE_CASE ) ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
186
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase__ : List[Any] = logging.getLogger(__name__) lowerCAmelCase__ : List[Any] = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case : """simple docstring""" snake_case__ = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case : """simple docstring""" snake_case__ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) snake_case__ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "A csv or a json file containing the validation data."} ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "The name of the task to train on."} , ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case : """simple docstring""" snake_case__ = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) snake_case__ = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) snake_case__ = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) snake_case__ = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) snake_case__ = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) snake_case__ = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) snake_case__ = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) snake_case__ = dataclasses.field( default=_lowercase , metadata={"help": "Random seed for initialization."} , ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCAmelCase__ = dataset.filter(lambda lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCAmelCase__ = int(eval_result * len(_lowercase ) ) print(_lowercase ) UpperCAmelCase__ = dataset.sort('probability' , reverse=_lowercase ) UpperCAmelCase__ = dataset.select(range(_lowercase ) ) UpperCAmelCase__ = dataset.remove_columns(['label', 'probability'] ) UpperCAmelCase__ = dataset.rename_column('prediction' , 'label' ) UpperCAmelCase__ = dataset.map(lambda lowerCamelCase : {"label": idalabel[example["label"]]} ) UpperCAmelCase__ = dataset.shuffle(seed=args.seed ) UpperCAmelCase__ = os.path.join(_lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(_lowercase , index=_lowercase ) else: dataset.to_json(_lowercase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): UpperCAmelCase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCAmelCase__ = STModelArguments(model_name_or_path=_lowercase ) UpperCAmelCase__ = STDataArguments(train_file=_lowercase , infer_file=_lowercase ) UpperCAmelCase__ = STTrainingArguments(output_dir=_lowercase ) UpperCAmelCase__ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_lowercase ).items(): setattr(_lowercase , _lowercase , _lowercase ) for key, value in kwargs.items(): if hasattr(_lowercase , _lowercase ): setattr(_lowercase , _lowercase , _lowercase ) # Sanity checks UpperCAmelCase__ = {} UpperCAmelCase__ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCAmelCase__ = args.train_file UpperCAmelCase__ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCAmelCase__ = args.eval_file for key in data_files: UpperCAmelCase__ = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: UpperCAmelCase__ = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) UpperCAmelCase__ = f'''{args.output_dir}/self-train_iter-{{}}'''.format UpperCAmelCase__ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) accelerator.wait_for_everyone() UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = 0 UpperCAmelCase__ = False # Show the progress bar UpperCAmelCase__ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCAmelCase__ = data_dir_format(_lowercase ) assert os.path.exists(_lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCAmelCase__ = os.path.join(_lowercase , 'stage-1' ) UpperCAmelCase__ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_lowercase , _lowercase ): arguments_dict.update({key: value} ) UpperCAmelCase__ = os.path.join(_lowercase , 'best-checkpoint' , _lowercase ) if os.path.exists(_lowercase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _lowercase , _lowercase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _lowercase ) finetune(**_lowercase ) accelerator.wait_for_everyone() assert os.path.exists(_lowercase ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCAmelCase__ = os.path.join(_lowercase , 'best-checkpoint' ) UpperCAmelCase__ = os.path.join(_lowercase , 'stage-2' ) # Update arguments_dict UpperCAmelCase__ = model_path UpperCAmelCase__ = data_files['''train'''] UpperCAmelCase__ = current_output_dir UpperCAmelCase__ = os.path.join(_lowercase , 'best-checkpoint' , _lowercase ) if os.path.exists(_lowercase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _lowercase , _lowercase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _lowercase ) finetune(**_lowercase ) accelerator.wait_for_everyone() assert os.path.exists(_lowercase ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _lowercase ) UpperCAmelCase__ = iteration UpperCAmelCase__ = data_dir_format(iteration + 1 ) UpperCAmelCase__ = AutoConfig.from_pretrained(os.path.join(_lowercase , 'best-checkpoint' ) ) UpperCAmelCase__ = config.idalabel UpperCAmelCase__ = os.path.join(_lowercase , 'eval_results_best-checkpoint.json' ) UpperCAmelCase__ = os.path.join(_lowercase , 'test_results_best-checkpoint.json' ) assert os.path.exists(_lowercase ) with open(_lowercase , 'r' ) as f: UpperCAmelCase__ = float(json.load(_lowercase )[args.eval_metric] ) UpperCAmelCase__ = os.path.join(_lowercase , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_lowercase ) # Loading the dataset from local csv or json files. UpperCAmelCase__ = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['''data'''] UpperCAmelCase__ = load_dataset('csv' , data_files={'data': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(_lowercase , exist_ok=_lowercase ) shutil.copy(_lowercase , os.path.join(_lowercase , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(_lowercase ): shutil.copy(_lowercase , os.path.join(_lowercase , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.wait_for_everyone() UpperCAmelCase__ = os.path.join(_lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCAmelCase__ = eval_result if best_iteration is None: UpperCAmelCase__ = new_iteration UpperCAmelCase__ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCAmelCase__ = new_iteration UpperCAmelCase__ = new_eval_result UpperCAmelCase__ = 0 else: if new_eval_result == best_eval_result: UpperCAmelCase__ = new_iteration UpperCAmelCase__ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCAmelCase__ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _lowercase ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(_lowercase , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_lowercase , 'eval_results_best-iteration.json' ) , )
98
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
"""simple docstring""" from collections.abc import Sequence def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowercase ) ) def _snake_case ( _snake_case : Dict , _snake_case : Dict ) -> float: '''simple docstring''' _A = 0.0 for coeff in reversed(_lowercase ): _A = result * x + coeff return result if __name__ == "__main__": a = (0.0, 0.0, 5.0, 9.3, 7.0) a = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
315
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : List[str] , __snake_case : str , __snake_case : Any ): '''simple docstring''' if isinstance(_lowercase , _lowercase ): lowercase = np.full((len(_lowercase ), sequence_length, 2) , _lowercase ) else: lowercase = np.full((len(_lowercase ), sequence_length) , _lowercase ) for i, tensor in enumerate(_lowercase ): if padding_side == "right": if isinstance(_lowercase , _lowercase ): lowercase = tensor[:sequence_length] else: lowercase = tensor[:sequence_length] else: if isinstance(_lowercase , _lowercase ): lowercase = tensor[:sequence_length] else: lowercase = tensor[:sequence_length] return out_tensor.tolist() def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = ord(_lowercase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase = unicodedata.category(_lowercase ) if cat.startswith('P' ): return True return False @dataclass class a ( _lowercase ): UpperCAmelCase_ : PreTrainedTokenizerBase UpperCAmelCase_ : Union[bool, str, PaddingStrategy] =True UpperCAmelCase_ : Optional[int] =None UpperCAmelCase_ : Optional[int] =None UpperCAmelCase_ : int =-100 UpperCAmelCase_ : str ="pt" def UpperCamelCase_ ( self , _lowerCamelCase ): import torch lowercase = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase = self.tokenizer.pad( _lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch lowercase = torch.tensor(batch['entity_ids'] ).shape[1] lowercase = self.tokenizer.padding_side if padding_side == "right": lowercase = [ list(_lowerCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCamelCase )) for label in labels ] else: lowercase = [ [self.label_pad_token_id] * (sequence_length - len(_lowerCamelCase )) + list(_lowerCamelCase ) for label in labels ] lowercase = [feature['''ner_tags'''] for feature in features] lowercase = padding_tensor(_lowerCamelCase , -1 , _lowerCamelCase , _lowerCamelCase ) lowercase = [feature['''original_entity_spans'''] for feature in features] lowercase = padding_tensor(_lowerCamelCase , (-1, -1) , _lowerCamelCase , _lowerCamelCase ) lowercase = {k: torch.tensor(_lowerCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
220
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( _lowercase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = AudioLDMPipeline __lowerCAmelCase = TEXT_TO_AUDIO_PARAMS __lowerCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCAmelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _lowerCamelCase ( self ): torch.manual_seed(0 ) __a : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_UpperCAmelCase , ) __a : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __a : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __a : List[str] = ClapTextModelWithProjection(_UpperCAmelCase ) __a : Optional[Any] = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) __a : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_UpperCAmelCase , ) __a : List[Any] = SpeechTaHifiGan(_UpperCAmelCase ) __a : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): __a : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __a : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a : List[str] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def _lowerCamelCase ( self ): __a : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Any = self.get_dummy_components() __a : str = AudioLDMPipeline(**_UpperCAmelCase ) __a : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : str = self.get_dummy_inputs(_UpperCAmelCase ) __a : List[Any] = audioldm_pipe(**_UpperCAmelCase ) __a : str = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase ) == 256 __a : Any = audio[:10] __a : List[str] = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): __a : Union[str, Any] = self.get_dummy_components() __a : str = AudioLDMPipeline(**_UpperCAmelCase ) __a : Dict = audioldm_pipe.to(_UpperCAmelCase ) __a : Tuple = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) __a : str = 3 * [inputs['''prompt''']] # forward __a : List[str] = audioldm_pipe(**_UpperCAmelCase ) __a : Tuple = output.audios[0] __a : Any = self.get_dummy_inputs(_UpperCAmelCase ) __a : Any = 3 * [inputs.pop('''prompt''' )] __a : List[str] = audioldm_pipe.tokenizer( _UpperCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='''pt''' , ) __a : Dict = text_inputs['''input_ids'''].to(_UpperCAmelCase ) __a : Dict = audioldm_pipe.text_encoder( _UpperCAmelCase , ) __a : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __a : Optional[Any] = F.normalize(_UpperCAmelCase , dim=-1 ) __a : Tuple = prompt_embeds # forward __a : Optional[Any] = audioldm_pipe(**_UpperCAmelCase ) __a : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _lowerCamelCase ( self ): __a : List[Any] = self.get_dummy_components() __a : List[str] = AudioLDMPipeline(**_UpperCAmelCase ) __a : Optional[Any] = audioldm_pipe.to(_UpperCAmelCase ) __a : Union[str, Any] = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : str = self.get_dummy_inputs(_UpperCAmelCase ) __a : Optional[Any] = 3 * ['''this is a negative prompt'''] __a : Dict = negative_prompt __a : Tuple = 3 * [inputs['''prompt''']] # forward __a : List[str] = audioldm_pipe(**_UpperCAmelCase ) __a : Any = output.audios[0] __a : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : int = 3 * [inputs.pop('''prompt''' )] __a : Union[str, Any] = [] for p in [prompt, negative_prompt]: __a : Any = audioldm_pipe.tokenizer( _UpperCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='''pt''' , ) __a : Any = text_inputs['''input_ids'''].to(_UpperCAmelCase ) __a : Dict = audioldm_pipe.text_encoder( _UpperCAmelCase , ) __a : int = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __a : int = F.normalize(_UpperCAmelCase , dim=-1 ) embeds.append(_UpperCAmelCase ) __a : Union[str, Any] = embeds # forward __a : Dict = audioldm_pipe(**_UpperCAmelCase ) __a : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _lowerCamelCase ( self ): __a : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : Any = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) __a : List[Any] = AudioLDMPipeline(**_UpperCAmelCase ) __a : Union[str, Any] = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = self.get_dummy_inputs(_UpperCAmelCase ) __a : List[str] = '''egg cracking''' __a : List[str] = audioldm_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) __a : str = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase ) == 256 __a : Optional[Any] = audio[:10] __a : List[str] = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): __a : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Any = self.get_dummy_components() __a : str = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) __a : Optional[int] = AudioLDMPipeline(**_UpperCAmelCase ) __a : str = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) __a : Union[str, Any] = audioldm_pipe(_UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __a : Any = 2 __a : str = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __a : Any = 2 __a : str = audioldm_pipe(_UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __a : Optional[Any] = 2 __a : Union[str, Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _lowerCamelCase ( self ): __a : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Any = AudioLDMPipeline(**_UpperCAmelCase ) __a : Any = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = audioldm_pipe.vocoder.config.sampling_rate __a : Optional[Any] = self.get_dummy_inputs(_UpperCAmelCase ) __a : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_1_6 , **_UpperCAmelCase ) __a : Dict = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase ) / vocoder_sampling_rate == 0.0_1_6 __a : Optional[Any] = audioldm_pipe(audio_length_in_s=0.0_3_2 , **_UpperCAmelCase ) __a : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase ) / vocoder_sampling_rate == 0.0_3_2 def _lowerCamelCase ( self ): __a : Union[str, Any] = self.get_dummy_components() __a : List[Any] = AudioLDMPipeline(**_UpperCAmelCase ) __a : Tuple = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = ['''hey'''] __a : int = audioldm_pipe(_UpperCAmelCase , num_inference_steps=1 ) __a : Optional[Any] = output.audios.shape assert audio_shape == (1, 256) __a : Any = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __a : Tuple = SpeechTaHifiGan(_UpperCAmelCase ).to(_UpperCAmelCase ) __a : int = audioldm_pipe(_UpperCAmelCase , num_inference_steps=1 ) __a : Tuple = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _lowerCamelCase ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase ) def _lowerCamelCase ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=_UpperCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase ) @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase="cpu" , _UpperCAmelCase=torch.floataa , _UpperCAmelCase=0 ): __a : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a : Tuple = np.random.RandomState(_UpperCAmelCase ).standard_normal((1, 8, 128, 16) ) __a : Optional[int] = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) __a : Tuple = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def _lowerCamelCase ( self ): __a : List[str] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) __a : List[str] = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[Any] = self.get_inputs(_UpperCAmelCase ) __a : Any = 25 __a : int = audioldm_pipe(**_UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase ) == 81920 __a : Tuple = audio[77230:77240] __a : Optional[int] = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) __a : List[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def _lowerCamelCase ( self ): __a : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) __a : int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __a : Tuple = audioldm_pipe.to(_UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Any = self.get_inputs(_UpperCAmelCase ) __a : Optional[int] = audioldm_pipe(**_UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(_UpperCAmelCase ) == 81920 __a : List[str] = audio[27780:27790] __a : List[Any] = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) __a : List[str] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
160
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowerCAmelCase :List[Any] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase :Tuple = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowerCAmelCase :Union[str, Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] , _A : List[str] , _A : Union[str, Any] = False , _A : int = False , _A : Optional[int] = False , _A : Optional[Any] = False , ) -> Any: __magic_name__ : List[Any] = len(references[0] ) if any(len(_A ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __magic_name__ : Union[str, Any] = [[refs[i] for refs in references] for i in range(_A )] __magic_name__ : Optional[int] = TER( normalized=_A , no_punct=_A , asian_support=_A , case_sensitive=_A , ) __magic_name__ : Union[str, Any] = sb_ter.corpus_score(_A , _A ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
331
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = start lowerCamelCase_ = end lowerCamelCase_ = val lowerCamelCase_ = (start + end) // 2 lowerCamelCase_ = left lowerCamelCase_ = right def __repr__( self ): """simple docstring""" return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = collection lowerCamelCase_ = function if self.collection: lowerCamelCase_ = self._build_tree(0 , len(UpperCamelCase ) - 1 ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" self._update_tree(self.root , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" return self._query_range(self.root , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" if start == end: return SegmentTreeNode(UpperCamelCase , UpperCamelCase , self.collection[start] ) lowerCamelCase_ = (start + end) // 2 lowerCamelCase_ = self._build_tree(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self._build_tree(mid + 1 , UpperCamelCase ) return SegmentTreeNode(UpperCamelCase , UpperCamelCase , self.fn(left.val , right.val ) , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if node.start == i and node.end == i: lowerCamelCase_ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase , UpperCamelCase ) else: self._update_tree(node.right , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.fn(node.left.val , node.right.val ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase , UpperCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" if self.root is not None: lowerCamelCase_ = Queue() queue.put(self.root ) while not queue.empty(): lowerCamelCase_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) a_ : List[str] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
55
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase_ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" for attribute in key.split('''.''' ): __SCREAMING_SNAKE_CASE : int = getattr(_lowercase , _lowercase ) if weight_type is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_lowercase , _lowercase ).shape else: __SCREAMING_SNAKE_CASE : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE : Union[str, Any] = value else: __SCREAMING_SNAKE_CASE : Dict = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : str = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE : Dict = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == '''group''' , ) __SCREAMING_SNAKE_CASE : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __SCREAMING_SNAKE_CASE : str = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE : Tuple = name.split(_lowercase )[0].split('''.''' )[-2] __SCREAMING_SNAKE_CASE : Tuple = mapped_key.replace('''*''' , _lowercase ) if "weight_g" in name: __SCREAMING_SNAKE_CASE : Dict = '''weight_g''' elif "weight_v" in name: __SCREAMING_SNAKE_CASE : Optional[int] = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: __SCREAMING_SNAKE_CASE : Tuple = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __SCREAMING_SNAKE_CASE : Dict = '''weight''' else: __SCREAMING_SNAKE_CASE : int = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = full_name.split('''conv_layers.''' )[-1] __SCREAMING_SNAKE_CASE : Union[str, Any] = name.split('''.''' ) __SCREAMING_SNAKE_CASE : Any = int(items[0] ) __SCREAMING_SNAKE_CASE : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __SCREAMING_SNAKE_CASE : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def a__ ( snake_case , snake_case , snake_case=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = torch.load(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = WavLMConfigOrig(checkpoint['''cfg'''] ) __SCREAMING_SNAKE_CASE : List[Any] = WavLMOrig(_lowercase ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: __SCREAMING_SNAKE_CASE : Any = WavLMConfig.from_pretrained(_lowercase ) else: __SCREAMING_SNAKE_CASE : List[Any] = WavLMConfig() __SCREAMING_SNAKE_CASE : Union[str, Any] = WavLMModel(_lowercase ) recursively_load_weights(_lowercase , _lowercase ) hf_wavlm.save_pretrained(_lowercase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase_ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
303
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
"""simple docstring""" from __future__ import annotations import queue class _UpperCAmelCase : def __init__( self : Optional[int] , lowercase_ : str ): snake_case_ : Optional[int] = data snake_case_ : str = None snake_case_ : int = None def __lowercase ( ): print('''\n********Press N to stop entering at any point of time********\n''' ) snake_case_ : List[str] = input('''Enter the value of the root node: ''' ).strip().lower() snake_case_ : queue.Queue = queue.Queue() snake_case_ : Optional[int] = TreeNode(int(_lowercase ) ) q.put(_lowercase ) while not q.empty(): snake_case_ : Optional[Any] = q.get() snake_case_ : Dict = f"Enter the left node of {node_found.data}: " snake_case_ : Optional[int] = input(_lowercase ).strip().lower() or '''n''' if check == "n": return tree_node snake_case_ : Optional[Any] = TreeNode(int(_lowercase ) ) snake_case_ : str = left_node q.put(_lowercase ) snake_case_ : int = f"Enter the right node of {node_found.data}: " snake_case_ : List[str] = input(_lowercase ).strip().lower() or '''n''' if check == "n": return tree_node snake_case_ : Union[str, Any] = TreeNode(int(_lowercase ) ) snake_case_ : Optional[Any] = right_node q.put(_lowercase ) raise def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return snake_case_ : queue.Queue = queue.Queue() q.put(_lowercase ) while not q.empty(): snake_case_ : Optional[int] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return snake_case_ : queue.Queue = queue.Queue() q.put(_lowercase ) while not q.empty(): snake_case_ : List[str] = [] while not q.empty(): snake_case_ : Optional[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowercase ) def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return snake_case_ : list[TreeNode] = [] snake_case_ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(_lowercase ) snake_case_ : Optional[Any] = n.left # end of while means current node doesn't have left child snake_case_ : List[Any] = stack.pop() # start to traverse its right child snake_case_ : Any = n.right def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return snake_case_ : list[TreeNode] = [] snake_case_ : List[Any] = node while n or stack: while n: stack.append(_lowercase ) snake_case_ : Tuple = n.left snake_case_ : int = stack.pop() print(n.data , end=''',''' ) snake_case_ : List[str] = n.right def __lowercase ( _a ): if not isinstance(_lowercase , _lowercase ) or not node: return snake_case_ : Optional[Any] = [], [] snake_case_ : str = node stacka.append(_lowercase ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case_ : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowercase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def __lowercase ( _a = "" , _a=50 , _a="*" ): if not s: return "\n" + width * char snake_case_ : Tuple = divmod(width - len(_lowercase ) - 2 , 2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) lowercase__ : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
264
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __lowercase : List[str] = logging.getLogger(__name__) def lowerCamelCase (): __a : str = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_lowercase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_lowercase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_lowercase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_lowercase , default='data/dump' , help='The dump file prefix.' ) __a : Tuple = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": __a : Optional[int] = BertTokenizer.from_pretrained(args.tokenizer_name ) __a : Union[str, Any] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __a : Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __a : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __a : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __a : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __a : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __a : Dict = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __a : Union[str, Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: __a : Union[str, Any] = fp.readlines() logger.info('Start encoding' ) logger.info(F"""{len(_lowercase )} examples to process.""" ) __a : Union[str, Any] = [] __a : Optional[int] = 0 __a : Optional[int] = 10_000 __a : List[Any] = time.time() for text in data: __a : List[str] = F"""{bos} {text.strip()} {sep}""" __a : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) rslt.append(_lowercase ) iter += 1 if iter % interval == 0: __a : Union[str, Any] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) __a : int = time.time() logger.info('Finished binarization' ) logger.info(F"""{len(_lowercase )} examples processed.""" ) __a : Tuple = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" __a : Any = tokenizer.vocab_size if vocab_size < (1 << 16): __a : Optional[Any] = [np.uintaa(_lowercase ) for d in rslt] else: __a : Dict = [np.intaa(_lowercase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(_lowercase , 'wb' ) as handle: pickle.dump(rslt_ , _lowercase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self )->Dict: '''simple docstring''' A_ : Tuple = 1 A_ : Optional[Any] = 3 A_ : List[Any] = (32, 32) A_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_SCREAMING_SNAKE_CASE , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _snake_case ( self )->str: '''simple docstring''' torch.manual_seed(0 ) A_ : int = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _snake_case ( self )->List[Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->int: '''simple docstring''' A_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : Any = self.dummy_cond_unet_upscale A_ : Optional[Any] = DDPMScheduler() A_ : List[str] = DDIMScheduler(prediction_type='''v_prediction''' ) A_ : Optional[int] = self.dummy_vae A_ : Tuple = self.dummy_text_encoder A_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Optional[Any] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A_ : Optional[int] = StableDiffusionUpscalePipeline( unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , max_noise_level=350 , ) A_ : List[Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Tuple = '''A painting of a squirrel eating a burger''' A_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) A_ : Dict = sd_pipe( [prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A_ : Union[str, Any] = output.images A_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) A_ : Union[str, Any] = sd_pipe( [prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ : str = image[0, -3:, -3:, -1] A_ : str = image_from_tuple[0, -3:, -3:, -1] A_ : Tuple = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A_ : Any = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ : str = self.dummy_cond_unet_upscale A_ : Optional[Any] = DDPMScheduler() A_ : Union[str, Any] = DDIMScheduler(prediction_type='''v_prediction''' ) A_ : str = self.dummy_vae A_ : str = self.dummy_text_encoder A_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Dict = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A_ : List[str] = StableDiffusionUpscalePipeline( unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , max_noise_level=350 , ) A_ : Union[str, Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : int = '''A painting of a squirrel eating a burger''' A_ : List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A_ : List[Any] = output.images assert image.shape[0] == 2 A_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) A_ : List[str] = sd_pipe( [prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A_ : Dict = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : int = self.dummy_cond_unet_upscale A_ : int = DDPMScheduler() A_ : Optional[Any] = DDIMScheduler(prediction_type='''v_prediction''' ) A_ : Any = self.dummy_vae A_ : Optional[Any] = self.dummy_text_encoder A_ : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Tuple = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A_ : int = unet.half() A_ : Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk A_ : str = StableDiffusionUpscalePipeline( unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , max_noise_level=350 , ) A_ : Union[str, Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : int = '''A painting of a squirrel eating a burger''' A_ : Tuple = torch.manual_seed(0 ) A_ : Optional[int] = sd_pipe( [prompt] , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ).images A_ : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->str: '''simple docstring''' A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) A_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) A_ : Union[str, Any] = '''stabilityai/stable-diffusion-x4-upscaler''' A_ : List[str] = StableDiffusionUpscalePipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() A_ : Tuple = '''a cat sitting on a park bench''' A_ : int = torch.manual_seed(0 ) A_ : str = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) A_ : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) A_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) A_ : List[str] = '''stabilityai/stable-diffusion-x4-upscaler''' A_ : List[str] = StableDiffusionUpscalePipeline.from_pretrained( _SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() A_ : Optional[int] = '''a cat sitting on a park bench''' A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Dict = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) A_ : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _snake_case ( self )->List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) A_ : Any = '''stabilityai/stable-diffusion-x4-upscaler''' A_ : Dict = StableDiffusionUpscalePipeline.from_pretrained( _SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ : Union[str, Any] = '''a cat sitting on a park bench''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : Optional[Any] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type='''np''' , ) A_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
186
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case : """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any]=13 ,lowerCamelCase__ : int=10 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : List[Any]=2 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Optional[int]=32 ,lowerCamelCase__ : List[str]=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Union[str, Any]=37 ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Tuple=10 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : List[str]=0.9 ,lowerCamelCase__ : Dict=None ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_size UpperCAmelCase__ = tubelet_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = mask_ratio UpperCAmelCase__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCAmelCase__ = (image_size // patch_size) ** 2 UpperCAmelCase__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCAmelCase__ = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[int] ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = VideoMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = VideoMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ = torch.ones((self.num_masks,) ) UpperCAmelCase__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ = mask.expand(self.batch_size ,-1 ).bool() UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) # model only returns predictions for masked patches UpperCAmelCase__ = mask.sum().item() UpperCAmelCase__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" snake_case__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) snake_case__ = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = VideoMAEModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int=False ): UpperCAmelCase__ = copy.deepcopy(lowerCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ = torch.ones((self.model_tester.num_masks,) ) UpperCAmelCase__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ = mask.expand(self.model_tester.batch_size ,-1 ).bool() UpperCAmelCase__ = bool_masked_pos.to(lowerCamelCase__ ) if return_labels: if model_class in [ *get_values(lowerCamelCase__ ), ]: UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ ) return inputs_dict def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def __lowerCAmelCase ( self : str ): pass def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) @slow def __lowerCAmelCase ( self : List[str] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = VideoMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): if not self.has_attentions: pass else: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) UpperCAmelCase__ = len(lowerCamelCase__ ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(out_len + 1 ,len(lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def __lowerCAmelCase ( self : Tuple ): def check_hidden_states_output(lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) UpperCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : Optional[int] ): pass def a_ ( ): UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) UpperCAmelCase__ = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : int ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCamelCase__ ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_video() UpperCAmelCase__ = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) UpperCAmelCase__ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCamelCase__ ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_video() UpperCAmelCase__ = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # add boolean mask, indicating which patches to mask UpperCAmelCase__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) UpperCAmelCase__ = torch.load(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) # verify the logits UpperCAmelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCAmelCase__ = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowerCamelCase__ ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCAmelCase__ = torch.tensor([0.5_1_4_2] ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCAmelCase__ = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=lowerCamelCase__ ).to( lowerCamelCase__ ) with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase__ ) UpperCAmelCase__ = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1e-4 ) )
98
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = XLNetTokenizer UpperCAmelCase : Optional[int] = XLNetTokenizerFast UpperCAmelCase : str = True UpperCAmelCase : Dict = True def lowerCAmelCase_ ( self : str ): super().setUp() # We have a SentencePiece fixture for testing _A = XLNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Any ): _A = '''<s>''' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(_UpperCAmelCase ) , 1_006 ) def lowerCAmelCase_ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowerCAmelCase_ ( self : Tuple ): _A = XLNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) _A = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = XLNetTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def lowerCAmelCase_ ( self : int ): _A = XLNetTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def lowerCAmelCase_ ( self : Any ): _A = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) _A = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCAmelCase_ ( self : Union[str, Any] ): # fmt: off _A = {'''input_ids''': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
315
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : List[str] = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a ( _lowercase ): UpperCAmelCase_ : Dict ="distilbert" UpperCAmelCase_ : Optional[Any] ={ "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): lowercase = vocab_size lowercase = max_position_embeddings lowercase = sinusoidal_pos_embds lowercase = n_layers lowercase = n_heads lowercase = dim lowercase = hidden_dim lowercase = dropout lowercase = attention_dropout lowercase = activation lowercase = initializer_range lowercase = qa_dropout lowercase = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class a ( _lowercase ): @property def UpperCamelCase_ ( self ): if self.task == "multiple-choice": lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
220
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def __A ( a_ :Tuple , a_ :str , a_ :Optional[Any] , a_ :Union[str, Any] = 1_00 , ) -> float: __a : int = x_start __a : Optional[int] = fnc(_lowercase) __a : Any = 0.0 for _ in range(_lowercase): # Approximates small segments of curve as linear and solve # for trapezoidal area __a : Optional[int] = (x_end - x_start) / steps + xa __a : Any = fnc(_lowercase) area += abs(fxa + fxa) * (xa - xa) / 2 # Increment step __a : List[str] = xa __a : List[Any] = fxa return area if __name__ == "__main__": def __A ( a_ :int) -> Optional[int]: return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') A = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
160
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
'''simple docstring''' lowerCAmelCase :Tuple = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase :Any = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = '''Morse code here!''' print(_lowercase ) __magic_name__ : List[str] = encrypt(_lowercase ) print(_lowercase ) __magic_name__ : Tuple = decrypt(_lowercase ) print(_lowercase ) if __name__ == "__main__": main()
331
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class snake_case ( _lowercase ): """simple docstring""" _lowerCamelCase = "SpeechT5FeatureExtractor" _lowerCamelCase = "SpeechT5Tokenizer" def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = kwargs.pop("audio" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("text" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("text_target" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("audio_target" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("sampling_rate" , UpperCamelCase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: lowerCamelCase_ = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) elif text is not None: lowerCamelCase_ = self.tokenizer(UpperCamelCase , **UpperCamelCase ) else: lowerCamelCase_ = None if audio_target is not None: lowerCamelCase_ = self.feature_extractor(audio_target=UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = targets['''input_values'''] elif text_target is not None: lowerCamelCase_ = self.tokenizer(UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = targets['''input_ids'''] else: lowerCamelCase_ = None if inputs is None: return targets if targets is not None: lowerCamelCase_ = labels lowerCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = kwargs.pop("input_values" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("input_ids" , UpperCamelCase ) lowerCamelCase_ = kwargs.pop("labels" , UpperCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: lowerCamelCase_ = self.feature_extractor.pad(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) elif input_ids is not None: lowerCamelCase_ = self.tokenizer.pad(UpperCamelCase , **UpperCamelCase ) else: lowerCamelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCamelCase , UpperCamelCase ) and "input_ids" in labels[0]): lowerCamelCase_ = self.tokenizer.pad(UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = targets['''input_ids'''] else: lowerCamelCase_ = self.feature_extractor.feature_size lowerCamelCase_ = self.feature_extractor.num_mel_bins lowerCamelCase_ = self.feature_extractor.pad(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = feature_size_hack lowerCamelCase_ = targets['''input_values'''] else: lowerCamelCase_ = None if inputs is None: return targets if targets is not None: lowerCamelCase_ = labels lowerCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
55
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( _lowercase , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MgpstrTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = {} lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" super().setUp() # fmt: off __SCREAMING_SNAKE_CASE : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) def UpperCAmelCase__ ( self : List[str] , **_A : Union[str, Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Tuple , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = '''tester''' __SCREAMING_SNAKE_CASE : Optional[int] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE : Optional[int] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode([special_token] , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) __SCREAMING_SNAKE_CASE : str = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE : str = self.get_input_output_texts(_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(_A ) self.assertNotEqual(len(_A ) , 0 ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _A ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" pass
303
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : int ): snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ : Dict = -1 snake_case_ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ : Dict = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: snake_case_ : List[Any] = TextStreamer(lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case_ : Optional[int] = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self : Union[str, Any] ): snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ : Optional[Any] = -1 snake_case_ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ : Tuple = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ : Dict = tokenizer.decode(greedy_ids[0] ) snake_case_ : Union[str, Any] = TextIteratorStreamer(lowercase_ ) snake_case_ : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} snake_case_ : List[Any] = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() snake_case_ : Dict = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self : Optional[Any] ): snake_case_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ : List[Any] = -1 snake_case_ : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ : Optional[int] = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ : List[Any] = greedy_ids[:, input_ids.shape[1] :] snake_case_ : List[str] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: snake_case_ : Optional[int] = TextStreamer(lowercase_ , skip_prompt=lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case_ : Optional[Any] = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self : str ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) snake_case_ : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowercase_ ) snake_case_ : Tuple = -1 snake_case_ : str = torch.ones((1, 5) , device=lowercase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: snake_case_ : List[str] = TextStreamer(lowercase_ , skip_special_tokens=lowercase_ ) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token snake_case_ : Union[str, Any] = cs.out[:-1] # Remove the final "\n" snake_case_ : int = tokenizer(lowercase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : str ): snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ : str = -1 snake_case_ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ : int = TextIteratorStreamer(lowercase_ , timeout=0.0_01 ) snake_case_ : Union[str, Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} snake_case_ : int = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_ ): snake_case_ : Dict = '''''' for new_text in streamer: streamer_text += new_text
264
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0