code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : int = AudioLDMPipeline lowerCamelCase : Tuple = TEXT_TO_AUDIO_PARAMS lowerCamelCase : str = TEXT_TO_AUDIO_BATCH_PARAMS lowerCamelCase : Any = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(3_2, 6_4) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=A , ) lowerCamelCase_ : List[Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) lowerCamelCase_ : List[str] = ClapTextModelWithProjection(A ) lowerCamelCase_ : Optional[Any] = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=7_7 ) lowerCamelCase_ : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=A , ) lowerCamelCase_ : List[Any] = SpeechTaHifiGan(A ) lowerCamelCase_ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def UpperCAmelCase__ (self , A , A=0 ): if str(A ).startswith('''mps''' ): lowerCamelCase_ : Union[str, Any] = torch.manual_seed(A ) else: lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase_ : List[str] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Any = self.get_dummy_components() lowerCamelCase_ : str = AudioLDMPipeline(**A ) lowerCamelCase_ : Optional[Any] = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : str = self.get_dummy_inputs(A ) lowerCamelCase_ : List[Any] = audioldm_pipe(**A ) lowerCamelCase_ : str = output.audios[0] assert audio.ndim == 1 assert len(A ) == 2_5_6 lowerCamelCase_ : Any = audio[:1_0] lowerCamelCase_ : List[str] = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_dummy_components() lowerCamelCase_ : str = AudioLDMPipeline(**A ) lowerCamelCase_ : Dict = audioldm_pipe.to(A ) lowerCamelCase_ : Tuple = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[int] = self.get_dummy_inputs(A ) lowerCamelCase_ : str = 3 * [inputs['''prompt''']] # forward lowerCamelCase_ : List[str] = audioldm_pipe(**A ) lowerCamelCase_ : Tuple = output.audios[0] lowerCamelCase_ : Any = self.get_dummy_inputs(A ) lowerCamelCase_ : Any = 3 * [inputs.pop('''prompt''' )] lowerCamelCase_ : List[str] = audioldm_pipe.tokenizer( A , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) lowerCamelCase_ : Dict = text_inputs['''input_ids'''].to(A ) lowerCamelCase_ : Dict = audioldm_pipe.text_encoder( A , ) lowerCamelCase_ : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCamelCase_ : Optional[Any] = F.normalize(A , dim=-1 ) lowerCamelCase_ : Tuple = prompt_embeds # forward lowerCamelCase_ : Optional[Any] = audioldm_pipe(**A ) lowerCamelCase_ : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : List[str] = AudioLDMPipeline(**A ) lowerCamelCase_ : Optional[Any] = audioldm_pipe.to(A ) lowerCamelCase_ : Union[str, Any] = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : str = self.get_dummy_inputs(A ) lowerCamelCase_ : Optional[Any] = 3 * ['''this is a negative prompt'''] lowerCamelCase_ : Dict = negative_prompt lowerCamelCase_ : Tuple = 3 * [inputs['''prompt''']] # forward lowerCamelCase_ : List[str] = audioldm_pipe(**A ) lowerCamelCase_ : Any = output.audios[0] lowerCamelCase_ : Union[str, Any] = self.get_dummy_inputs(A ) lowerCamelCase_ : int = 3 * [inputs.pop('''prompt''' )] lowerCamelCase_ : Union[str, Any] = [] for p in [prompt, negative_prompt]: lowerCamelCase_ : Any = audioldm_pipe.tokenizer( A , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) lowerCamelCase_ : Any = text_inputs['''input_ids'''].to(A ) lowerCamelCase_ : Dict = audioldm_pipe.text_encoder( A , ) lowerCamelCase_ : int = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCamelCase_ : int = F.normalize(A , dim=-1 ) embeds.append(A ) lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = embeds # forward lowerCamelCase_ : Dict = audioldm_pipe(**A ) lowerCamelCase_ : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : int = self.get_dummy_components() lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = AudioLDMPipeline(**A ) lowerCamelCase_ : Union[str, Any] = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = self.get_dummy_inputs(A ) lowerCamelCase_ : List[str] = '''egg cracking''' lowerCamelCase_ : List[str] = audioldm_pipe(**A , negative_prompt=A ) lowerCamelCase_ : str = output.audios[0] assert audio.ndim == 1 assert len(A ) == 2_5_6 lowerCamelCase_ : Optional[Any] = audio[:1_0] lowerCamelCase_ : List[str] = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Any = self.get_dummy_components() lowerCamelCase_ : str = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Optional[int] = AudioLDMPipeline(**A ) lowerCamelCase_ : str = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[int] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowerCamelCase_ : Union[str, Any] = audioldm_pipe(A , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCamelCase_ : Any = 2 lowerCamelCase_ : str = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt lowerCamelCase_ : Any = 2 lowerCamelCase_ : str = audioldm_pipe(A , num_inference_steps=2 , num_waveforms_per_prompt=A ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts lowerCamelCase_ : Optional[Any] = 2 lowerCamelCase_ : Union[str, Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=A ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : str = self.get_dummy_components() lowerCamelCase_ : Any = AudioLDMPipeline(**A ) lowerCamelCase_ : Any = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Dict = audioldm_pipe.vocoder.config.sampling_rate lowerCamelCase_ : Optional[Any] = self.get_dummy_inputs(A ) lowerCamelCase_ : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_16 , **A ) lowerCamelCase_ : Dict = output.audios[0] assert audio.ndim == 1 assert len(A ) / vocoder_sampling_rate == 0.0_16 lowerCamelCase_ : Optional[Any] = audioldm_pipe(audio_length_in_s=0.0_32 , **A ) lowerCamelCase_ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(A ) / vocoder_sampling_rate == 0.0_32 def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_dummy_components() lowerCamelCase_ : List[Any] = AudioLDMPipeline(**A ) lowerCamelCase_ : Tuple = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Dict = ['''hey'''] lowerCamelCase_ : int = audioldm_pipe(A , num_inference_steps=1 ) lowerCamelCase_ : Optional[Any] = output.audios.shape assert audio_shape == (1, 2_5_6) lowerCamelCase_ : Any = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCamelCase_ : Tuple = SpeechTaHifiGan(A ).to(A ) lowerCamelCase_ : int = audioldm_pipe(A , num_inference_steps=1 ) lowerCamelCase_ : Tuple = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCAmelCase__ (self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A ) def UpperCAmelCase__ (self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=A ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ (self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A ) @slow class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self , A , A="cpu" , A=torch.floataa , A=0 ): lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase_ : Tuple = np.random.RandomState(A ).standard_normal((1, 8, 1_2_8, 1_6) ) lowerCamelCase_ : Optional[int] = torch.from_numpy(A ).to(device=A , dtype=A ) lowerCamelCase_ : Tuple = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCamelCase_ : List[str] = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = self.get_inputs(A ) lowerCamelCase_ : Any = 2_5 lowerCamelCase_ : int = audioldm_pipe(**A ).audios[0] assert audio.ndim == 1 assert len(A ) == 8_1_9_2_0 lowerCamelCase_ : Tuple = audio[7_7_2_3_0:7_7_2_4_0] lowerCamelCase_ : Optional[int] = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) lowerCamelCase_ : List[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCamelCase_ : int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCamelCase_ : Tuple = audioldm_pipe.to(A ) audioldm_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Any = self.get_inputs(A ) lowerCamelCase_ : Optional[int] = audioldm_pipe(**A ).audios[0] assert audio.ndim == 1 assert len(A ) == 8_1_9_2_0 lowerCamelCase_ : List[str] = audio[2_7_7_8_0:2_7_7_9_0] lowerCamelCase_ : List[Any] = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) lowerCamelCase_ : List[str] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
318
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
318
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: '''simple docstring''' if isinstance(_lowercase , _lowercase ): lowerCamelCase_ : Union[str, Any] = np.full((len(_lowercase ), sequence_length, 2) , _lowercase ) else: lowerCamelCase_ : Optional[Any] = np.full((len(_lowercase ), sequence_length) , _lowercase ) for i, tensor in enumerate(_lowercase ): if padding_side == "right": if isinstance(_lowercase , _lowercase ): lowerCamelCase_ : List[Any] = tensor[:sequence_length] else: lowerCamelCase_ : int = tensor[:sequence_length] else: if isinstance(_lowercase , _lowercase ): lowerCamelCase_ : Dict = tensor[:sequence_length] else: lowerCamelCase_ : Any = tensor[:sequence_length] return out_tensor.tolist() def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = ord(_lowercase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCamelCase_ : Any = unicodedata.category(_lowercase ) if cat.startswith('''P''' ): return True return False @dataclass class __lowercase ( _lowercase ): lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None lowerCamelCase : int = -100 lowerCamelCase : str = "pt" def UpperCAmelCase__ (self , A ): import torch lowerCamelCase_ : Optional[int] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowerCamelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] lowerCamelCase_ : str = self.tokenizer.padding_side if padding_side == "right": lowerCamelCase_ : Any = [ list(A ) + [self.label_pad_token_id] * (sequence_length - len(A )) for label in labels ] else: lowerCamelCase_ : int = [ [self.label_pad_token_id] * (sequence_length - len(A )) + list(A ) for label in labels ] lowerCamelCase_ : Optional[int] = [feature['''ner_tags'''] for feature in features] lowerCamelCase_ : Dict = padding_tensor(A , -1 , A , A ) lowerCamelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] lowerCamelCase_ : List[str] = padding_tensor(A , (-1, -1) , A , A ) lowerCamelCase_ : Dict = {k: torch.tensor(A , dtype=torch.intaa ) for k, v in batch.items()} return batch
318
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowercase : List[str] = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowercase : Union[str, Any] = '''UperNetConfig''' class __lowercase ( nn.Module ): def __init__(self , A , A , A , A = 0 , A = False , A = 1 , ): super().__init__() lowerCamelCase_ : Optional[Any] = nn.Convad( in_channels=A , out_channels=A , kernel_size=A , padding=A , bias=A , dilation=A , ) lowerCamelCase_ : Any = nn.BatchNormad(A ) lowerCamelCase_ : List[str] = nn.ReLU() def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = self.conv(A ) lowerCamelCase_ : Union[str, Any] = self.batch_norm(A ) lowerCamelCase_ : Tuple = self.activation(A ) return output class __lowercase ( nn.Module ): def __init__(self , A , A , A ): super().__init__() lowerCamelCase_ : Any = [ nn.AdaptiveAvgPoolad(A ), UperNetConvModule(A , A , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(A ) , A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : str = input for layer in self.layers: lowerCamelCase_ : Optional[int] = layer(A ) return hidden_state class __lowercase ( nn.Module ): def __init__(self , A , A , A , A ): super().__init__() lowerCamelCase_ : Any = pool_scales lowerCamelCase_ : List[Any] = align_corners lowerCamelCase_ : str = in_channels lowerCamelCase_ : Tuple = channels lowerCamelCase_ : List[Any] = [] for i, pool_scale in enumerate(A ): lowerCamelCase_ : List[Any] = UperNetPyramidPoolingBlock(pool_scale=A , in_channels=A , channels=A ) self.blocks.append(A ) self.add_module(str(A ) , A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[Any] = [] for ppm in self.blocks: lowerCamelCase_ : int = ppm(A ) lowerCamelCase_ : Union[str, Any] = nn.functional.interpolate( A , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(A ) return ppm_outs class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = config lowerCamelCase_ : str = config.pool_scales # e.g. (1, 2, 3, 6) lowerCamelCase_ : Optional[Any] = in_channels lowerCamelCase_ : str = config.hidden_size lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCamelCase_ : Any = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCamelCase_ : Tuple = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCamelCase_ : int = nn.ModuleList() lowerCamelCase_ : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCamelCase_ : Optional[int] = UperNetConvModule(A , self.channels , kernel_size=1 ) lowerCamelCase_ : Any = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(A ) self.fpn_convs.append(A ) lowerCamelCase_ : Tuple = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ (self ): self.apply(self._init_weights ) def UpperCAmelCase__ (self , A ): if isinstance(A , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = inputs[-1] lowerCamelCase_ : Any = [x] psp_outs.extend(self.psp_modules(A ) ) lowerCamelCase_ : int = torch.cat(A , dim=1 ) lowerCamelCase_ : int = self.bottleneck(A ) return output def UpperCAmelCase__ (self , A ): # build laterals lowerCamelCase_ : Dict = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(A ) ) # build top-down path lowerCamelCase_ : Dict = len(A ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase_ : Tuple = laterals[i - 1].shape[2:] lowerCamelCase_ : Dict = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=A , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs lowerCamelCase_ : Union[str, Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase_ : Tuple = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) lowerCamelCase_ : int = torch.cat(A , dim=1 ) lowerCamelCase_ : Optional[Any] = self.fpn_bottleneck(A ) lowerCamelCase_ : List[Any] = self.classifier(A ) return output class __lowercase ( nn.Module ): def __init__(self , A , A = 2 , A = 3 , A = 1 ): super().__init__() lowerCamelCase_ : Optional[int] = config lowerCamelCase_ : List[str] = config.auxiliary_in_channels lowerCamelCase_ : Any = config.auxiliary_channels lowerCamelCase_ : Optional[int] = config.auxiliary_num_convs lowerCamelCase_ : Any = config.auxiliary_concat_input lowerCamelCase_ : Dict = in_index lowerCamelCase_ : Dict = (kernel_size // 2) * dilation lowerCamelCase_ : Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=A , padding=A , dilation=A ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=A , padding=A , dilation=A ) ) if self.num_convs == 0: lowerCamelCase_ : List[str] = nn.Identity() else: lowerCamelCase_ : Tuple = nn.Sequential(*A ) if self.concat_input: lowerCamelCase_ : int = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=A , padding=kernel_size // 2 ) lowerCamelCase_ : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__ (self ): self.apply(self._init_weights ) def UpperCAmelCase__ (self , A ): if isinstance(A , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ (self , A ): # just take the relevant feature maps lowerCamelCase_ : Dict = encoder_hidden_states[self.in_index] lowerCamelCase_ : Optional[int] = self.convs(A ) if self.concat_input: lowerCamelCase_ : Dict = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCamelCase_ : Any = self.classifier(A ) return output class __lowercase ( _lowercase ): lowerCamelCase : List[str] = UperNetConfig lowerCamelCase : Any = "pixel_values" lowerCamelCase : Optional[int] = True def UpperCAmelCase__ (self , A ): if isinstance(A , A ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ (self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ (self , A , A=False ): if isinstance(A , A ): lowerCamelCase_ : Dict = value __lowercase : Optional[Any] = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowercase : Dict = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _lowercase , ) class __lowercase ( _lowercase ): def __init__(self , A ): super().__init__(A ) lowerCamelCase_ : Union[str, Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCamelCase_ : List[Any] = UperNetHead(A , in_channels=self.backbone.channels ) lowerCamelCase_ : Dict = UperNetFCNHead(A ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=A , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ (self , A = None , A = None , A = None , A = None , A = None , ): lowerCamelCase_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ : int = output_attentions if output_attentions is not None else self.config.output_attentions lowerCamelCase_ : Optional[int] = self.backbone.forward_with_filtered_kwargs( A , output_hidden_states=A , output_attentions=A ) lowerCamelCase_ : str = outputs.feature_maps lowerCamelCase_ : int = self.decode_head(A ) lowerCamelCase_ : str = nn.functional.interpolate(A , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=A ) lowerCamelCase_ : Union[str, Any] = None if self.auxiliary_head is not None: lowerCamelCase_ : Dict = self.auxiliary_head(A ) lowerCamelCase_ : Optional[int] = nn.functional.interpolate( A , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=A ) lowerCamelCase_ : Any = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowerCamelCase_ : List[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCamelCase_ : List[Any] = loss_fct(A , A ) lowerCamelCase_ : List[str] = loss_fct(A , A ) lowerCamelCase_ : int = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCamelCase_ : Optional[int] = (logits,) + outputs[1:] else: lowerCamelCase_ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=A , logits=A , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
318
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : List[str] = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
318
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
1
'''simple docstring''' import datasets from .evaluate import evaluate __lowercase : Any = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' __lowercase : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' __lowercase : Any = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def UpperCAmelCase__ (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Optional[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ : Union[str, Any] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ : Optional[int] = evaluate(dataset=A , predictions=A ) return score
318
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __lowercase : Optional[Any] = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __lowercase : List[str] = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def lowercase_ ( ) -> List[Any]: '''simple docstring''' lowerCamelCase_ : Optional[Any] = calculate_rouge(_lowercase , _lowercase , bootstrap_aggregation=_lowercase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowercase , _lowercase ) lowerCamelCase_ : List[Any] = calculate_rouge(_lowercase , _lowercase , bootstrap_aggregation=_lowercase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowercase_ ( ) -> List[str]: '''simple docstring''' lowerCamelCase_ : int = '''rougeLsum''' lowerCamelCase_ : Optional[Any] = calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=[k] )[k] lowerCamelCase_ : str = calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase_ ( ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Optional[int] = ['''rouge1''', '''rouge2''', '''rougeL'''] lowerCamelCase_ : List[Any] = calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=_lowercase ) lowerCamelCase_ : Optional[int] = calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=_lowercase ) assert score_sep == score_no_sep def lowercase_ ( ) -> List[Any]: '''simple docstring''' lowerCamelCase_ : Tuple = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] lowerCamelCase_ : Tuple = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase ) == calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase ) def lowercase_ ( ) -> List[str]: '''simple docstring''' lowerCamelCase_ : List[Any] = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] lowerCamelCase_ : Dict = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] lowerCamelCase_ : Dict = calculate_rouge(_lowercase , _lowercase , rouge_keys=['''rougeLsum'''] , newline_sep=_lowercase )['''rougeLsum'''] lowerCamelCase_ : int = calculate_rouge(_lowercase , _lowercase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ : Optional[int] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) lowerCamelCase_ : str = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowercase , _lowercase ) lowerCamelCase_ : List[Any] = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=_lowercase ) assert isinstance(_lowercase , _lowercase )
318
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : int = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( _lowercase ): lowerCamelCase : torch.FloatTensor lowerCamelCase : torch.FloatTensor class __lowercase ( _lowercase , _lowercase ): lowerCamelCase : Dict = 1 @register_to_config def __init__(self , A = 2_0_0_0 , A = 0.15 , A = 0.01 , A = 13_48.0 , A = 1E-5 , A = 1 , ): # standard deviation of the initial noise distribution lowerCamelCase_ : Tuple = sigma_max # setable values lowerCamelCase_ : Optional[Any] = None self.set_sigmas(A , A , A , A ) def UpperCAmelCase__ (self , A , A = None ): return sample def UpperCAmelCase__ (self , A , A = None , A = None ): lowerCamelCase_ : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCamelCase_ : str = torch.linspace(1 , A , A , device=A ) def UpperCAmelCase__ (self , A , A = None , A = None , A = None ): lowerCamelCase_ : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min lowerCamelCase_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max lowerCamelCase_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(A , A ) lowerCamelCase_ : Any = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCamelCase_ : Union[str, Any] = torch.exp(torch.linspace(math.log(A ) , math.log(A ) , A ) ) lowerCamelCase_ : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase__ (self , A , A ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase__ (self , A , A , A , A = None , A = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowerCamelCase_ : List[str] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCamelCase_ : int = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCamelCase_ : Optional[Any] = timesteps.to(self.discrete_sigmas.device ) lowerCamelCase_ : int = self.discrete_sigmas[timesteps].to(sample.device ) lowerCamelCase_ : str = self.get_adjacent_sigma(A , A ).to(sample.device ) lowerCamelCase_ : Dict = torch.zeros_like(A ) lowerCamelCase_ : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCamelCase_ : List[Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCamelCase_ : Union[str, Any] = diffusion.unsqueeze(-1 ) lowerCamelCase_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCamelCase_ : int = randn_tensor( sample.shape , layout=sample.layout , generator=A , device=sample.device , dtype=sample.dtype ) lowerCamelCase_ : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCamelCase_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=A , prev_sample_mean=A ) def UpperCAmelCase__ (self , A , A , A = None , A = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCamelCase_ : Any = randn_tensor(sample.shape , layout=sample.layout , generator=A ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCamelCase_ : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCamelCase_ : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCamelCase_ : str = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCamelCase_ : Union[str, Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCamelCase_ : List[Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCamelCase_ : Union[str, Any] = step_size.unsqueeze(-1 ) lowerCamelCase_ : Dict = sample + step_size * model_output lowerCamelCase_ : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def UpperCAmelCase__ (self , A , A , A , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCamelCase_ : List[str] = timesteps.to(original_samples.device ) lowerCamelCase_ : int = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCamelCase_ : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(A ) * sigmas[:, None, None, None] ) lowerCamelCase_ : Optional[Any] = noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
318
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = tempfile.mkdtemp() lowerCamelCase_ : int = BlipImageProcessor() lowerCamelCase_ : List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) lowerCamelCase_ : List[Any] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) lowerCamelCase_ : Union[str, Any] = InstructBlipProcessor(A , A , A ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ (self , **A ): return AutoProcessor.from_pretrained(self.tmpdirname , **A ).tokenizer def UpperCAmelCase__ (self , **A ): return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def UpperCAmelCase__ (self , **A ): return AutoProcessor.from_pretrained(self.tmpdirname , **A ).qformer_tokenizer def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ : int = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase_ : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) self.assertIsInstance(processor.qformer_tokenizer , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : str = self.get_qformer_tokenizer() lowerCamelCase_ : Optional[Any] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Tuple = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = self.get_qformer_tokenizer() lowerCamelCase_ : Any = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Union[str, Any] = '''lower newer''' lowerCamelCase_ : Union[str, Any] = processor(text=A ) lowerCamelCase_ : List[Any] = tokenizer(A , return_token_type_ids=A ) lowerCamelCase_ : str = qformer_tokenizer(A , return_token_type_ids=A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Dict = self.get_tokenizer() lowerCamelCase_ : Tuple = self.get_qformer_tokenizer() lowerCamelCase_ : Optional[Any] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Any = '''lower newer''' lowerCamelCase_ : int = self.prepare_image_inputs() lowerCamelCase_ : Optional[Any] = processor(text=A , images=A ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Dict = self.get_tokenizer() lowerCamelCase_ : List[str] = self.get_qformer_tokenizer() lowerCamelCase_ : List[str] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Optional[int] = processor.batch_decode(A ) lowerCamelCase_ : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : List[Any] = self.get_tokenizer() lowerCamelCase_ : List[str] = self.get_qformer_tokenizer() lowerCamelCase_ : Union[str, Any] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Optional[int] = '''lower newer''' lowerCamelCase_ : Tuple = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
318
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ): lowerCamelCase_ : Any = parent lowerCamelCase_ : List[str] = batch_size lowerCamelCase_ : List[str] = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : int = use_token_type_ids lowerCamelCase_ : int = use_labels lowerCamelCase_ : str = vocab_size lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : List[Any] = num_hidden_layers lowerCamelCase_ : str = num_attention_heads lowerCamelCase_ : Optional[int] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : str = hidden_dropout_prob lowerCamelCase_ : List[Any] = attention_probs_dropout_prob lowerCamelCase_ : List[str] = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : Union[str, Any] = type_sequence_label_size lowerCamelCase_ : int = initializer_range lowerCamelCase_ : Union[str, Any] = num_labels lowerCamelCase_ : List[str] = num_choices lowerCamelCase_ : List[str] = scope lowerCamelCase_ : int = self.vocab_size - 1 def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : str = None lowerCamelCase_ : List[str] = None if self.use_labels: lowerCamelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase_ : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : Any = OpenAIGPTModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Union[str, Any] = model(A , token_type_ids=A , head_mask=A ) lowerCamelCase_ : List[Any] = model(A , token_type_ids=A ) lowerCamelCase_ : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : int = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() lowerCamelCase_ : Tuple = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : int = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() lowerCamelCase_ : Union[str, Any] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , *A ): lowerCamelCase_ : str = self.num_labels lowerCamelCase_ : List[Any] = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Union[str, Any] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Optional[int] = config_and_inputs lowerCamelCase_ : Any = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : List[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCamelCase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCamelCase : str = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ (self , A , A , A , A , A ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ (self , A , A , A=False ): lowerCamelCase_ : Optional[Any] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) lowerCamelCase_ : Tuple = inputs_dict['''labels'''] lowerCamelCase_ : Dict = inputs_dict['''labels'''] lowerCamelCase_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) lowerCamelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = OpenAIGPTModelTester(self ) lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=A , n_embd=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def UpperCAmelCase__ (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Tuple = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase ( unittest.TestCase ): @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) lowerCamelCase_ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=A ) # the president is lowerCamelCase_ : Dict = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase_ : List[str] = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
318
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
1
'''simple docstring''' from typing import Any import numpy as np def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' return np.array_equal(_lowercase , matrix.conjugate().T ) def lowercase_ ( _lowercase , _lowercase ) -> Any: '''simple docstring''' lowerCamelCase_ : Tuple = v.conjugate().T lowerCamelCase_ : Union[str, Any] = v_star.dot(_lowercase ) assert isinstance(_lowercase , np.ndarray ) return (v_star_dot.dot(_lowercase )) / (v_star.dot(_lowercase )) def lowercase_ ( ) -> None: '''simple docstring''' lowerCamelCase_ : int = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowerCamelCase_ : Union[str, Any] = np.array([[1], [2], [3]] ) assert is_hermitian(_lowercase ), F"""{a} is not hermitian.""" print(rayleigh_quotient(_lowercase , _lowercase ) ) lowerCamelCase_ : str = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowercase ), F"""{a} is not hermitian.""" assert rayleigh_quotient(_lowercase , _lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
318
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
1
'''simple docstring''' from collections import defaultdict def lowercase_ ( _lowercase , _lowercase ) -> bool: '''simple docstring''' lowerCamelCase_ : Optional[int] = first_str.lower().strip() lowerCamelCase_ : int = second_str.lower().strip() # Remove whitespace lowerCamelCase_ : Any = first_str.replace(''' ''' , '''''' ) lowerCamelCase_ : Dict = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 lowerCamelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __lowercase : List[str] = input('''Enter the first string ''').strip() __lowercase : Tuple = input('''Enter the second string ''').strip() __lowercase : Union[str, Any] = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
318
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> list[float]: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : str = coefficient_matrix.shape lowerCamelCase_, lowerCamelCase_ : Dict = constant_matrix.shape if rowsa != colsa: lowerCamelCase_ : Optional[int] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowercase ) if colsa != 1: lowerCamelCase_ : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowercase ) if rowsa != rowsa: lowerCamelCase_ : Union[str, Any] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowercase ) if len(_lowercase ) != rowsa: lowerCamelCase_ : List[str] = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(_lowercase )} and {rowsa}""" ) raise ValueError(_lowercase ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowerCamelCase_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_, lowerCamelCase_ : str = table.shape strictly_diagonally_dominant(_lowercase ) # Iterates the whole matrix for given number of times for _ in range(_lowercase ): lowerCamelCase_ : Optional[Any] = [] for row in range(_lowercase ): lowerCamelCase_ : Tuple = 0 for col in range(_lowercase ): if col == row: lowerCamelCase_ : Optional[int] = table[row][col] elif col == cols - 1: lowerCamelCase_ : int = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ : Optional[Any] = (temp + val) / denom new_val.append(_lowercase ) lowerCamelCase_ : Tuple = new_val return [float(_lowercase ) for i in new_val] def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : Dict = table.shape lowerCamelCase_ : Dict = True for i in range(0 , _lowercase ): lowerCamelCase_ : Optional[int] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
318
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : Any = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowercase_ ( ) -> str: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCamelCase_ : Optional[Any] = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowercase_ ( ) -> List[Any]: '''simple docstring''' assert _test_patching.open is open lowerCamelCase_ : Optional[int] = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : Any = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _lowercase ): pass def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : Any = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _lowercase ) is None with patch_submodule(_test_patching , '''len''' , _lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''__test_patch_submodule_start_and_stop_mock__''' lowerCamelCase_ : List[Any] = patch_submodule(_test_patching , '''open''' , _lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowercase_ ( ) -> List[str]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCamelCase_ : Union[str, Any] = '''__test_patch_submodule_successive_join__''' lowerCamelCase_ : Tuple = '''__test_patch_submodule_successive_dirname__''' lowerCamelCase_ : Union[str, Any] = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): with patch_submodule(_test_patching , '''os.rename''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowercase_ ( ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _lowercase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _lowercase ): pass
318
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : def __init__(self , A , A=1_3 , A=1_0 , A=3 , A=2 , A=2 , A=2 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=0.9 , A=None , ): lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : int = image_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Union[str, Any] = patch_size lowerCamelCase_ : int = tubelet_size lowerCamelCase_ : Any = num_frames lowerCamelCase_ : Union[str, Any] = is_training lowerCamelCase_ : List[Any] = use_labels lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : Optional[Any] = num_attention_heads lowerCamelCase_ : str = intermediate_size lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_ : str = type_sequence_label_size lowerCamelCase_ : Tuple = initializer_range lowerCamelCase_ : Tuple = mask_ratio lowerCamelCase_ : Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase_ : Dict = (image_size // patch_size) ** 2 lowerCamelCase_ : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase_ : Optional[int] = int(mask_ratio * self.seq_length ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : List[Any] = None if self.use_labels: lowerCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : Optional[Any] = VideoMAEModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Dict = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : Optional[int] = VideoMAEForPreTraining(A ) model.to(A ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase_ : Tuple = torch.ones((self.num_masks,) ) lowerCamelCase_ : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase_ : List[str] = mask.expand(self.batch_size , -1 ).bool() lowerCamelCase_ : Any = model(A , A ) # model only returns predictions for masked patches lowerCamelCase_ : Optional[Any] = mask.sum().item() lowerCamelCase_ : Union[str, Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = config_and_inputs lowerCamelCase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : int = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase : Dict = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase : Optional[Any] = False lowerCamelCase : Tuple = False lowerCamelCase : Tuple = False lowerCamelCase : Optional[Any] = False def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = VideoMAEModelTester(self ) lowerCamelCase_ : Dict = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def UpperCAmelCase__ (self , A , A , A=False ): lowerCamelCase_ : Tuple = copy.deepcopy(A ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase_ : Tuple = torch.ones((self.model_tester.num_masks,) ) lowerCamelCase_ : Union[str, Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase_ : str = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCamelCase_ : int = bool_masked_pos.to(A ) if return_labels: if model_class in [ *get_values(A ), ]: lowerCamelCase_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Dict = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[int] = model_class(A ) lowerCamelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase_ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) @slow def UpperCAmelCase__ (self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : List[Any] = VideoMAEModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase__ (self ): if not self.has_attentions: pass else: lowerCamelCase_, lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : int = True for model_class in self.all_model_classes: lowerCamelCase_ : Dict = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase_ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase_ : Tuple = True lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : Tuple = True lowerCamelCase_ : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : Optional[Any] = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : List[Any] = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ : Tuple = True lowerCamelCase_ : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : List[str] = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : Tuple = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase_ : Union[str, Any] = len(A ) # Check attention is always last and order is fine lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : str = True lowerCamelCase_ : Dict = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : int = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 1 , len(A ) ) lowerCamelCase_ : str = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase__ (self ): def check_hidden_states_output(A , A , A ): lowerCamelCase_ : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : Optional[int] = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : List[Any] = outputs.hidden_states lowerCamelCase_ : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A ) , A ) lowerCamelCase_ : List[str] = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase_ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ : Optional[int] = True check_hidden_states_output(A , A , A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ (self ): pass def lowercase_ ( ) -> List[str]: '''simple docstring''' lowerCamelCase_ : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCamelCase_ : str = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def UpperCAmelCase__ (self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( A ) lowerCamelCase_ : List[str] = self.default_image_processor lowerCamelCase_ : Any = prepare_video() lowerCamelCase_ : Optional[int] = image_processor(A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): lowerCamelCase_ : Dict = model(**A ) # verify the logits lowerCamelCase_ : Tuple = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , A ) lowerCamelCase_ : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(A ) lowerCamelCase_ : Tuple = self.default_image_processor lowerCamelCase_ : List[Any] = prepare_video() lowerCamelCase_ : Union[str, Any] = image_processor(A , return_tensors='''pt''' ).to(A ) # add boolean mask, indicating which patches to mask lowerCamelCase_ : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowerCamelCase_ : int = torch.load(A ) # forward pass with torch.no_grad(): lowerCamelCase_ : Any = model(**A ) # verify the logits lowerCamelCase_ : Optional[int] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCamelCase_ : Dict = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=A ) self.assertEqual(outputs.logits.shape , A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase_ : Any = torch.tensor([0.51_42] , device=A ) self.assertTrue(torch.allclose(outputs.loss , A , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase_ : Union[str, Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=A ).to( A ) with torch.no_grad(): lowerCamelCase_ : List[Any] = model(**A ) lowerCamelCase_ : int = torch.tensor(torch.tensor([0.64_69] ) , device=A ) self.assertTrue(torch.allclose(outputs.loss , A , atol=1E-4 ) )
318
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __lowercase ( _lowercase ): lowerCamelCase : int = "megatron-bert" def __init__(self , A=2_9_0_5_6 , A=1_0_2_4 , A=2_4 , A=1_6 , A=4_0_9_6 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=0 , A="absolute" , A=True , **A , ): super().__init__(pad_token_id=A , **A ) lowerCamelCase_ : List[Any] = vocab_size lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : int = num_hidden_layers lowerCamelCase_ : Dict = num_attention_heads lowerCamelCase_ : List[str] = hidden_act lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : List[str] = hidden_dropout_prob lowerCamelCase_ : int = attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] = max_position_embeddings lowerCamelCase_ : Union[str, Any] = type_vocab_size lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : int = layer_norm_eps lowerCamelCase_ : Optional[int] = position_embedding_type lowerCamelCase_ : Dict = use_cache
318
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[str] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : int = "rwkv" lowerCamelCase : Union[str, Any] = {"max_position_embeddings": "context_length"} def __init__(self , A=5_0_2_7_7 , A=1_0_2_4 , A=4_0_9_6 , A=3_2 , A=None , A=None , A=1E-5 , A=0 , A=0 , A=6 , A=False , A=True , **A , ): lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : Optional[int] = context_length lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : Tuple = num_hidden_layers lowerCamelCase_ : Tuple = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase_ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase_ : Optional[int] = layer_norm_epsilon lowerCamelCase_ : int = rescale_every lowerCamelCase_ : str = use_cache lowerCamelCase_ : Optional[int] = bos_token_id lowerCamelCase_ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
318
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
1
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase , _lowercase ) -> list[int]: '''simple docstring''' lowerCamelCase_ : str = 0 lowerCamelCase_ : Union[str, Any] = len(_lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase_ : Any = i + 1 else: lowerCamelCase_ : Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 11, 15], 9) = }')
318
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowercase ( _lowercase ): def __init__(self , A=0.01 , A=1_0_0_0 ): lowerCamelCase_ : Tuple = p_stop lowerCamelCase_ : List[Any] = max_length def __iter__(self ): lowerCamelCase_ : Union[str, Any] = 0 lowerCamelCase_ : List[str] = False while not stop and count < self.max_length: yield count count += 1 lowerCamelCase_ : List[str] = random.random() < self.p_stop class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self , A , A , A=False , A=True ): lowerCamelCase_ : Dict = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] lowerCamelCase_ : Dict = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): # Check the shards when the dataset is a round multiple of total batch size. lowerCamelCase_ : Dict = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(A , A ) lowerCamelCase_ : str = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCamelCase_ : str = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) lowerCamelCase_ : List[Any] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCamelCase_ : List[Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(A , A ) lowerCamelCase_ : Any = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCamelCase_ : List[str] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) lowerCamelCase_ : Tuple = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. lowerCamelCase_ : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) lowerCamelCase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[str] = [[], []] self.check_batch_sampler_shards(A , A ) def UpperCAmelCase__ (self ): # Check the shards when the dataset is a round multiple of batch size. lowerCamelCase_ : Any = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowerCamelCase_ : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowerCamelCase_ : Union[str, Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowerCamelCase_ : Tuple = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCamelCase_ : Tuple = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : str = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowerCamelCase_ : str = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. lowerCamelCase_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) lowerCamelCase_ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def UpperCAmelCase__ (self ): # Check the shards when the dataset is a round multiple of total batch size. lowerCamelCase_ : Optional[int] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowerCamelCase_ : str = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCamelCase_ : int = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowerCamelCase_ : Optional[int] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCamelCase_ : Any = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowerCamelCase_ : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCamelCase_ : Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowerCamelCase_ : Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. lowerCamelCase_ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) lowerCamelCase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowerCamelCase_ : List[str] = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def UpperCAmelCase__ (self ): # Check the shards when the dataset is a round multiple of batch size. lowerCamelCase_ : Optional[int] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowerCamelCase_ : Dict = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowerCamelCase_ : Any = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowerCamelCase_ : int = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCamelCase_ : List[str] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowerCamelCase_ : Any = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. lowerCamelCase_ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowerCamelCase_ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] lowerCamelCase_ : Any = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def UpperCAmelCase__ (self , A , A , A , A=False , A=2 , A=False ): random.seed(A ) lowerCamelCase_ : Dict = list(A ) lowerCamelCase_ : Optional[Any] = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] lowerCamelCase_ : Tuple = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) lowerCamelCase_ : int = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCamelCase_ : List[str] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) lowerCamelCase_ : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = 4_2 lowerCamelCase_ : Dict = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset lowerCamelCase_ : Union[str, Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=A ) lowerCamelCase_ : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = DataLoader(list(range(1_6 ) ) , batch_size=4 ) lowerCamelCase_ : Dict = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def UpperCAmelCase__ (self ): Accelerator() lowerCamelCase_ : Union[str, Any] = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
318
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''ZinengTang/tvlt-base''' lowerCamelCase_ : Union[str, Any] = tempfile.mkdtemp() def UpperCAmelCase__ (self , **A ): return TvltImageProcessor.from_pretrained(self.checkpoint , **A ) def UpperCAmelCase__ (self , **A ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = self.get_feature_extractor() lowerCamelCase_ : Union[str, Any] = TvltProcessor(image_processor=A , feature_extractor=A ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , A ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_feature_extractor() lowerCamelCase_ : Union[str, Any] = TvltProcessor(image_processor=A , feature_extractor=A ) lowerCamelCase_ : Union[str, Any] = np.ones([1_2_0_0_0] ) lowerCamelCase_ : str = feature_extractor(A , return_tensors='''np''' ) lowerCamelCase_ : int = processor(audio=A , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_feature_extractor() lowerCamelCase_ : List[str] = TvltProcessor(image_processor=A , feature_extractor=A ) lowerCamelCase_ : str = np.ones([3, 2_2_4, 2_2_4] ) lowerCamelCase_ : Optional[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : str = processor(images=A , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_feature_extractor() lowerCamelCase_ : str = TvltProcessor(image_processor=A , feature_extractor=A ) lowerCamelCase_ : Optional[int] = np.ones([1_2_0_0_0] ) lowerCamelCase_ : int = np.ones([3, 2_2_4, 2_2_4] ) lowerCamelCase_ : Optional[Any] = processor(audio=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_feature_extractor() lowerCamelCase_ : List[Any] = TvltProcessor(image_processor=A , feature_extractor=A ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
318
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase_ ( _lowercase ) -> Optional[Any]: '''simple docstring''' if not is_accelerate_available(): return method lowerCamelCase_ : List[Any] = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *_lowercase , **_lowercase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_lowercase , **_lowercase ) return wrapper
318
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
1
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
1
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Dict = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) lowerCamelCase_ : Dict = -1 lowerCamelCase_ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase_ : Dict = model.generate(A , max_new_tokens=1_0 , do_sample=A ) lowerCamelCase_ : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase_ : List[Any] = TextStreamer(A ) model.generate(A , max_new_tokens=1_0 , do_sample=A , streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) lowerCamelCase_ : Optional[Any] = -1 lowerCamelCase_ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase_ : Tuple = model.generate(A , max_new_tokens=1_0 , do_sample=A ) lowerCamelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) lowerCamelCase_ : Union[str, Any] = TextIteratorStreamer(A ) lowerCamelCase_ : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase_ : List[Any] = Thread(target=model.generate , kwargs=A ) thread.start() lowerCamelCase_ : Dict = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) lowerCamelCase_ : List[Any] = -1 lowerCamelCase_ : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase_ : Optional[int] = model.generate(A , max_new_tokens=1_0 , do_sample=A ) lowerCamelCase_ : List[Any] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase_ : List[str] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase_ : Optional[int] = TextStreamer(A , skip_prompt=A ) model.generate(A , max_new_tokens=1_0 , do_sample=A , streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase_ : Optional[Any] = cs.out[:-1] self.assertEqual(A , A ) def UpperCAmelCase__ (self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(A ) lowerCamelCase_ : Tuple = -1 lowerCamelCase_ : str = torch.ones((1, 5) , device=A ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase_ : List[str] = TextStreamer(A , skip_special_tokens=A ) model.generate(A , max_new_tokens=1 , do_sample=A , streamer=A ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase_ : Union[str, Any] = cs.out[:-1] # Remove the final "\n" lowerCamelCase_ : int = tokenizer(A , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) lowerCamelCase_ : str = -1 lowerCamelCase_ : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) lowerCamelCase_ : int = TextIteratorStreamer(A , timeout=0.0_01 ) lowerCamelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase_ : int = Thread(target=model.generate , kwargs=A ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(A ): lowerCamelCase_ : Dict = '''''' for new_text in streamer: streamer_text += new_text
318
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase_ ( _lowercase , _lowercase , _lowercase=1e-12 ) -> Dict: '''simple docstring''' lowerCamelCase_ : List[str] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_lowercase , axis=1 ) , a_min=_lowercase ) ).T lowerCamelCase_ : int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_lowercase , axis=1 ) , a_min=_lowercase ) ).T return jnp.matmul(_lowercase , norm_emb_a.T ) class __lowercase ( nn.Module ): lowerCamelCase : CLIPConfig lowerCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = FlaxCLIPVisionModule(self.config.vision_config ) lowerCamelCase_ : Optional[int] = nn.Dense(self.config.projection_dim , use_bias=A , dtype=self.dtype ) lowerCamelCase_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) lowerCamelCase_ : Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCamelCase_ : str = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) lowerCamelCase_ : List[Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self , A ): lowerCamelCase_ : List[str] = self.vision_model(A )[1] lowerCamelCase_ : Any = self.visual_projection(A ) lowerCamelCase_ : List[str] = jax_cosine_distance(A , self.special_care_embeds ) lowerCamelCase_ : Optional[int] = jax_cosine_distance(A , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCamelCase_ : Any = 0.0 lowerCamelCase_ : List[Any] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCamelCase_ : Optional[Any] = jnp.round(A , 3 ) lowerCamelCase_ : List[str] = jnp.any(special_scores > 0 , axis=1 , keepdims=A ) # Use a lower threshold if an image has any special care concept lowerCamelCase_ : Optional[int] = is_special_care * 0.01 lowerCamelCase_ : Optional[Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCamelCase_ : Optional[int] = jnp.round(A , 3 ) lowerCamelCase_ : Tuple = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __lowercase ( _lowercase ): lowerCamelCase : Tuple = CLIPConfig lowerCamelCase : Union[str, Any] = "clip_input" lowerCamelCase : str = FlaxStableDiffusionSafetyCheckerModule def __init__(self , A , A = None , A = 0 , A = jnp.floataa , A = True , **A , ): if input_shape is None: lowerCamelCase_ : Dict = (1, 2_2_4, 2_2_4, 3) lowerCamelCase_ : Tuple = self.module_class(config=A , dtype=A , **A ) super().__init__(A , A , input_shape=A , seed=A , dtype=A , _do_init=_do_init ) def UpperCAmelCase__ (self , A , A , A = None ): # init input tensor lowerCamelCase_ : str = jax.random.normal(A , A ) lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = jax.random.split(A ) lowerCamelCase_ : str = {'''params''': params_rng, '''dropout''': dropout_rng} lowerCamelCase_ : Optional[Any] = self.module.init(A , A )['''params'''] return random_params def __call__(self , A , A = None , ): lowerCamelCase_ : Optional[int] = jnp.transpose(A , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(A , dtype=jnp.floataa ) , rngs={} , )
318
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
1
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase_ ( _lowercase ) -> float: '''simple docstring''' return np.dot(_lowercase , _lowercase ) class __lowercase : def __init__(self , *, A = np.inf , A = "linear" , A = 0.0 , ): lowerCamelCase_ : Optional[int] = regularization lowerCamelCase_ : List[str] = gamma if kernel == "linear": lowerCamelCase_ : Any = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowerCamelCase_ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase_ : int = F"""Unknown kernel: {kernel}""" raise ValueError(A ) def UpperCAmelCase__ (self , A , A ): return np.dot(A , A ) def UpperCAmelCase__ (self , A , A ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : str = observations lowerCamelCase_ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCamelCase_), ) : Union[str, Any] = np.shape(A ) def to_minimize(A ) -> float: lowerCamelCase_ : List[Any] = 0 ((lowerCamelCase_), ) : Union[str, Any] = np.shape(A ) for i in range(A ): for j in range(A ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(A ) lowerCamelCase_ : Dict = LinearConstraint(A , 0 , 0 ) lowerCamelCase_ : Dict = Bounds(0 , self.regularization ) lowerCamelCase_ : int = minimize( A , np.ones(A ) , bounds=A , constraints=[ly_contraint] ).x lowerCamelCase_ : List[Any] = l_star # calculating mean offset of separation plane to points lowerCamelCase_ : Union[str, Any] = 0 for i in range(A ): for j in range(A ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowerCamelCase_ : int = s / n def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , A ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
318
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "microsoft/speecht5_tts" lowerCamelCase : Dict = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) lowerCamelCase : Union[str, Any] = "text_reader" lowerCamelCase : Dict = SpeechTaProcessor lowerCamelCase : Optional[int] = SpeechTaForTextToSpeech lowerCamelCase : Tuple = SpeechTaHifiGan lowerCamelCase : List[str] = ["text"] lowerCamelCase : List[str] = ["audio"] def UpperCAmelCase__ (self ): if self.post_processor is None: lowerCamelCase_ : int = '''microsoft/speecht5_hifigan''' super().setup() def UpperCAmelCase__ (self , A , A=None ): lowerCamelCase_ : List[str] = self.pre_processor(text=A , return_tensors='''pt''' , truncation=A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) lowerCamelCase_ : Tuple = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) lowerCamelCase_ : Optional[int] = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase__ (self , A ): with torch.no_grad(): return self.model.generate_speech(**A ) def UpperCAmelCase__ (self , A ): with torch.no_grad(): return self.post_processor(A ).cpu().detach()
318
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = XLNetTokenizer lowerCamelCase : Optional[int] = XLNetTokenizerFast lowerCamelCase : str = True lowerCamelCase : Dict = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Union[str, Any] = XLNetTokenizer(A , keep_accents=A ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''<s>''' lowerCamelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(A ) , 1_0_0_6 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = XLNetTokenizer(A , keep_accents=A ) lowerCamelCase_ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) lowerCamelCase_ : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase_ : List[str] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) lowerCamelCase_ : Dict = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = XLNetTokenizer(A , do_lower_case=A ) lowerCamelCase_ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = XLNetTokenizer(A , do_lower_case=A ) lowerCamelCase_ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) lowerCamelCase_ : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) lowerCamelCase_ : Dict = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) lowerCamelCase_ : Any = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : Tuple = {'''input_ids''': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
318
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
1
'''simple docstring''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(_lowercase , _lowercase ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate lowerCamelCase_ : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCamelCase_ : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
318
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase_ ( _lowercase , _lowercase , _lowercase = "x" , _lowercase = 10**-10 , _lowercase = 1 , ) -> complex: '''simple docstring''' lowerCamelCase_ : List[str] = symbols(_lowercase ) lowerCamelCase_ : Tuple = lambdify(_lowercase , _lowercase ) lowerCamelCase_ : str = lambdify(_lowercase , diff(_lowercase , _lowercase ) ) lowerCamelCase_ : List[Any] = starting_point while True: if diff_function(_lowercase ) != 0: lowerCamelCase_ : Union[str, Any] = prev_guess - multiplicity * func(_lowercase ) / diff_function( _lowercase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowerCamelCase_ : Dict = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f'{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
318
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase_ : Optional[int] = cst_fwd.get(_lowercase , np.inf ) lowerCamelCase_ : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase_ : Dict = new_cost_f lowerCamelCase_ : Union[str, Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase_ : Dict = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : Optional[int] = -1 lowerCamelCase_ : str = set() lowerCamelCase_ : int = set() lowerCamelCase_ : List[Any] = {source: 0} lowerCamelCase_ : Optional[int] = {destination: 0} lowerCamelCase_ : int = {source: None} lowerCamelCase_ : Union[str, Any] = {destination: None} lowerCamelCase_ : PriorityQueue[Any] = PriorityQueue() lowerCamelCase_ : PriorityQueue[Any] = PriorityQueue() lowerCamelCase_ : Union[str, Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase_, lowerCamelCase_ : Any = queue_forward.get() visited_forward.add(_lowercase ) lowerCamelCase_, lowerCamelCase_ : str = queue_backward.get() visited_backward.add(_lowercase ) lowerCamelCase_ : List[Any] = pass_and_relaxation( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) lowerCamelCase_ : str = pass_and_relaxation( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase_ : Any = shortest_distance return shortest_path_distance __lowercase : int = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowercase : List[Any] = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
318
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase_ ( _lowercase , _lowercase="shi-labs/oneformer_demo" ) -> Any: '''simple docstring''' with open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) as f: lowerCamelCase_ : Optional[Any] = json.load(_lowercase ) lowerCamelCase_ : Dict = {} lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Union[str, Any] = [] for key, info in class_info.items(): lowerCamelCase_ : List[Any] = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(_lowercase ) ) lowerCamelCase_ : Tuple = thing_ids lowerCamelCase_ : List[Any] = class_names return metadata class __lowercase ( unittest.TestCase ): def __init__(self , A , A=7 , A=3 , A=3_0 , A=4_0_0 , A=None , A=True , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=1_0 , A=False , A=2_5_5 , A="shi-labs/oneformer_demo" , A="ade20k_panoptic.json" , A=1_0 , ): lowerCamelCase_ : str = parent lowerCamelCase_ : Union[str, Any] = batch_size lowerCamelCase_ : Dict = num_channels lowerCamelCase_ : Tuple = min_resolution lowerCamelCase_ : List[Any] = max_resolution lowerCamelCase_ : List[Any] = do_resize lowerCamelCase_ : Tuple = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size lowerCamelCase_ : Union[str, Any] = do_normalize lowerCamelCase_ : str = image_mean lowerCamelCase_ : Optional[Any] = image_std lowerCamelCase_ : Dict = class_info_file lowerCamelCase_ : Any = prepare_metadata(A , A ) lowerCamelCase_ : Dict = num_text lowerCamelCase_ : Optional[int] = repo_path # for the post_process_functions lowerCamelCase_ : List[str] = 2 lowerCamelCase_ : List[Any] = 1_0 lowerCamelCase_ : List[str] = 1_0 lowerCamelCase_ : Any = 3 lowerCamelCase_ : List[Any] = 4 lowerCamelCase_ : Dict = num_labels lowerCamelCase_ : Optional[int] = do_reduce_labels lowerCamelCase_ : Optional[Any] = ignore_index def UpperCAmelCase__ (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase__ (self , A , A=False ): if not batched: lowerCamelCase_ : Any = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase_, lowerCamelCase_ : Optional[int] = image.size else: lowerCamelCase_, lowerCamelCase_ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : Tuple = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowerCamelCase_ : Tuple = self.size['''shortest_edge'''] lowerCamelCase_ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase_ : Tuple = self.size['''shortest_edge'''] lowerCamelCase_ : Optional[int] = self.size['''shortest_edge'''] else: lowerCamelCase_ : Union[str, Any] = [] for image in image_inputs: lowerCamelCase_, lowerCamelCase_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Union[str, Any] = max(A , key=lambda A : item[0] )[0] lowerCamelCase_ : Optional[int] = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width def UpperCAmelCase__ (self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : List[str] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCamelCase : Any = image_processing_class def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase__ (self ): return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''ignore_index''' ) ) self.assertTrue(hasattr(A , '''class_info_file''' ) ) self.assertTrue(hasattr(A , '''num_text''' ) ) self.assertTrue(hasattr(A , '''repo_path''' ) ) self.assertTrue(hasattr(A , '''metadata''' ) ) self.assertTrue(hasattr(A , '''do_reduce_labels''' ) ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): # Initialize image_processor lowerCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.image_processing_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Tuple = self.image_processing_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : List[str] = image_processor( A , ['''semantic'''] * len(A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processor lowerCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : List[Any] = self.image_processing_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : str = self.image_processing_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Union[str, Any] = image_processor( A , ['''semantic'''] * len(A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processor lowerCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase_ : Optional[int] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : int = self.image_processing_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processing_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Dict = image_processor( A , ['''semantic'''] * len(A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self , A=False , A=False , A="np" ): lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowerCamelCase_ : str = self.image_processing_tester.num_labels lowerCamelCase_ : Tuple = None lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=A ) if with_segmentation_maps: lowerCamelCase_ : Any = num_labels if is_instance_map: lowerCamelCase_ : Union[str, Any] = list(range(A ) ) * 2 lowerCamelCase_ : int = dict(enumerate(A ) ) lowerCamelCase_ : Optional[int] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowerCamelCase_ : List[str] = [Image.fromarray(A ) for annotation in annotations] lowerCamelCase_ : Any = image_processor( A , ['''semantic'''] * len(A ) , A , return_tensors='''pt''' , instance_id_to_semantic_id=A , pad_and_return_pixel_mask=A , ) return inputs def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): def common(A=False , A=None ): lowerCamelCase_ : Union[str, Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=A , is_instance_map=A , segmentation_type=A ) lowerCamelCase_ : Union[str, Any] = inputs['''mask_labels'''] lowerCamelCase_ : str = inputs['''class_labels'''] lowerCamelCase_ : Union[str, Any] = inputs['''pixel_values'''] lowerCamelCase_ : str = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(A , A , A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=A ) common(is_instance_map=A , segmentation_type='''pil''' ) common(is_instance_map=A , segmentation_type='''pil''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = np.zeros((2_0, 5_0) ) lowerCamelCase_ : Any = 1 lowerCamelCase_ : Dict = 1 lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : Union[str, Any] = binary_mask_to_rle(A ) self.assertEqual(len(A ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowerCamelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(A ) self.assertEqual(len(A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowerCamelCase_ : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowerCamelCase_ : Any = fature_extractor.post_process_semantic_segmentation(A , target_sizes=A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowerCamelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ : List[Any] = image_processor.post_process_instance_segmentation(A , threshold=0 ) self.assertTrue(len(A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowerCamelCase_ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() lowerCamelCase_ : Dict = image_processor.post_process_panoptic_segmentation(A , threshold=0 ) self.assertTrue(len(A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
318
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase : Optional[int] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowercase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
1
'''simple docstring''' from scipy.stats import pearsonr import datasets __lowercase : Tuple = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __lowercase : Union[str, Any] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __lowercase : int = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def UpperCAmelCase__ (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ (self , A , A , A=False ): if return_pvalue: lowerCamelCase_ : Any = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
318
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
1
def _a ( a :int ) -> list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) a = [True] * (num + 1) a = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a ): a = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) @dataclass class __A ( UpperCamelCase__ ): a__ : str = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__(self : List[str] , **__a : Tuple ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ = deprecated_arg[3:] setattr(self , __a , not kwargs.pop(__a ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase_ = kwargs.pop("torchscript" , self.torchscript ) UpperCAmelCase_ = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) UpperCAmelCase_ = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**__a ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Trace the models using torchscript"""} ) a__ : bool = field(default=UpperCamelCase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) a__ : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def _lowercase (self : int ): requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: UpperCAmelCase_ = torch.device("cpu" ) UpperCAmelCase_ = 0 elif is_torch_tpu_available(): UpperCAmelCase_ = xm.xla_device() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase_ = torch.cuda.device_count() return device, n_gpu @property def _lowercase (self : Tuple ): return is_torch_tpu_available() and self.tpu @property def _lowercase (self : int ): requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowercase (self : List[str] ): requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def _lowercase (self : Tuple ): requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def _lowercase (self : Optional[Any] ): return self.n_gpu > 0
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ = [3, 3, 3, 3] lowercase__ = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ = [4, 4, 4, 4] lowercase__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ = [3, 3, 3, 3] else: lowercase__ = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ = 96 elif "small" in model_name: lowercase__ = 96 elif "base" in model_name: lowercase__ = 128 elif "large" in model_name: lowercase__ = 192 elif "xlarge" in model_name: lowercase__ = 256 elif "huge" in model_name: lowercase__ = 352 # set label information lowercase__ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ = '''imagenet-22k-id2label.json''' else: lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = FocalNetConfig( embed_dim=A , depths=A , focal_levels=A , focal_windows=A , use_conv_embed=A , idalabel=A , labelaid=A , use_post_layernorm=A , use_layerscale=A , ) return config def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ = '''encoder.''' + name if "encoder.layers" in name: lowercase__ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ = '''layernorm.weight''' if name == "norm.bias": lowercase__ = '''layernorm.bias''' if "head" in name: lowercase__ = name.replace('''head''' , '''classifier''' ) else: lowercase__ = '''focalnet.''' + name return name def _SCREAMING_SNAKE_CASE (A , A , A=False ) -> Any: """simple docstring""" lowercase__ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , A ) lowercase__ = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A ) lowercase__ = val lowercase__ = get_focalnet_config(A ) lowercase__ = FocalNetForImageClassification(A ) model.eval() # load state dict model.load_state_dict(A ) # verify conversion lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = BitImageProcessor( do_resize=A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=A , crop_size=224 , do_normalize=A , image_mean=A , image_std=A , ) lowercase__ = Image.open(requests.get(A , stream=A ).raw ) lowercase__ = processor(images=A , return_tensors='''pt''' ) lowercase__ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ = image_transforms(A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , A , atol=1E-4 ) lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowercase__ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowercase__ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowercase__ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowercase__ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowercase__ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
'''simple docstring''' import sys lowercase : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( snake_case__ = N ): '''simple docstring''' A : List[Any] = -sys.maxsize - 1 for i in range(len(snake_case__ ) - 12 ): A : Union[str, Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A : Optional[int] = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
3
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __snake_case ={ """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } __snake_case ={ """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } __snake_case ={ """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } __snake_case ={ """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } __snake_case ={ """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } __snake_case ={ """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def a_ ( lowerCamelCase : Tuple ): if isinstance(lowerCamelCase , lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any]=False ): lowerCAmelCase = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCAmelCase = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def a_ ( lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int]=None ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCAmelCase = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCAmelCase = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCAmelCase = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCAmelCase = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def a_ ( lowerCamelCase : str , lowerCamelCase : List[str] ): lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) lowerCAmelCase = {} lowerCAmelCase = checkpoint['time_embed.0.weight'] lowerCAmelCase = checkpoint['time_embed.0.bias'] lowerCAmelCase = checkpoint['time_embed.2.weight'] lowerCAmelCase = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: lowerCAmelCase = checkpoint['label_emb.weight'] lowerCAmelCase = checkpoint['input_blocks.0.0.weight'] lowerCAmelCase = checkpoint['input_blocks.0.0.bias'] lowerCAmelCase = unet_config['down_block_types'] lowerCAmelCase = unet_config['layers_per_block'] lowerCAmelCase = unet_config['attention_head_dim'] lowerCAmelCase = unet_config['block_out_channels'] lowerCAmelCase = 1 lowerCAmelCase = channels_list[0] for i, layer_type in enumerate(lowerCamelCase ): lowerCAmelCase = channels_list[i] lowerCAmelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCamelCase ): lowerCAmelCase = f'''down_blocks.{i}.resnets.{j}''' lowerCAmelCase = f'''input_blocks.{current_layer}.0''' lowerCAmelCase = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCamelCase ): lowerCAmelCase = f'''down_blocks.{i}.resnets.{j}''' lowerCAmelCase = f'''input_blocks.{current_layer}.0''' lowerCAmelCase = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase ) lowerCAmelCase = f'''down_blocks.{i}.attentions.{j}''' lowerCAmelCase = f'''input_blocks.{current_layer}.1''' lowerCAmelCase = convert_attention( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) current_layer += 1 if i != len(lowerCamelCase ) - 1: lowerCAmelCase = f'''down_blocks.{i}.downsamplers.0''' lowerCAmelCase = f'''input_blocks.{current_layer}.0''' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) current_layer += 1 lowerCAmelCase = current_channels # hardcoded the mid-block for now lowerCAmelCase = 'mid_block.resnets.0' lowerCAmelCase = 'middle_block.0' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = 'mid_block.attentions.0' lowerCAmelCase = 'middle_block.1' lowerCAmelCase = convert_attention(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = 'mid_block.resnets.1' lowerCAmelCase = 'middle_block.2' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = 0 lowerCAmelCase = unet_config['up_block_types'] for i, layer_type in enumerate(lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase = f'''up_blocks.{i}.resnets.{j}''' lowerCAmelCase = f'''output_blocks.{current_layer}.0''' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase ) current_layer += 1 if i != len(lowerCamelCase ) - 1: lowerCAmelCase = f'''up_blocks.{i}.upsamplers.0''' lowerCAmelCase = f'''output_blocks.{current_layer-1}.1''' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase = f'''up_blocks.{i}.resnets.{j}''' lowerCAmelCase = f'''output_blocks.{current_layer}.0''' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , has_skip=lowerCamelCase ) lowerCAmelCase = f'''up_blocks.{i}.attentions.{j}''' lowerCAmelCase = f'''output_blocks.{current_layer}.1''' lowerCAmelCase = convert_attention( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) current_layer += 1 if i != len(lowerCamelCase ) - 1: lowerCAmelCase = f'''up_blocks.{i}.upsamplers.0''' lowerCAmelCase = f'''output_blocks.{current_layer-1}.2''' lowerCAmelCase = convert_resnet(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = checkpoint['out.0.weight'] lowerCAmelCase = checkpoint['out.0.bias'] lowerCAmelCase = checkpoint['out.2.weight'] lowerCAmelCase = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") __snake_case =parser.parse_args() __snake_case =strabool(args.class_cond) __snake_case =os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: __snake_case =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __snake_case =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __snake_case =TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: __snake_case =None __snake_case =con_pt_to_diffuser(args.unet_path, unet_config) __snake_case =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __snake_case =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __snake_case =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __snake_case =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') __snake_case =CMStochasticIterativeScheduler(**scheduler_config) __snake_case =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
4
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase ='''''' for i in table: res += inp[i - 1] return res def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return data[1:] + data[0] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase ='''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" _lowercase =int('''0b''' + data[0] + data[-1] , 2 ) _lowercase =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase =message[:4] _lowercase =message[4:] _lowercase =apply_table(__snake_case , __snake_case ) _lowercase =xor(__snake_case , __snake_case ) _lowercase =apply_sbox(__snake_case , temp[:4] ) # noqa: E741 _lowercase =apply_sbox(__snake_case , temp[4:] ) _lowercase ='''0''' * (2 - len(__snake_case )) + l # noqa: E741 _lowercase ='''0''' * (2 - len(__snake_case )) + r _lowercase =apply_table(l + r , __snake_case ) _lowercase =xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": UpperCAmelCase__ = input('''Enter 10 bit key: ''') UpperCAmelCase__ = input('''Enter 8 bit message: ''') UpperCAmelCase__ = [6, 3, 7, 4, 8, 5, 10, 9] UpperCAmelCase__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCAmelCase__ = [2, 4, 3, 1] UpperCAmelCase__ = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase__ = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase__ = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase__ = apply_table(key, paa_table) UpperCAmelCase__ = temp[:5] UpperCAmelCase__ = temp[5:] UpperCAmelCase__ = left_shift(left) UpperCAmelCase__ = left_shift(right) UpperCAmelCase__ = apply_table(left + right, pa_table) UpperCAmelCase__ = left_shift(left) UpperCAmelCase__ = left_shift(right) UpperCAmelCase__ = left_shift(left) UpperCAmelCase__ = left_shift(right) UpperCAmelCase__ = apply_table(left + right, pa_table) # encryption UpperCAmelCase__ = apply_table(message, IP) UpperCAmelCase__ = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ = temp[4:] + temp[:4] UpperCAmelCase__ = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption UpperCAmelCase__ = apply_table(CT, IP) UpperCAmelCase__ = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ = temp[4:] + temp[:4] UpperCAmelCase__ = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
5
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowerCAmelCase ( a__ ) -> Dict: __a = botoa.client('''iam''' ) __a = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=a__ , AssumeRolePolicyDocument=json.dumps(a__ , indent=2 ) ) __a = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=a__ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(a__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = botoa.client('''iam''' ) return iam_client.get_role(RoleName=a__ )["Role"]["Arn"] def __lowerCAmelCase ( ) -> Tuple: __a = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , a__ , ) __a = None if credentials_configuration == 0: __a = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) __a = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) __a = _ask_field('''AWS Access Key ID: ''' ) __a = aws_access_key_id __a = _ask_field('''AWS Secret Access Key: ''' ) __a = aws_secret_access_key __a = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) __a = aws_region __a = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , a__ , ) if role_management == 0: __a = _ask_field('''Enter your IAM role name: ''' ) else: __a = '''accelerate_sagemaker_execution_role''' print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(a__ ) __a = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) __a = None if is_custom_docker_image: __a = _ask_field('''Enter your Docker image: ''' , lambda a__ : str(a__ ).lower() ) __a = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda a__ : str(a__ ).lower() , ) __a = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda a__ : str(a__ ).lower() , ) __a = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) __a = {} __a = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) if use_dynamo: __a = '''dynamo_''' __a = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __a = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) if use_custom_options: __a = _ask_options( '''Which mode do you want to use?''' , a__ , lambda a__ : TORCH_DYNAMO_MODES[int(a__ )] , default='''default''' , ) __a = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) __a = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=a__ , error_message='''Please enter yes or no.''' , ) __a = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( a__ , a__ , lambda a__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(a__ , lambda a__ : str(a__ ).lower() , default='''ml.p3.2xlarge''' ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( '''How many machines do you want use? [1]: ''' , a__ , default=1 , ) __a = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=a__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=a__ , use_cpu=a__ , dynamo_config=a__ , eca_instance_type=a__ , profile=a__ , region=a__ , iam_role_name=a__ , mixed_precision=a__ , num_machines=a__ , sagemaker_inputs_file=a__ , sagemaker_metrics_file=a__ , )
6
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
from ...configuration_utils import PretrainedConfig lowercase_ = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'tapas' def __init__( self : Optional[Any],lowercase_ : Union[str, Any]=3_0_5_2_2,lowercase_ : List[str]=7_6_8,lowercase_ : int=1_2,lowercase_ : Optional[Any]=1_2,lowercase_ : str=3_0_7_2,lowercase_ : Optional[Any]="gelu",lowercase_ : Union[str, Any]=0.1,lowercase_ : str=0.1,lowercase_ : Optional[int]=1_0_2_4,lowercase_ : int=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0],lowercase_ : Any=0.02,lowercase_ : int=1E-12,lowercase_ : Union[str, Any]=0,lowercase_ : Dict=10.0,lowercase_ : Any=0,lowercase_ : Any=1.0,lowercase_ : Any=None,lowercase_ : Optional[Any]=1.0,lowercase_ : Tuple=False,lowercase_ : Any=None,lowercase_ : Optional[int]=1.0,lowercase_ : Dict=1.0,lowercase_ : Any=False,lowercase_ : Optional[int]=False,lowercase_ : Union[str, Any]="ratio",lowercase_ : Tuple=None,lowercase_ : Tuple=None,lowercase_ : Tuple=6_4,lowercase_ : Optional[int]=3_2,lowercase_ : Dict=False,lowercase_ : List[Any]=True,lowercase_ : Optional[int]=False,lowercase_ : Optional[Any]=False,lowercase_ : List[Any]=True,lowercase_ : List[Any]=False,lowercase_ : int=None,lowercase_ : Optional[int]=None,**lowercase_ : int,)-> str: '''simple docstring''' super().__init__(pad_token_id=lowercase_,**lowercase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_sizes A__ = initializer_range A__ = layer_norm_eps # Fine-tuning task hyperparameters A__ = positive_label_weight A__ = num_aggregation_labels A__ = aggregation_loss_weight A__ = use_answer_as_supervision A__ = answer_loss_importance A__ = use_normalized_answer_loss A__ = huber_loss_delta A__ = temperature A__ = aggregation_temperature A__ = use_gumbel_for_cells A__ = use_gumbel_for_aggregation A__ = average_approximation_function A__ = cell_selection_preference A__ = answer_loss_cutoff A__ = max_num_rows A__ = max_num_columns A__ = average_logits_per_cell A__ = select_one_column A__ = allow_empty_column_selection A__ = init_cell_selection_weights_to_zero A__ = reset_position_index_per_cell A__ = disable_per_token_loss # Aggregation hyperparameters A__ = aggregation_labels A__ = no_aggregation_label_index if isinstance(self.aggregation_labels,lowercase_ ): A__ = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
7
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : List[Any] , _UpperCamelCase : str="</s>" , _UpperCamelCase : List[Any]="<unk>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : Optional[int]=1_2_5 , _UpperCamelCase : Dict=None , **_UpperCamelCase : Tuple , ) ->None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case_ = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case_ = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = extra_ids snake_case_ = 2**8 # utf is 8 bits # define special tokens dict snake_case_ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case_ = len(self.special_tokens_encoder ) snake_case_ = len(_UpperCamelCase ) for i, token in enumerate(_UpperCamelCase ): snake_case_ = self.vocab_size + i - n snake_case_ = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__( self : Optional[int] ) ->List[str]: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : Union[str, Any] , _UpperCamelCase : List[int] ) ->List[int]: if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case_ = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: snake_case_ = [chr(_UpperCamelCase ) for i in text.encode('''utf-8''' )] return tokens def snake_case__( self : List[str] , _UpperCamelCase : Union[str, Any] ) ->Optional[Any]: if token in self.special_tokens_encoder: snake_case_ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case_ = self.added_tokens_encoder[token] elif len(_UpperCamelCase ) != 1: snake_case_ = self.unk_token_id else: snake_case_ = ord(_UpperCamelCase ) + self._num_special_tokens return token_id def snake_case__( self : int , _UpperCamelCase : Tuple ) ->Union[str, Any]: if index in self.special_tokens_decoder: snake_case_ = self.special_tokens_decoder[index] else: snake_case_ = chr(index - self._num_special_tokens ) return token def snake_case__( self : int , _UpperCamelCase : List[Any] ) ->str: snake_case_ = B'''''' for token in tokens: if token in self.special_tokens_decoder: snake_case_ = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: snake_case_ = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: snake_case_ = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: snake_case_ = token.encode('''utf-8''' ) else: snake_case_ = bytes([ord(_UpperCamelCase )] ) bstring += tok_string snake_case_ = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: return ()
8
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __lowerCAmelCase : Dict ={ 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __lowerCAmelCase : Optional[int] ={'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : List[Any] = bs[:] __SCREAMING_SNAKE_CASE : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : str = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = set() __SCREAMING_SNAKE_CASE : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : str = char return pairs class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]="replace" , lowerCAmelCase__ :List[str]="<s>" , lowerCAmelCase__ :Union[str, Any]="</s>" , lowerCAmelCase__ :Optional[Any]="</s>" , lowerCAmelCase__ :Optional[Any]="<s>" , lowerCAmelCase__ :str="<unk>" , lowerCAmelCase__ :int="<pad>" , lowerCAmelCase__ :Tuple="<mask>" , lowerCAmelCase__ :int=False , **lowerCAmelCase__ :int , ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE : str = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : int = bytes_to_unicode() __SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Any = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __magic_name__( self :Optional[int] ) -> Tuple: return len(self.encoder ) def __magic_name__( self :Optional[Any] ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[Any] ) -> Dict: if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : List[Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = bigram __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Any = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Tuple = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Optional[int] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Any = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def __magic_name__( self :Any , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) return bpe_tokens def __magic_name__( self :str , lowerCAmelCase__ :List[str] ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] ) -> List[Any]: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Dict = 0 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE : Any = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :Any , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False , **lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[Any] = ''' ''' + text return (text, kwargs) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> Tuple: return token_ids_a + [self.eos_token_id] def __magic_name__( self :Any , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : Optional[int] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
9
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[int]) ->Dict: '''simple docstring''' super().__init__() lowerCamelCase__: int =torchvision.models.resnetaaa(pretrained=UpperCAmelCase_) lowerCamelCase__: Optional[int] =list(model.children())[:-2] lowerCamelCase__: Optional[int] =nn.Sequential(*UpperCAmelCase_) lowerCamelCase__: Dict =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.pool(self.model(UpperCAmelCase_)) lowerCamelCase__: str =torch.flatten(UpperCAmelCase_ , start_dim=2) lowerCamelCase__: int =out.transpose(1 , 2).contiguous() return out # BxNx2048 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: Dict =[json.loads(UpperCAmelCase_) for l in open(UpperCAmelCase_)] lowerCamelCase__: Tuple =os.path.dirname(UpperCAmelCase_) lowerCamelCase__: Any =tokenizer lowerCamelCase__: List[str] =labels lowerCamelCase__: int =len(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =max_seq_length lowerCamelCase__: str =transforms def __len__(self : List[Any]) ->Union[str, Any]: '''simple docstring''' return len(self.data) def __getitem__(self : Tuple , UpperCAmelCase_ : Dict) ->int: '''simple docstring''' lowerCamelCase__: Optional[int] =torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCAmelCase_)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase__: Union[str, Any] =sentence[: self.max_seq_length] lowerCamelCase__: str =torch.zeros(self.n_classes) lowerCamelCase__: str =1 lowerCamelCase__: List[Any] =Image.open(os.path.join(self.data_dir , self.data[index]["img"])).convert("RGB") lowerCamelCase__: int =self.transforms(UpperCAmelCase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: Tuple =[len(row["sentence"] ) for row in batch] lowerCamelCase__ , lowerCamelCase__: Optional[int] =len(__a ), max(__a ) lowerCamelCase__: List[str] =torch.zeros(__a , __a , dtype=torch.long ) lowerCamelCase__: Optional[int] =torch.zeros(__a , __a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__a , __a ) ): lowerCamelCase__: Optional[int] =input_row["sentence"] lowerCamelCase__: Dict =1 lowerCamelCase__: List[str] =torch.stack([row["image"] for row in batch] ) lowerCamelCase__: Optional[int] =torch.stack([row["label"] for row in batch] ) lowerCamelCase__: List[str] =torch.stack([row["image_start_token"] for row in batch] ) lowerCamelCase__: List[Any] =torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCAmelCase_ ( ) -> int: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
10
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "gpt_neo" __SCREAMING_SNAKE_CASE = ["past_key_values"] __SCREAMING_SNAKE_CASE = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , __lowerCamelCase=5_0_2_5_7 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=2_4 , __lowerCamelCase=[[["global", "local"], 1_2]] , __lowerCamelCase=1_6 , __lowerCamelCase=None , __lowerCamelCase=2_5_6 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0_2 , __lowerCamelCase=True , __lowerCamelCase=5_0_2_5_6 , __lowerCamelCase=5_0_2_5_6 , **__lowerCamelCase , ) -> Union[str, Any]: _A : str = vocab_size _A : List[Any] = max_position_embeddings _A : Union[str, Any] = hidden_size _A : Dict = num_layers _A : str = num_heads _A : Optional[Any] = intermediate_size _A : str = window_size _A : Dict = activation_function _A : List[str] = resid_dropout _A : Union[str, Any] = embed_dropout _A : Dict = attention_dropout _A : int = classifier_dropout _A : List[Any] = layer_norm_epsilon _A : List[str] = initializer_range _A : Any = use_cache _A : Any = bos_token_id _A : str = eos_token_id _A : Optional[Any] = attention_types _A : Dict = self.expand_attention_types_params(__lowerCamelCase) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument.") super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) @staticmethod def _lowerCamelCase ( __lowerCamelCase) -> Any: _A : List[Any] = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): import torch _A : str = input.size() _A : Any = len(UpperCamelCase__ ) _A : List[str] = shape[dimension] _A : Optional[Any] = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _A : str = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode="floor" ) + 1 _A : Dict = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _A : str = [slice(UpperCamelCase__ )] * rank _A : int = indices _A : List[Any] = input[s] _A : List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): import torch _A : Dict = torch.arange(1 , UpperCamelCase__ ) _A : List[str] = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _A : List[Any] = remainders == 0 _A : str = candidates[divisor_indices] _A : Optional[int] = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode="floor" ) class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: _A : Union[str, Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs") _A : str = {0: "batch", 1: "past_sequence + sequence"} else: _A : Union[str, Any] = {0: "batch", 1: "sequence"} return common_inputs @property def _lowerCamelCase ( self) -> int: return self._config.num_heads def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]: _A : Any = super(__lowerCamelCase , self).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase) # We need to order the input in the way they appears in the forward() _A : str = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _A , _A : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _A : Dict = seqlen + 2 _A : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _A : Dict = [ (torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase)) for _ in range(self.num_layers) ] _A : Optional[Any] = common_inputs["attention_mask"] if self.use_past: _A : Optional[Any] = ordered_inputs["attention_mask"].dtype _A : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase)] , dim=1) return ordered_inputs @property def _lowerCamelCase ( self) -> int: return 1_3
11
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
from math import factorial class lowerCamelCase__: def __init__( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: int ): __lowerCamelCase = real if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [1] * rank else: __lowerCamelCase = rank def __repr__( self: List[Any] ): return ( F'{self.real}+' F'{"+".join(str(UpperCamelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , UpperCamelCase_ ) def __add__( self: int , UpperCamelCase_: Tuple ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return Dual(self.real + other , self.duals ) __lowerCamelCase = self.duals.copy() __lowerCamelCase = other.duals.copy() if len(UpperCamelCase_ ) > len(UpperCamelCase_ ): o_dual.extend([1] * (len(UpperCamelCase_ ) - len(UpperCamelCase_ )) ) elif len(UpperCamelCase_ ) < len(UpperCamelCase_ ): s_dual.extend([1] * (len(UpperCamelCase_ ) - len(UpperCamelCase_ )) ) __lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , UpperCamelCase_ ) UpperCAmelCase__ : Dict = __add__ def __sub__( self: List[str] , UpperCamelCase_: Dict ): return self + other * -1 def __mul__( self: Any , UpperCamelCase_: Optional[Any] ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , UpperCamelCase_ ) __lowerCamelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = __mul__ def __truediv__( self: Dict , UpperCamelCase_: Tuple ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , UpperCamelCase_ ) raise ValueError def __floordiv__( self: int , UpperCamelCase_: int ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , UpperCamelCase_ ) raise ValueError def __pow__( self: Tuple , UpperCamelCase_: str ): if n < 0 or isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self __lowerCamelCase = self for _ in range(n - 1 ): x *= self return x def lowerCamelCase__ ( A__ : List[str] , A__ : str , A__ : str ): '''simple docstring''' if not callable(A__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(A__ , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(A__ , A__ ): raise ValueError("""differentiate() requires an int as input for order""" ) __lowerCamelCase = Dual(A__ , 1 ) __lowerCamelCase = func(A__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(A__ ) if __name__ == "__main__": import doctest doctest.testmod() def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
12
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
from __future__ import annotations from math import pi def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: A__ = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: A__ = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) A__ = val return f[i][j] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: A__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: A__ = dp[i - 1][w_] return dp[n][w_], dp def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) A__ = len(lowercase_ ) if num_items != len(lowercase_ ): A__ = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(lowercase_ )} values""" ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): A__ = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowercase_ ) A__ , A__ = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : str = [3, 2, 4, 4] _lowerCamelCase : Tuple = [4, 3, 2, 3] _lowerCamelCase : int = 4 _lowerCamelCase : Any = 6 _lowerCamelCase : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _lowerCamelCase , _lowerCamelCase : str = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _lowerCamelCase , _lowerCamelCase : str = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
14
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "EncodecFeatureExtractor" snake_case_ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Tuple ,A : Any ,A : List[str] ): super().__init__(A ,A ) __A = self.feature_extractor __A = False def UpperCamelCase_ ( self : Optional[int] ,A : Tuple=None ,A : List[str]=None ,A : Union[str, Any]=True ): return self.tokenizer.get_decoder_prompt_ids(task=A ,language=A ,no_timestamps=A ) def __call__( self : int ,*A : Any ,**A : Any ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A ,**A ) __A = kwargs.pop("audio" ,A ) __A = kwargs.pop("sampling_rate" ,A ) __A = kwargs.pop("text" ,A ) if len(A ) > 0: __A = args[0] __A = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: __A = self.tokenizer(A ,**A ) if audio is not None: __A = self.feature_extractor(A ,*A ,sampling_rate=A ,**A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __A = audio_inputs["padding_mask"] return inputs def UpperCamelCase_ ( self : List[Any] ,*A : Optional[Any] ,**A : Optional[int] ): __A = kwargs.pop("audio" ,A ) __A = kwargs.pop("padding_mask" ,A ) if len(A ) > 0: __A = args[0] __A = args[1:] if audio_values is not None: return self._decode_audio(A ,padding_mask=A ) else: return self.tokenizer.batch_decode(*A ,**A ) def UpperCamelCase_ ( self : List[Any] ,*A : Dict ,**A : Tuple ): return self.tokenizer.decode(*A ,**A ) def UpperCamelCase_ ( self : int ,A : Union[str, Any] ,A : Optional = None ): __A = to_numpy(A ) __A , __A , __A = audio_values.shape if padding_mask is None: return list(A ) __A = to_numpy(A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A = seq_len - padding_mask.shape[-1] __A = 1 - self.feature_extractor.padding_value __A = np.pad(A ,((0, 0), (0, difference)) ,"constant" ,constant_values=A ) __A = audio_values.tolist() for i in range(A ): __A = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A = sliced_audio.reshape(A ,-1 ) return audio_values
15
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) lowercase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : List[Any] = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Any ,_snake_case : List[Any] ,_snake_case : Any=0 ) -> Any: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[Any] = 2 lowercase__ : Optional[int] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,) lowercase__ : str = floats_tensor(control_image.shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(_snake_case : Optional[int] ): if isinstance(_snake_case ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowercase__ : Dict = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) lowercase__ : int = CLIPTextModel(_snake_case ) lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : int = MultiControlNetModel([controlneta, controlneta] ) lowercase__ : Optional[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_snake_case ) else: lowercase__ : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : int = 2 lowercase__ : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_snake_case ,device=torch.device(_snake_case ) ,), ] lowercase__ : Dict = floats_tensor(control_image[0].shape ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ : Optional[int] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : Dict = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowercase__ : Optional[Any] = 10.0 lowercase__ : Tuple = 4 lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = steps lowercase__ : Any = scale lowercase__ : Optional[Any] = pipe(**_snake_case )[0] lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : int = scale lowercase__ : List[str] = pipe(**_snake_case ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] lowercase__ : int = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[int] = steps lowercase__ : Dict = scale lowercase__ : Dict = pipe(**_snake_case ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : List[Any] = steps lowercase__ : Optional[int] = scale lowercase__ : List[Any] = pipe(**_snake_case ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' ,safety_checker=_snake_case ,controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : List[str] = '''evil space-punk bird''' lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ : Tuple = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ : List[Any] = pipe( _snake_case ,_snake_case ,control_image=_snake_case ,generator=_snake_case ,output_type='''np''' ,num_inference_steps=50 ,strength=0.6 ,) lowercase__ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) lowercase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
16
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _a = (3, 9, -11, 0, 7, 5, 1, -1) _a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : Node | None class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int], UpperCAmelCase__ : Iterable[int] ): __lowercase = None for i in sorted(UpperCAmelCase__, reverse=UpperCAmelCase__ ): __lowercase = Node(UpperCAmelCase__, self.head ) def __iter__( self : str ): __lowercase = self.head while node: yield node.data __lowercase = node.next_node def __len__( self : Optional[int] ): return sum(1 for _ in self ) def __str__( self : List[str] ): return " -> ".join([str(UpperCAmelCase__ ) for node in self] ) def _A ( UpperCamelCase_ : SortedLinkedList, UpperCamelCase_ : SortedLinkedList) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(UpperCamelCase_) + list(UpperCamelCase_)) if __name__ == "__main__": import doctest doctest.testmod() _a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A ={'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''DeiTFeatureExtractor'''] __A =['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : List[str] = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model lowercase : Optional[Any] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = [] lowercase : List[Any] = [] lowercase : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase : List[str] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' lowercase : List[Any] = name[1:] # figure out how many levels deep the name is lowercase : int = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(SCREAMING_SNAKE_CASE__ ) # read data lowercase : List[Any] = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) names.append("""/""".join(SCREAMING_SNAKE_CASE__ ) ) arrays.append(SCREAMING_SNAKE_CASE__ ) logger.info(f"Read a total of {len(SCREAMING_SNAKE_CASE__ ):,} layers" ) # Sanity check if len(set(SCREAMING_SNAKE_CASE__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(SCREAMING_SNAKE_CASE__ ) )})" ) lowercase : Union[str, Any] = list(set(SCREAMING_SNAKE_CASE__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = full_name.split("""/""" ) lowercase : int = model lowercase : List[Any] = [] for i, m_name in enumerate(SCREAMING_SNAKE_CASE__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): lowercase : Tuple = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , """embeddings""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """encoder""" ) lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , """layer""" ) lowercase : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """pooler""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , """token_type_embeddings""" ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """intermediate""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """weight""" ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary lowercase : List[Any] = """.""".join(SCREAMING_SNAKE_CASE__ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , SCREAMING_SNAKE_CASE__ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase : str = array.transpose() if pointer.shape == array.shape: lowercase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) lowercase : Any = BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = BertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowercase : str = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
20
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger SCREAMING_SNAKE_CASE : Union[str, Any] = "<<<<<<< This should probably be modified because it mentions: " SCREAMING_SNAKE_CASE : Optional[int] = "=======\n>>>>>>>\n" SCREAMING_SNAKE_CASE : str = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] SCREAMING_SNAKE_CASE : List[Any] = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class _lowerCamelCase( _a ): @staticmethod def UpperCamelCase ( lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = parser.add_parser( 'convert', help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.', ) train_parser.add_argument( '--tfds_path', type=lowerCamelCase, required=lowerCamelCase, help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.', ) train_parser.add_argument( '--datasets_directory', type=lowerCamelCase, required=lowerCamelCase, help='Path to the HuggingFace Datasets folder.') train_parser.set_defaults(func=lowerCamelCase) def __init__( self, lowerCamelCase, lowerCamelCase, *lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = get_logger('datasets-cli/converting') _lowercase : Union[str, Any] = tfds_path _lowercase : Tuple = datasets_directory def UpperCamelCase ( self) -> List[str]: """simple docstring""" if os.path.isdir(self._tfds_path): _lowercase : List[Any] = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): _lowercase : Tuple = os.path.dirname(self._tfds_path) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.') _lowercase : List[str] = os.path.abspath(self._datasets_directory) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''') _lowercase : Any = [] _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = {} if os.path.isdir(self._tfds_path): _lowercase : int = os.listdir(lowerCamelCase) else: _lowercase : List[Any] = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''') _lowercase : Any = os.path.join(lowerCamelCase, lowerCamelCase) _lowercase : int = os.path.join(lowerCamelCase, lowerCamelCase) if not os.path.isfile(lowerCamelCase) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file') continue with open(lowerCamelCase, encoding='utf-8') as f: _lowercase : List[Any] = f.readlines() _lowercase : Any = [] _lowercase : Tuple = False _lowercase : Union[str, Any] = False _lowercase : Optional[int] = [] for line in lines: _lowercase : Dict = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _lowercase : Tuple = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here _lowercase : List[Any] = '' continue elif "from absl import logging" in out_line: _lowercase : List[str] = 'from datasets import logging\n' elif "getLogger" in out_line: _lowercase : Tuple = out_line.replace('getLogger', 'get_logger') elif any(expression in out_line for expression in TO_HIGHLIGHT): _lowercase : Tuple = True _lowercase : List[str] = list(filter(lambda lowerCamelCase: e in out_line, lowerCamelCase)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase) + '\n') out_lines.append(lowerCamelCase) out_lines.append(lowerCamelCase) continue else: for pattern, replacement in TO_CONVERT: _lowercase : Union[str, Any] = re.sub(lowerCamelCase, lowerCamelCase, lowerCamelCase) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _lowercase : List[str] = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)', lowerCamelCase) tfds_imports.extend(imp.strip() for imp in match.group(1).split(',')) _lowercase : Optional[Any] = 'from . import ' + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''') if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _lowercase : Optional[Any] = True out_lines.append(lowerCamelCase) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _lowercase : Optional[Any] = f_name.replace('.py', '') _lowercase : Tuple = os.path.join(lowerCamelCase, lowerCamelCase) _lowercase : str = os.path.join(lowerCamelCase, lowerCamelCase) os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) self._logger.info(F'''Adding directory {output_dir}''') imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase) if needs_manual_update: with_manual_update.append(lowerCamelCase) with open(lowerCamelCase, 'w', encoding='utf-8') as f: f.writelines(lowerCamelCase) self._logger.info(F'''Converted in {output_file}''') for utils_file in utils_files: try: _lowercase : int = os.path.basename(lowerCamelCase) _lowercase : int = imports_to_builder_map[f_name.replace('.py', '')] self._logger.info(F'''Moving {dest_folder} to {utils_file}''') shutil.copy(lowerCamelCase, lowerCamelCase) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''') if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''')
21
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __SCREAMING_SNAKE_CASE :Optional[int] = '''▁''' class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = AlbertTokenizer def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : str="<unk>" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : List[Any]="<pad>" , snake_case_ : List[str]="[CLS]" , snake_case_ : int="[MASK]" , **snake_case_ : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
22
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Dict = logging.get_logger(__name__) UpperCamelCase__: Optional[Any] = ["model.decoder.embed_positions.weights"] def snake_case_ ( _lowerCAmelCase : str ) -> Tuple: if "emb" in name: UpperCAmelCase : int = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: UpperCAmelCase : Optional[Any] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: UpperCAmelCase : int = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: UpperCAmelCase : List[str] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: UpperCAmelCase : Any = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: UpperCAmelCase : str = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: UpperCAmelCase : str = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: UpperCAmelCase : Optional[int] = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def snake_case_ ( _lowerCAmelCase : OrderedDict , _lowerCAmelCase : int ) -> Tuple[Dict, Dict]: UpperCAmelCase : int = list(state_dict.keys() ) UpperCAmelCase : Tuple = {} for key in keys: UpperCAmelCase : Optional[int] = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = rename_keys(_lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Union[str, Any] = val[:hidden_size, :] UpperCAmelCase : str = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : Tuple = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def snake_case_ ( _lowerCAmelCase : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values UpperCAmelCase : Optional[int] = 1024 UpperCAmelCase : List[Any] = 24 UpperCAmelCase : List[Any] = 16 elif checkpoint == "medium": UpperCAmelCase : Tuple = 1536 UpperCAmelCase : Union[str, Any] = 48 UpperCAmelCase : Tuple = 24 elif checkpoint == "large": UpperCAmelCase : Tuple = 2048 UpperCAmelCase : List[Any] = 48 UpperCAmelCase : List[Any] = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCAmelCase : List[Any] = MusicgenDecoderConfig( hidden_size=_lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCAmelCase , num_attention_heads=_lowerCAmelCase , ) return config @torch.no_grad() def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Dict="cpu" ) -> str: UpperCAmelCase : List[str] = MusicGen.get_pretrained(_lowerCAmelCase , device=_lowerCAmelCase ) UpperCAmelCase : Dict = decoder_config_from_checkpoint(_lowerCAmelCase ) UpperCAmelCase : Any = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_state_dict( _lowerCAmelCase , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Tuple = TaEncoderModel.from_pretrained('''t5-base''' ) UpperCAmelCase : Dict = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) UpperCAmelCase : Optional[int] = MusicgenForCausalLM(_lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCAmelCase : Any = MusicgenForConditionalGeneration(text_encoder=_lowerCAmelCase , audio_encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCAmelCase ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : List[str] = model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''t5-base''' ) UpperCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) UpperCAmelCase : int = MusicgenProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # set the appropriate bos/pad token ids UpperCAmelCase : Optional[int] = 2048 UpperCAmelCase : List[Any] = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : Optional[Any] = True UpperCAmelCase : str = 3.0 if pytorch_dump_folder is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_lowerCAmelCase ) processor.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) UpperCamelCase__: Optional[int] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
23
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( snake_case_ : dict ) -> tuple: return (data["data"], data["target"]) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: __snake_case = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(snake_case_ , snake_case_ ) # Predict target for test data __snake_case = xgb.predict(snake_case_ ) __snake_case = predictions.reshape(len(snake_case_ ) , 1 ) return predictions def lowerCamelCase__ ( ) -> None: __snake_case = fetch_california_housing() __snake_case , __snake_case = data_handling(snake_case_ ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( snake_case_ , snake_case_ , test_size=0.25 , random_state=1 ) __snake_case = xgboost(snake_case_ , snake_case_ , snake_case_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(snake_case_ , snake_case_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
24
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowercase_ ( _snake_case = 3 ): if isinstance(_snake_case ,_snake_case ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) SCREAMING_SNAKE_CASE__ : str = QuantumRegister(_snake_case ,"""qr""" ) SCREAMING_SNAKE_CASE__ : Dict = ClassicalRegister(_snake_case ,"""cr""" ) SCREAMING_SNAKE_CASE__ : Dict = QuantumCircuit(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : int = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,_snake_case ,_snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case ,_snake_case ) # simulate with 10000 shots SCREAMING_SNAKE_CASE__ : Optional[int] = Aer.get_backend("""qasm_simulator""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = execute(_snake_case ,_snake_case ,shots=10_000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
25
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 1 @register_to_config def __init__( self , _a=2000 , _a=0.1 , _a=20 , _a=1e-3 ) -> List[Any]: _A : Dict = None _A : List[Any] = None _A : Dict = None def a__ ( self , _a , _a = None ) -> Union[str, Any]: _A : Union[str, Any] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def a__ ( self , _a , _a , _a , _a=None ) -> Dict: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _A : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _A : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _A : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): _A : List[Any] = std.unsqueeze(-1 ) _A : int = -score / std # compute _A : Tuple = -1.0 / len(self.timesteps ) _A : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _A : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _A : Union[str, Any] = beta_t.unsqueeze(-1 ) _A : Tuple = -0.5 * beta_t * x _A : Tuple = torch.sqrt(_a ) _A : Dict = drift - diffusion**2 * score _A : Dict = x + drift * dt # add noise _A : Any = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
26
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : str = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __lowercase : Tuple = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __lowercase : Dict = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __lowercase : Optional[Any] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
28
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=1_8 , _UpperCamelCase=3_0 , _UpperCamelCase=4_0_0 , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , ) -> Optional[int]: UpperCAmelCase_ : List[Any] = size if size is not None else {'height': 2_0, 'width': 2_0} UpperCAmelCase_ : str = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : Union[str, Any] = max_resolution UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Union[str, Any] = do_normalize UpperCAmelCase_ : Union[str, Any] = do_convert_rgb UpperCAmelCase_ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase_ : Optional[int] = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def __UpperCAmelCase ( self ) -> Optional[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' UpperCAmelCase_ : int = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = PixaStructImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = PixaStructImageProcessingTester(self ) @property def __UpperCAmelCase ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : List[str] = 2_0_4_8 UpperCAmelCase_ : List[str] = image_processor(_UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Optional[Any] = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCAmelCase ( self ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase_ : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches UpperCAmelCase_ : Any = 'Hello' UpperCAmelCase_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Any = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCAmelCase ( self ) -> Any: # Initialize image_processor UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) UpperCAmelCase_ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : int = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCAmelCase ( self ) -> int: # Initialize image_processor UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : List[str] = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = PixaStructImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase_ : int = 3 @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def __UpperCAmelCase ( self ) -> str: # Initialize image_processor UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Any = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
29
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase__( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Optional[int]: super().__init__() lowercase_ = nn.Embedding(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.Embedding(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = False lowercase_ = nn.Dropout(p=SCREAMING_SNAKE_CASE_ ) lowercase_ = TaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , d_model=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , d_kv=SCREAMING_SNAKE_CASE_ , d_ff=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ , feed_forward_proj=SCREAMING_SNAKE_CASE_ , is_decoder=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , ) lowercase_ = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = TaBlock(SCREAMING_SNAKE_CASE_ ) self.encoders.append(SCREAMING_SNAKE_CASE_ ) lowercase_ = TaLayerNorm(SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.Dropout(p=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: lowercase_ = self.token_embedder(SCREAMING_SNAKE_CASE_ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(SCREAMING_SNAKE_CASE_ , device=encoder_input_tokens.device ) x += self.position_encoding(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.dropout_pre(SCREAMING_SNAKE_CASE_ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for lyr in self.encoders: lowercase_ = lyr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] lowercase_ = self.layer_norm(SCREAMING_SNAKE_CASE_ ) return self.dropout_post(SCREAMING_SNAKE_CASE_ ), encoder_inputs_mask
30
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
'''simple docstring''' from importlib import import_module from .logging import get_logger __SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Dict , A : Dict , A : Union[str, Any]=None ): _UpperCAmelCase : str = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , A , getattr(A , A ) ) _UpperCAmelCase : str = module._original_module if isinstance(A , _PatchedModuleObj ) else module class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: Tuple = [] def __init__( self : int , A : int , A : str , A : Union[str, Any] , A : Dict=None ): _UpperCAmelCase : Tuple = obj _UpperCAmelCase : List[Any] = target _UpperCAmelCase : Any = new _UpperCAmelCase : str = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : str = attrs or [] def __enter__( self : List[str] ): *_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(A ) ): try: _UpperCAmelCase : str = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : Optional[Any] = getattr(self.obj , A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(A , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Optional[Any] = obj_attr # patch at top level setattr(self.obj , A , _PatchedModuleObj(A , attrs=self.attrs ) ) _UpperCAmelCase : int = getattr(self.obj , A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(A , A , _PatchedModuleObj(getattr(A , A , A ) , attrs=self.attrs ) ) _UpperCAmelCase : str = getattr(A , A ) # finally set the target attribute setattr(A , A , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : int = getattr(import_module(".".join(A ) ) , A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , A ) is attr_value: _UpperCAmelCase : List[Any] = getattr(self.obj , A ) setattr(self.obj , A , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Union[str, Any] = globals()["__builtins__"][target_attr] setattr(self.obj , A , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Union[str, Any] , *A : str ): for attr in list(self.original ): setattr(self.obj , A , self.original.pop(A ) ) def _A ( self : Dict ): self.__enter__() self._active_patches.append(self ) def _A ( self : List[str] ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
31
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : UNetaDModel snake_case__ : KarrasVeScheduler def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : UNetaDModel , SCREAMING_SNAKE_CASE__ : KarrasVeScheduler ) -> Optional[Any]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 5_0 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: a_ : Tuple = self.unet.config.sample_size a_ : List[str] = (batch_size, 3, img_size, img_size) a_ : int = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) a_ : str = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper a_ : str = self.scheduler.schedule[t] a_ : List[str] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat a_ , a_ : Union[str, Any] = self.scheduler.add_noise_to_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. a_ : Optional[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev a_ : Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. a_ : Tuple = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample a_ : Union[str, Any] = self.scheduler.step_correct( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , step_output.prev_sample , step_output['derivative'] , ) a_ : List[str] = step_output.prev_sample a_ : Optional[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) a_ : int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ : Any = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
32
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : def __init__( self : List[str] , A : Optional[Any] , A : Optional[int]=13 , A : List[str]=7 , A : str=True , A : List[Any]=True , A : List[str]=True , A : Dict=True , A : List[str]=99 , A : Any=24 , A : str=2 , A : Optional[Any]=6 , A : str=37 , A : List[Any]="gelu" , A : List[str]=0.1 , A : Union[str, Any]=0.1 , A : str=5_12 , A : List[Any]=16 , A : str=2 , A : Optional[int]=0.02 , A : List[Any]=3 , A : str=None , A : List[str]=10_00 , ) -> List[str]: lowercase_ : Union[str, Any] = parent lowercase_ : Optional[Any] = batch_size lowercase_ : int = seq_length lowercase_ : Union[str, Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[int] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Union[str, Any] = vocab_size lowercase_ : Any = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Optional[Any] = initializer_range lowercase_ : List[Any] = num_labels lowercase_ : Dict = scope lowercase_ : int = range_bbox def A ( self : Optional[Any] ) -> Dict: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase_ : Optional[int] = bbox[i, j, 3] lowercase_ : List[str] = bbox[i, j, 1] lowercase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase_ : Optional[Any] = bbox[i, j, 2] lowercase_ : Dict = bbox[i, j, 0] lowercase_ : List[Any] = t lowercase_ : Optional[int] = None if self.use_input_mask: lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ : Dict = None if self.use_token_type_ids: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Any = None lowercase_ : Optional[int] = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Tuple = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : int ) -> Optional[int]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A ( self : str , A : str , A : int , A : Dict , A : Optional[Any] , A : Any , A : Optional[int] , A : int , ) -> Tuple: lowercase_ : str = LiltModel(config=A ) model.to(A ) model.eval() lowercase_ : Any = model(A , bbox=A , attention_mask=A , token_type_ids=A ) lowercase_ : Dict = model(A , bbox=A , token_type_ids=A ) lowercase_ : Any = model(A , bbox=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Optional[int] , A : List[Any] , A : Any , A : Dict , A : List[Any] , A : int , A : Tuple , A : Optional[Any] , ) -> int: lowercase_ : int = self.num_labels lowercase_ : Union[str, Any] = LiltForTokenClassification(config=A ) model.to(A ) model.eval() lowercase_ : Any = model( A , bbox=A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , A : Any , A : Any , A : Dict , A : Optional[Any] , A : List[Any] , A : Optional[int] , A : List[str] , ) -> Any: lowercase_ : List[Any] = LiltForQuestionAnswering(config=A ) model.to(A ) model.eval() lowercase_ : List[Any] = model( A , bbox=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[Any] ) -> Tuple: lowercase_ : str = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = config_and_inputs lowercase_ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( _A , _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Tuple = False def A ( self : int , A : Optional[Any] , A : Union[str, Any] , A : List[str] , A : Union[str, Any] , A : int ) -> str: return True def A ( self : Tuple ) -> List[Any]: lowercase_ : Dict = LiltModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=A , hidden_size=37 ) def A ( self : Any ) -> int: self.config_tester.run_common_tests() def A ( self : Dict ) -> Tuple: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : str ) -> Dict: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Dict = type self.model_tester.create_and_check_model(*A ) def A ( self : Any ) -> List[str]: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def A ( self : List[Any] ) -> Any: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def A ( self : int ) -> str: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = LiltModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): def A ( self : str ) -> List[str]: lowercase_ : Any = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(A ) lowercase_ : int = torch.tensor([[1, 2]] , device=A ) lowercase_ : Any = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A ) # forward pass with torch.no_grad(): lowercase_ : Any = model(input_ids=A , bbox=A ) lowercase_ : Optional[int] = torch.Size([1, 2, 7_68] ) lowercase_ : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=A , ) self.assertTrue(outputs.last_hidden_state.shape , A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A , atol=1e-3 ) )
33
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A =get_tests_dir('fixtures/test_sentencepiece_bpe.model') class _a ( __a , unittest.TestCase ): __a : List[Any] = BartphoTokenizer __a : str = False __a : str = True def A ( self : Any ): '''simple docstring''' super().setUp() UpperCAmelCase = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) UpperCAmelCase = BartphoTokenizer(lowercase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Tuple , **lowercase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Dict , lowercase : int ): '''simple docstring''' UpperCAmelCase = '''This is a là test''' UpperCAmelCase = '''This is a<unk><unk> test''' return input_text, output_text def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = BartphoTokenizer(lowercase , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCAmelCase = '''This is a là test''' UpperCAmelCase = '''▁This ▁is ▁a ▁l à ▁t est'''.split() UpperCAmelCase = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
34
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase_ : """simple docstring""" def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): pass def lowerCamelCase ( self : Optional[int] ): pass def lowerCamelCase ( self : Optional[Any] ): pass def lowerCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[Any]=None , **snake_case_ : List[Any] ): snake_case__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel(snake_case_ ) snake_case__ : Tuple = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[Any]=None , **snake_case_ : Union[str, Any] ): snake_case__ , snake_case__ : List[str] = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : str=None , **snake_case_ : Union[str, Any] ): snake_case__ , snake_case__ : Dict = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} snake_case__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) snake_case__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self : Any , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int=None , **snake_case_ : str ): snake_case__ , snake_case__ : Union[str, Any] = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Any = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) snake_case__ : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) snake_case__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) snake_case__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) snake_case__ : Tuple = after_output[0].numpy() snake_case__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def lowerCamelCase ( self : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str]=None , **snake_case_ : List[str] ): snake_case__ , snake_case__ : Optional[int] = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : int = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) snake_case__ : List[Any] = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Optional[Any] = to_atuple(vision_model.config.image_size ) snake_case__ : str = to_atuple(vision_model.config.patch_size ) snake_case__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ : Union[str, Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ : Any = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self : str , snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float ): snake_case__ : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(snake_case_ , snake_case_ , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCamelCase ( self : Any ): snake_case__ : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case_ ) def lowerCamelCase ( self : str ): snake_case__ : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**snake_case_ ) def lowerCamelCase ( self : int ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case_ ) @slow def lowerCamelCase ( self : str ): snake_case__ , snake_case__ : Any = self.get_pretrained_model_and_inputs() snake_case__ : Union[str, Any] = model_a(**snake_case_ ) snake_case__ : Union[str, Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case_ ) snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) snake_case__ : int = model_a(**snake_case_ ) snake_case__ : Dict = after_outputs[0].numpy() snake_case__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) snake_case__ : Optional[int] = 13 snake_case__ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ : Any = random_attention_mask([batch_size, 4] ) snake_case__ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[int] ): snake_case__ : Union[str, Any] = TFViTModel(snake_case_ , name="""vision_model""" ) snake_case__ : Any = TFBertModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self : str ): snake_case__ : Union[str, Any] = TFViTModelTester(self ) snake_case__ : str = TFBertModelTester(self ) snake_case__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() snake_case__ : Any = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Optional[Any] = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Dict ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. snake_case__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) snake_case__ : Any = 13 snake_case__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ : Optional[Any] = random_attention_mask([batch_size, 4] ) snake_case__ : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self : List[str] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int]=None , **snake_case_ : Optional[Any] ): snake_case__ , snake_case__ : Any = self.get_vision_text_model(snake_case_ , snake_case_ ) snake_case__ : Tuple = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) snake_case__ : Union[str, Any] = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) snake_case__ : str = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case__ : Tuple = to_atuple(vision_model.config.image_size ) snake_case__ : List[Any] = to_atuple(vision_model.config.patch_size ) snake_case__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): snake_case__ : Union[str, Any] = TFDeiTModel(snake_case_ , name="""vision_model""" ) snake_case__ : Tuple = TFRobertaModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self : List[str] ): snake_case__ : int = TFDeiTModelTester(self ) snake_case__ : Union[str, Any] = TFRobertaModelTester(self ) snake_case__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() snake_case__ : str = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) snake_case__ : Tuple = 13 snake_case__ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ : str = random_attention_mask([batch_size, 4] ) snake_case__ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : int ): snake_case__ : List[str] = TFCLIPVisionModel(snake_case_ , name="""vision_model""" ) snake_case__ : Optional[Any] = TFBertModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self : Dict ): snake_case__ : int = TFCLIPVisionModelTester(self ) snake_case__ : Optional[int] = TFBertModelTester(self ) snake_case__ : str = clip_model_tester.prepare_config_and_inputs() snake_case__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ : List[Any] = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=snake_case_ ) snake_case__ : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) snake_case__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case__ : List[str] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=snake_case_ , padding=snake_case_ , return_tensors="""np""" ) snake_case__ : int = model(**snake_case_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) snake_case__ : Optional[int] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case_ , atol=1E-3 ) )
35
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _snake_case = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase__ : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: lowerCAmelCase__ : int = getattr(UpperCamelCase , UpperCamelCase ).shape else: lowerCAmelCase__ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": lowerCAmelCase__ : Any = value elif weight_type == "weight_v": lowerCAmelCase__ : Optional[int] = value elif weight_type == "bias": lowerCAmelCase__ : List[str] = value elif weight_type == "running_mean": lowerCAmelCase__ : List[str] = value elif weight_type == "running_var": lowerCAmelCase__ : int = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ : Tuple = value elif weight_type == "inv_freq": lowerCAmelCase__ : str = value else: lowerCAmelCase__ : str = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : List[str] = fairseq_model.state_dict() lowerCAmelCase__ : Any = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ : int = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ : Optional[int] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ : List[Any] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ : List[Any] = True if "*" in mapped_key: lowerCAmelCase__ : str = name.split(UpperCamelCase )[0].split(""".""" )[-2] lowerCAmelCase__ : List[str] = mapped_key.replace("""*""" , UpperCamelCase ) if "pos_bias_u" in name: lowerCAmelCase__ : List[str] = None elif "pos_bias_v" in name: lowerCAmelCase__ : List[str] = None elif "weight_g" in name: lowerCAmelCase__ : Optional[int] = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ : Union[str, Any] = """weight_v""" elif "bias" in name: lowerCAmelCase__ : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ : Union[str, Any] = """weight""" elif "running_mean" in name: lowerCAmelCase__ : List[Any] = """running_mean""" elif "inv_freq" in name: lowerCAmelCase__ : int = """inv_freq""" elif "running_var" in name: lowerCAmelCase__ : Any = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ : Union[str, Any] = """num_batches_tracked""" else: lowerCAmelCase__ : str = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ : Any = name.split(""".""" ) lowerCAmelCase__ : Optional[int] = int(items[0] ) lowerCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True ): """simple docstring""" if config_path is not None: lowerCAmelCase__ : Tuple = WavaVecaConformerConfig.from_pretrained(UpperCamelCase , hidden_act="""swish""" ) else: lowerCAmelCase__ : Union[str, Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ : Tuple = """rotary""" if is_finetuned: if dict_path: lowerCAmelCase__ : int = Dictionary.load(UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ : Tuple = target_dict.pad_index lowerCAmelCase__ : Union[str, Any] = target_dict.bos_index lowerCAmelCase__ : List[str] = target_dict.eos_index lowerCAmelCase__ : Dict = len(target_dict.symbols ) lowerCAmelCase__ : Tuple = os.path.join(UpperCamelCase , """vocab.json""" ) if not os.path.isdir(UpperCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCamelCase ) ) return os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : int = 1 with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = WavaVecaCTCTokenizer( UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=UpperCamelCase , ) lowerCAmelCase__ : int = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase , return_attention_mask=UpperCamelCase , ) lowerCAmelCase__ : List[Any] = WavaVecaProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[str] = WavaVecaConformerForCTC(UpperCamelCase ) else: lowerCAmelCase__ : Tuple = WavaVecaConformerForPreTraining(UpperCamelCase ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase__ : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) lowerCAmelCase__ : List[str] = fairseq.tasks.setup_task(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(UpperCamelCase , UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
37
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
'''simple docstring''' from __future__ import annotations import time __lowercase : List[Any] = list[tuple[int, int]] __lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : def __init__(self , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : List[str] = pos_y lowerCamelCase_ : List[Any] = (pos_y, pos_x) lowerCamelCase_ : List[str] = goal_x lowerCamelCase_ : Union[str, Any] = goal_y lowerCamelCase_ : int = parent class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) lowerCamelCase_ : Union[str, Any] = [self.start] lowerCamelCase_ : List[str] = False def UpperCAmelCase__ (self ): while self.node_queue: lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : List[str] = True return self.retrace_path(A ) lowerCamelCase_ : str = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Dict = [] for action in delta: lowerCamelCase_ : Any = parent.pos_x + action[1] lowerCamelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase__ (self , A ): lowerCamelCase_ : int = node lowerCamelCase_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : List[Any] = current_node.parent path.reverse() return path class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A ) lowerCamelCase_ : Any = BreadthFirstSearch(A , A ) lowerCamelCase_ : Union[str, Any] = False def UpperCAmelCase__ (self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : Optional[Any] = True return self.retrace_bidirectional_path( A , A ) lowerCamelCase_ : Optional[int] = current_bwd_node lowerCamelCase_ : List[str] = current_fwd_node lowerCamelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A ) lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[str] = (0, 0) __lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Tuple = time.time() __lowercase : int = BreadthFirstSearch(init, goal) __lowercase : Dict = bfs.search() __lowercase : Dict = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : int = time.time() __lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Any = bd_bfs.search() __lowercase : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
318
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int): a : str = jnp.ones((batch_size, length)) / length return scores def __snake_case ( self : Optional[Any]): a : Optional[int] = None a : Optional[Any] = 20 a : Optional[int] = self._get_uniform_logits(batch_size=2 , length=__UpperCAmelCase) # tweak scores to not be uniform anymore a : int = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch a : Union[str, Any] = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax a : Dict = jax.nn.softmax(__UpperCAmelCase , axis=-1) a : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) a : Dict = FlaxTemperatureLogitsWarper(temperature=1.3) a : Any = jax.nn.softmax(temp_dist_warper_sharper(__UpperCAmelCase , scores.copy() , cur_len=__UpperCAmelCase) , axis=-1) a : Any = jax.nn.softmax(temp_dist_warper_smoother(__UpperCAmelCase , scores.copy() , cur_len=__UpperCAmelCase) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def __snake_case ( self : List[str]): a : Optional[int] = None a : Dict = 10 a : str = 2 # create ramp distribution a : Union[str, Any] = np.broadcast_to(np.arange(__UpperCAmelCase)[None, :] , (batch_size, vocab_size)).copy() a : Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size a : str = FlaxTopKLogitsWarper(3) a : Union[str, Any] = top_k_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case a : List[Any] = 5 a : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) a : Dict = np.broadcast_to(np.arange(__UpperCAmelCase)[None, :] , (batch_size, length)).copy() a : Any = top_k_warp_safety_check(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def __snake_case ( self : Tuple): a : List[Any] = None a : int = 10 a : Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) a : List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) a : List[Any] = FlaxTopPLogitsWarper(0.8) a : List[str] = np.exp(top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 a : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) # check edge cases with negative and extreme logits a : int = np.broadcast_to(np.arange(__UpperCAmelCase)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme a : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept a : int = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) a : str = top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def __snake_case ( self : List[str]): a : Union[str, Any] = 20 a : Any = 4 a : Any = 0 a : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__UpperCAmelCase) # check that min length is applied at length 5 a : Dict = ids_tensor((batch_size, 20) , vocab_size=20) a : Any = 5 a : List[str] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = min_dist_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 a : Any = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = 15 a : Dict = min_dist_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertFalse(jnp.isinf(__UpperCAmelCase).any()) def __snake_case ( self : str): a : Dict = 20 a : Any = 4 a : str = 0 a : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__UpperCAmelCase) # check that all scores are -inf except the bos_token_id score a : Dict = ids_tensor((batch_size, 1) , vocab_size=20) a : List[Any] = 1 a : List[Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : int = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 a : Optional[Any] = 3 a : List[Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertFalse(jnp.isinf(__UpperCAmelCase).any()) def __snake_case ( self : Dict): a : List[Any] = 20 a : Tuple = 4 a : List[Any] = 0 a : str = 5 a : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) # check that all scores are -inf except the eos_token_id when max_length is reached a : Union[str, Any] = ids_tensor((batch_size, 4) , vocab_size=20) a : Optional[int] = 4 a : Union[str, Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : str = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached a : Any = 3 a : List[Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = logits_processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) self.assertFalse(jnp.isinf(__UpperCAmelCase).any()) def __snake_case ( self : Optional[Any]): a : Optional[Any] = 4 a : int = 10 a : int = 15 a : int = 2 a : List[str] = 1 a : Dict = 15 # dummy input_ids and scores a : Any = ids_tensor((batch_size, sequence_length) , __UpperCAmelCase) a : List[Any] = input_ids.copy() a : Optional[int] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Dict = scores.copy() # instantiate all dist processors a : int = FlaxTemperatureLogitsWarper(temperature=0.5) a : int = FlaxTopKLogitsWarper(3) a : int = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors a : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__UpperCAmelCase) a : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__UpperCAmelCase) a : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) a : Tuple = 10 # no processor list a : str = temp_dist_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : int = top_k_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Tuple = top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Optional[Any] = min_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Dict = bos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : List[str] = eos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # with processor list a : str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) a : List[Any] = processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def __snake_case ( self : Optional[Any]): a : Dict = 4 a : Any = 10 a : Dict = 15 a : Union[str, Any] = 2 a : Tuple = 1 a : int = 15 # dummy input_ids and scores a : List[str] = ids_tensor((batch_size, sequence_length) , __UpperCAmelCase) a : List[str] = input_ids.copy() a : Union[str, Any] = self._get_uniform_logits(__UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = scores.copy() # instantiate all dist processors a : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5) a : Dict = FlaxTopKLogitsWarper(3) a : List[str] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors a : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__UpperCAmelCase) a : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__UpperCAmelCase) a : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__UpperCAmelCase , eos_token_id=__UpperCAmelCase) a : Optional[int] = 10 # no processor list def run_no_processor_list(__UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : List[str] = temp_dist_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : List[str] = top_k_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : Tuple = top_p_warp(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : int = min_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : int = bos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) a : List[Any] = eos_dist_proc(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) return scores # with processor list def run_processor_list(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]): a : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) a : Dict = processor(__UpperCAmelCase , __UpperCAmelCase , cur_len=__UpperCAmelCase) return scores a : List[Any] = jax.jit(__UpperCAmelCase) a : Union[str, Any] = jax.jit(__UpperCAmelCase) a : List[Any] = jitted_run_no_processor_list(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : List[str] = jitted_run_processor_list(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
40
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' import heapq import sys import numpy as np _A : Dict =tuple[int, int] class _lowercase : def __init__( self: List[str] ): lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Dict = set() def lowerCamelCase_ ( self: Tuple ): if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def lowerCamelCase_ ( self: int ): return len(self.elements ) == 0 def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: Any ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCamelCase__ ) else: # update # print("update", item) lowerCamelCase__ : List[str] = [] ((lowerCamelCase__) , (lowerCamelCase__)) : List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) : Optional[Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): if item in self.set: self.set.remove(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [] ((lowerCamelCase__) , (lowerCamelCase__)) : Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) : Tuple = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowerCamelCase_ ( self: str ): return self.elements[0][1] def lowerCamelCase_ ( self: int ): ((lowerCamelCase__) , (lowerCamelCase__)) : str = heapq.heappop(self.elements ) self.set.remove(UpperCamelCase__ ) return (priority, item) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: # euclidean distance lowerCamelCase__ : Any = np.array(UpperCamelCase ) lowerCamelCase__ : List[Any] = np.array(UpperCamelCase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[str]: # integer division by time variable return consistent_heuristic(UpperCamelCase , UpperCamelCase ) // t def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Any: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: lowerCamelCase__ : List[Any] = g_function[start] + Wa * heuristics[i](UpperCamelCase , UpperCamelCase ) return ans def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCamelCase__ : Union[str, Any] = np.chararray((n, n) ) for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCamelCase__ : List[str] = """*""" for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): if (j, (n - 1) - i) in blocks: lowerCamelCase__ : Tuple = """#""" lowerCamelCase__ : Any = """-""" lowerCamelCase__ : int = back_pointer[goal] while x != start: ((lowerCamelCase__) , (lowerCamelCase__)) : List[Any] = x # print(x) lowerCamelCase__ : Dict = """-""" lowerCamelCase__ : List[str] = back_pointer[x] lowerCamelCase__ : int = """-""" for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) lowerCamelCase__ : List[str] = back_pointer[goal] while x != start: print(UpperCamelCase , end=""" """ ) lowerCamelCase__ : Union[str, Any] = back_pointer[x] print(UpperCamelCase ) sys.exit() def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> Optional[Any]: for itera in range(UpperCamelCase ): open_list[itera].remove_element(UpperCamelCase ) # print("s", s) # print("j", j) ((lowerCamelCase__) , (lowerCamelCase__)) : Tuple = s lowerCamelCase__ : Optional[Any] = (x - 1, y) lowerCamelCase__ : List[str] = (x + 1, y) lowerCamelCase__ : Union[str, Any] = (x, y + 1) lowerCamelCase__ : Optional[int] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase ) lowerCamelCase__ : str = -1 lowerCamelCase__ : List[Any] = float("""inf""" ) if valid(UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: lowerCamelCase__ : List[str] = g_function[s] + 1 lowerCamelCase__ : Dict = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase , key(UpperCamelCase , 0 , UpperCamelCase , UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase ): if key(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) <= Wa * key( UpperCamelCase , 0 , UpperCamelCase , UpperCamelCase ): open_list[j].put( UpperCamelCase , key(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ () -> Tuple: lowerCamelCase__ : Tuple = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _A : List[str] ={0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _A : int =[ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _A : Dict =make_common_ground() _A : str =blocks_blk # hyper parameters _A : List[Any] =1 _A : Union[str, Any] =1 _A : Optional[int] =20 _A : Dict =3 # one consistent and two other inconsistent # start and end destination _A : Union[str, Any] =(0, 0) _A : Optional[int] =(n - 1, n - 1) _A : Optional[Any] =1 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Dict = {start: 0, goal: float("""inf""" )} lowerCamelCase__ : Optional[int] = {start: -1, goal: -1} lowerCamelCase__ : int = [] lowerCamelCase__ : Tuple = set() for i in range(UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase , key(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ) lowerCamelCase__ : list[int] = [] lowerCamelCase__ : list[int] = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: lowerCamelCase__ , lowerCamelCase__ : List[str] = open_list[i].top_show() visited.add(UpperCamelCase ) expand_state( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) close_list_inad.append(UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: lowerCamelCase__ : Tuple = open_list[0].top_show() visited.add(UpperCamelCase ) expand_state( UpperCamelCase , 0 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) close_list_anchor.append(UpperCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
41
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
0
'''simple docstring''' import argparse import datetime def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _snake_case = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__A ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _snake_case = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _snake_case = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _snake_case = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _snake_case = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _snake_case = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _snake_case = datetime.date(int(__A ) , int(__A ) , int(__A ) ) # Start math if m <= 2: _snake_case = y - 1 _snake_case = m + 12 # maths var _snake_case = int(str(__A )[:2] ) _snake_case = int(str(__A )[2:] ) _snake_case = int(2.6 * m - 5.3_9 ) _snake_case = int(c / 4 ) _snake_case = int(k / 4 ) _snake_case = int(d + k ) _snake_case = int(t + u + v + x ) _snake_case = int(z - (2 * c) ) _snake_case = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _snake_case = F'Your date {date_input}, is a {days[str(__A )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase : Union[str, Any] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) lowercase : Union[str, Any] = parser.parse_args() zeller(args.date_input)
42
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : Tuple = len(_lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(_lowercase ) if len(_lowercase ) > len(_lowercase ): lowerCamelCase_ : Any = temp_array else: i += 1 lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )] if len(_lowercase ) > len(_lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
318
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Tuple: _lowerCAmelCase : Any = tf.convert_to_tensor(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) )) return x * cdf def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> str: _lowerCAmelCase : str = tf.convert_to_tensor(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = tf.cast(math.pi ,x.dtype ) _lowerCAmelCase : int = tf.cast(0.04_47_15 ,x.dtype ) _lowerCAmelCase : Tuple = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_lowerCamelCase ,3 )) )) return x * cdf def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> List[Any]: _lowerCAmelCase : Optional[int] = tf.convert_to_tensor(_lowerCamelCase ) return x * tf.tanh(tf.math.softplus(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = tf.convert_to_tensor(_lowerCamelCase ) _lowerCAmelCase : Tuple = tf.cast(0.04_47_15 ,x.dtype ) _lowerCAmelCase : Union[str, Any] = tf.cast(0.79_78_84_56_08 ,x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Optional[int]: _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor(_lowerCamelCase ) _lowerCAmelCase : Tuple = tf.cast(1.7_02 ,x.dtype ) return x * tf.math.sigmoid(coeff * x ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> Dict: return tf.clip_by_value(_gelu(_lowerCamelCase ) ,-10 ,10 ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Dict=-1 ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase : Dict = tf.split(_lowerCamelCase ,2 ,axis=_lowerCamelCase ) return a * tf.math.sigmoid(_lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> List[Any]: return tf.keras.activations.gelu(_lowerCamelCase ,approximate=_lowerCamelCase ) _a : Optional[int] = tf.keras.activations.gelu _a : Any = approximate_gelu_wrap else: _a : Dict = _gelu _a : int = _gelu_new _a : Dict = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> List[str]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
44
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = tempfile.mkdtemp() __a = 8 # DPR tok __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) __a = os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok __a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a = dict(zip(_a , range(len(_a ) ) ) ) __a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) __a = os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCAmelCase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCAmelCase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def __UpperCAmelCase ( self ): __a = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) __a = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) __a = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __UpperCAmelCase ( self ): __a = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) __a = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def __UpperCAmelCase ( self ): __a = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) __a = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a = tokenizer(_a ) self.assertIsNotNone(_a )
45
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=6 , lowercase=17 , lowercase=23 , lowercase=11 , lowercase=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = act_dim lowerCAmelCase = state_dim lowerCAmelCase = hidden_size lowerCAmelCase = max_length lowerCAmelCase = is_training def _snake_case ( self ) -> List[str]: lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) lowerCAmelCase = random_attention_mask((self.batch_size, self.seq_length) ) lowerCAmelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _snake_case ( self ) -> List[str]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = DecisionTransformerModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (DecisionTransformerModel,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = () _SCREAMING_SNAKE_CASE = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _SCREAMING_SNAKE_CASE = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = DecisionTransformerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _snake_case ( self ) -> int: self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) @slow def _snake_case ( self ) -> str: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = DecisionTransformerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(lowercase )] , lowercase ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = 2 # number of steps of autoregressive prediction we will perform lowerCAmelCase = 10 # defined by the RL environment, may be normalized lowerCAmelCase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) lowerCAmelCase = model.to(lowercase ) lowerCAmelCase = model.config torch.manual_seed(0 ) lowerCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=lowercase , dtype=torch.floataa ) # env.reset() lowerCAmelCase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=lowercase ) lowerCAmelCase = torch.tensor(lowercase , device=lowercase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowerCAmelCase = state lowerCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase , dtype=torch.floataa ) lowerCAmelCase = torch.zeros(1 , 0 , device=lowercase , dtype=torch.floataa ) lowerCAmelCase = torch.tensor(0 , device=lowercase , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowercase ): lowerCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase )] , dim=1 ) lowerCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase )] , dim=1 ) lowerCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = model( states=lowercase , actions=lowercase , rewards=lowercase , returns_to_go=lowercase , timesteps=lowercase , attention_mask=lowercase , return_dict=lowercase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowercase , dtype=torch.floataa ), 1.0, False, {}, ) lowerCAmelCase = action_pred[0, -1] lowerCAmelCase = torch.cat([states, state] , dim=1 ) lowerCAmelCase = returns_to_go[0, -1] - reward lowerCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowerCAmelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowercase , dtype=torch.long ) * (step + 1)] , dim=1 )
46
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__ ( unittest.TestCase ): @property def A ( self : Any ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def A ( self : Any ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_a ) def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.dummy_uncond_unet _SCREAMING_SNAKE_CASE =DDIMScheduler() _SCREAMING_SNAKE_CASE =self.dummy_vq_model _SCREAMING_SNAKE_CASE =LDMPipeline(unet=_a , vqvae=_a , scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =ldm(generator=_a , num_inference_steps=2 , output_type='numpy' ).images _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =ldm(generator=_a , num_inference_steps=2 , output_type='numpy' , return_dict=_a )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _SCREAMING_SNAKE_CASE =1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A__ ( unittest.TestCase ): def A ( self : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =ldm(generator=_a , num_inference_steps=5 , output_type='numpy' ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _SCREAMING_SNAKE_CASE =np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _SCREAMING_SNAKE_CASE =1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
47
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def UpperCAmelCase__ (self , **A ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A ) lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = self.prepare_image_inputs() lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : int = processor(text=A ) lowerCamelCase_ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : List[Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : int = self.get_tokenizer() lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A ) lowerCamelCase_ : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Optional[int] = self.get_tokenizer() lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A ) lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ : str = self.prepare_image_inputs() lowerCamelCase_ : int = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
318
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__=125 , UpperCamelCase__=None , **UpperCamelCase__ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase : str = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase : Union[str, Any] = len(set(filter(lambda UpperCamelCase__ : bool("extra_id" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token lowerCamelCase : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token lowerCamelCase : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase : Any = extra_ids lowerCamelCase : Optional[Any] = 2**8 # utf is 8 bits # define special tokens dict lowerCamelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowerCamelCase : int = len(self.special_tokens_encoder ) lowerCamelCase : Tuple = len(UpperCamelCase__ ) for i, token in enumerate(UpperCamelCase__ ): lowerCamelCase : List[str] = self.vocab_size + i - n lowerCamelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def _lowercase ( self ) -> str: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + [1] return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def _lowercase ( self , UpperCamelCase__ ) -> List[int]: if len(UpperCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : List[str] = self._add_eos_if_not_present(UpperCamelCase__ ) if token_ids_a is None: return token_ids_a else: lowerCamelCase : List[str] = self._add_eos_if_not_present(UpperCamelCase__ ) return token_ids_a + token_ids_a def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Any = [chr(UpperCamelCase__ ) for i in text.encode("utf-8" )] return tokens def _lowercase ( self , UpperCamelCase__ ) -> Union[str, Any]: if token in self.special_tokens_encoder: lowerCamelCase : Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowerCamelCase : List[str] = self.added_tokens_encoder[token] elif len(UpperCamelCase__ ) != 1: lowerCamelCase : Dict = self.unk_token_id else: lowerCamelCase : int = ord(UpperCamelCase__ ) + self._num_special_tokens return token_id def _lowercase ( self , UpperCamelCase__ ) -> Any: if index in self.special_tokens_decoder: lowerCamelCase : List[str] = self.special_tokens_decoder[index] else: lowerCamelCase : Any = chr(index - self._num_special_tokens ) return token def _lowercase ( self , UpperCamelCase__ ) -> List[Any]: lowerCamelCase : str = B"" for token in tokens: if token in self.special_tokens_decoder: lowerCamelCase : List[str] = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: lowerCamelCase : int = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: lowerCamelCase : Optional[int] = token.encode("utf-8" ) elif token in self.added_tokens_encoder: lowerCamelCase : Optional[Any] = token.encode("utf-8" ) else: lowerCamelCase : Optional[Any] = bytes([ord(UpperCamelCase__ )] ) bstring += tok_string lowerCamelCase : Union[str, Any] = bstring.decode("utf-8" , errors="ignore" ) return string def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: return ()
48
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowercase : Dict = logging.get_logger(__name__) __lowercase : str = '''T5Config''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: '''simple docstring''' lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase ) lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase ) lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Dict = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "mt5" lowerCamelCase : int = MTaConfig class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = "mt5" lowerCamelCase : Union[str, Any] = MTaConfig
318
0
from string import ascii_uppercase __snake_case :str = {str(ord(c) - 55): c for c in ascii_uppercase} def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) __a = '''''' __a = 0 __a = 0 while div != 1: __a , __a = divmod(_UpperCAmelCase , _UpperCAmelCase ) if base >= 11 and 9 < mod < 36: __a = ALPHABET_VALUES[str(_UpperCAmelCase )] else: __a = str(_UpperCAmelCase ) new_value += actual_value __a = num // base __a = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_UpperCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
49
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : str = 3 lowerCamelCase_ : Dict = (3_2, 3_2) lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ (self ): torch.manual_seed(0 ) lowerCamelCase_ : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(A ) @property def UpperCAmelCase__ (self ): def extract(*A , **A ): class __lowercase : def __init__(self ): lowerCamelCase_ : Any = torch.ones([0] ) def UpperCAmelCase__ (self , A ): self.pixel_values.to(A ) return self return Out() return extract def UpperCAmelCase__ (self ): lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : List[Any] = self.dummy_cond_unet lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : Union[str, Any] = self.dummy_vae lowerCamelCase_ : List[Any] = self.dummy_text_encoder lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Dict = 7_7 lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A ) lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : int = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , ) lowerCamelCase_ : int = output.images lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = alt_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0] lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.dummy_cond_unet lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase_ : List[Any] = self.dummy_vae lowerCamelCase_ : Dict = self.dummy_text_encoder lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCamelCase_ : Optional[Any] = 7_7 lowerCamelCase_ : str = self.dummy_image.to(A ) # put models in fp16 lowerCamelCase_ : Optional[int] = unet.half() lowerCamelCase_ : Dict = vae.half() lowerCamelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A ) lowerCamelCase_ : Any = alt_pipe.to(A ) alt_pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] = alt_pipe( [prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) ) lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : Any = torch.manual_seed(0 ) lowerCamelCase_ : Optional[Any] = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Dict = output.images[0] lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) ) lowerCamelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCamelCase_ : int = '''BAAI/AltDiffusion''' lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : Dict = pipe( prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , ) lowerCamelCase_ : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
318
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.txt"""} _UpperCAmelCase : Union[str, Any] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _UpperCAmelCase : Dict = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } _UpperCAmelCase : List[str] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ConvBertTokenizer def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple="[UNK]" , UpperCAmelCase : Optional[int]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : int=None , **UpperCAmelCase : Union[str, Any] , ) -> List[str]: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Union[str, Any] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Dict = do_lower_case lowerCamelCase__ : Dict = strip_accents lowerCamelCase__ : Union[str, Any] = tokenize_chinese_chars lowerCamelCase__ : Tuple = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = do_lower_case def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any=None ) -> Dict: lowerCamelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : List[Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
0
from __future__ import annotations class __snake_case : def __init__( self : List[Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = order # a_{0} ... a_{k} UpperCAmelCase_ = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase_ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase_ = [0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase_ = [0.0] * self.order def lowerCamelCase ( self : Tuple , _snake_case : list[float] , _snake_case : list[float]): """simple docstring""" if len(_snake_case) < self.order: UpperCAmelCase_ = [1.0, *a_coeffs] if len(_snake_case) != self.order + 1: UpperCAmelCase_ = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_snake_case)}""" ) raise ValueError(_snake_case) if len(_snake_case) != self.order + 1: UpperCAmelCase_ = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_snake_case)}""" ) raise ValueError(_snake_case) UpperCAmelCase_ = a_coeffs UpperCAmelCase_ = b_coeffs def lowerCamelCase ( self : List[Any] , _snake_case : float): """simple docstring""" UpperCAmelCase_ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase_ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase_ = self.input_history[:-1] UpperCAmelCase_ = self.output_history[:-1] UpperCAmelCase_ = sample UpperCAmelCase_ = result return result
51
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __lowerCamelCase : List[str] = logging.getLogger(__name__) class A__ ( __snake_case ): def __init__( self , A_=-1 ): '''simple docstring''' UpperCamelCase : Dict = label_idx def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase : List[Any] = mode.value UpperCamelCase : Dict = os.path.join(A_ , F"""{mode}.txt""" ) UpperCamelCase : Dict = 1 UpperCamelCase : List[str] = [] with open(A_ , encoding="utf-8" ) as f: UpperCamelCase : Dict = [] UpperCamelCase : Tuple = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=A_ , labels=A_ ) ) guid_index += 1 UpperCamelCase : Dict = [] UpperCamelCase : Optional[Any] = [] else: UpperCamelCase : str = line.split(" " ) words.append(splits[0] ) if len(A_ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=A_ , labels=A_ ) ) return examples def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(A_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCamelCase : Tuple = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(A_ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def __UpperCamelCase( self , A_ ): '''simple docstring''' if path: with open(A_ , "r" ) as f: UpperCamelCase : Union[str, Any] = f.read().splitlines() if "O" not in labels: UpperCamelCase : Dict = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class A__ ( __snake_case ): def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCamelCase( self , A_ ): '''simple docstring''' if path: with open(A_ , "r" ) as f: UpperCamelCase : Dict = f.read().splitlines() if "O" not in labels: UpperCamelCase : Optional[Any] = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class A__ ( __snake_case ): def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase : str = mode.value UpperCamelCase : List[Any] = os.path.join(A_ , F"""{mode}.txt""" ) UpperCamelCase : Tuple = 1 UpperCamelCase : Dict = [] with open(A_ , encoding="utf-8" ) as f: for sentence in parse_incr(A_ ): UpperCamelCase : Union[str, Any] = [] UpperCamelCase : Optional[Any] = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(A_ ) == len(A_ ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=A_ , labels=A_ ) ) guid_index += 1 return examples def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = 0 for sentence in parse_incr(A_ ): UpperCamelCase : int = preds_list[example_id] UpperCamelCase : Tuple = "" for token in sentence: out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(A_ ) example_id += 1 def __UpperCamelCase( self , A_ ): '''simple docstring''' if path: with open(A_ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
52
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A ) lowerCamelCase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = GenerationConfig() lowerCamelCase_ : Dict = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowerCamelCase_ : int = copy.deepcopy(A ) lowerCamelCase_ : str = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {'''foo''': '''bar'''} ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = GenerationConfig() lowerCamelCase_ : str = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(A ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A ) assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ : Tuple = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Dict = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase__ (cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
318
0
'''simple docstring''' import os def lowercase__ ( __lowercase : str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(__lowercase ) , __lowercase ) ) as in_file: __UpperCamelCase = in_file.read() __UpperCamelCase = [[int(__lowercase ) for cell in row.split(',' )] for row in data.strip().splitlines()] __UpperCamelCase = [[0 for cell in row] for row in grid] __UpperCamelCase = len(grid[0] ) __UpperCamelCase = [[0 for i in range(__lowercase )] for j in range(__lowercase )] __UpperCamelCase = grid[0][0] for i in range(1 , __lowercase ): __UpperCamelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , __lowercase ): __UpperCamelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): __UpperCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'{solution() = }')
53
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
0
"""simple docstring""" def UpperCAmelCase__ (): '''simple docstring''' return 1 def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ = 200 ): '''simple docstring''' return two_pound(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
54
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __snake_case ( ): lowerCamelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=UpperCAmelCase_ ) lowerCamelCase_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=UpperCAmelCase_ ) env_command_parser(subparsers=UpperCAmelCase_ ) launch_command_parser(subparsers=UpperCAmelCase_ ) tpu_command_parser(subparsers=UpperCAmelCase_ ) test_command_parser(subparsers=UpperCAmelCase_ ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(UpperCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase_ ) if __name__ == "__main__": main()
55
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : str = Lock() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase_ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase_ : Any = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase_ : str = Pipe() lowerCamelCase_ : List[Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase_ : Optional[Any] = temp_rs lowerCamelCase_ : List[str] = temp_rr for i in range(1 , len(_lowercase ) - 1 ): lowerCamelCase_ : str = Pipe() lowerCamelCase_ : Any = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase_ : Dict = temp_rs lowerCamelCase_ : Tuple = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ) -> Any: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*_lowercase ) lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase ) print('''Sorted List\n''' ) print(*_lowercase ) if __name__ == "__main__": main()
318
0
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a : List[Any] = 'CompVis/stable-diffusion-v1-1' a : Union[str, Any] = 'CompVis/stable-diffusion-v1-2' a : Tuple = 'CompVis/stable-diffusion-v1-3' a : Optional[Any] = 'CompVis/stable-diffusion-v1-4' class a ( _lowerCamelCase ): def __init__( self : Any , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , lowercase_ : bool = True , ): super()._init_() snake_case_ = StableDiffusionPipeline.from_pretrained(lowercase_ ) snake_case_ = StableDiffusionPipeline.from_pretrained(lowercase_ ) snake_case_ = StableDiffusionPipeline.from_pretrained(lowercase_ ) snake_case_ = StableDiffusionPipeline( vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , requires_safety_checker=lowercase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A_ ( self : Optional[int] ): return {k: getattr(self , lowercase_ ) for k in self.config.keys() if not k.startswith('''_''' )} def A_ ( self : List[Any] , lowercase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def A_ ( self : Optional[int] ): self.enable_attention_slicing(lowercase_ ) @torch.no_grad() def A_ ( self : Any , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : Union[str, Any] , ): return self.pipea( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) @torch.no_grad() def A_ ( self : str , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : Optional[int] , ): return self.pipea( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) @torch.no_grad() def A_ ( self : Tuple , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : Tuple , ): return self.pipea( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) @torch.no_grad() def A_ ( self : Optional[Any] , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : int , ): return self.pipea( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) @torch.no_grad() def A_ ( self : Optional[int] , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : int , ): snake_case_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(lowercase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case_ = self.textaimg_sda_a( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case_ = self.textaimg_sda_a( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case_ = self.textaimg_sda_a( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case_ = self.textaimg_sda_a( prompt=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , **lowercase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
56
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = '''Hello, World!''' __lowercase : Union[str, Any] = '''en_XX''' def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = Path('''data_bin''' ) lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder lowerCamelCase_ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight lowerCamelCase_ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i] lowerCamelCase_ : int = xmod_sent_encoder.layers[i] # self attention lowerCamelCase_ : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase_ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase_ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCamelCase_ : Tuple = xmod_layer.fca.weight lowerCamelCase_ : str = xmod_layer.fca.bias # output lowerCamelCase_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code] lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code] lowerCamelCase_ : List[Any] = from_adapter.fca.weight lowerCamelCase_ : str = from_adapter.fca.bias lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight lowerCamelCase_ : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCamelCase_ : Tuple = model(_lowercase )[0] if classification_head: lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowercase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
318
0
"""simple docstring""" A : List[Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = set() # keep track of all the paths to be checked __lowerCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowerCAmelCase = queue.pop(0 ) # get the last node from the path __lowerCAmelCase = path[-1] if node not in explored: __lowerCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowerCAmelCase = list(_UpperCamelCase ) new_path.append(_UpperCamelCase ) queue.append(_UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCamelCase ) # in case there's no path between the 2 nodes return [] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowerCAmelCase = [start] __lowerCAmelCase = set(_UpperCamelCase ) # Keep tab on distances from `start` node. __lowerCAmelCase = {start: 0, target: -1} while queue: __lowerCAmelCase = queue.pop(0 ) if node == target: __lowerCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCamelCase ) queue.append(_UpperCamelCase ) __lowerCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
57
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
58
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger("""transformers.models.speecht5""") def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] ): hf_model.apply_weight_norm() snake_case : Optional[Any] = checkpoint["input_conv.weight_g"] snake_case : Union[str, Any] = checkpoint["input_conv.weight_v"] snake_case : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): snake_case : List[Any] = checkpoint[f"""upsamples.{i}.1.weight_g"""] snake_case : Dict = checkpoint[f"""upsamples.{i}.1.weight_v"""] snake_case : Dict = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case : Union[str, Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] snake_case : List[str] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] snake_case : Any = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] snake_case : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] snake_case : Optional[int] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] snake_case : List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] snake_case : List[str] = checkpoint["output_conv.1.weight_g"] snake_case : Optional[int] = checkpoint["output_conv.1.weight_v"] snake_case : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , ): if config_path is not None: snake_case : Any = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: snake_case : List[Any] = SpeechTaHifiGanConfig() snake_case : Tuple = SpeechTaHifiGan(__lowerCamelCase ) snake_case : Any = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , __lowerCamelCase , __lowerCamelCase ) snake_case : int = np.load(__lowerCamelCase ) snake_case : List[str] = stats[0].reshape(-1 ) snake_case : Dict = stats[1].reshape(-1 ) snake_case : Optional[Any] = torch.from_numpy(__lowerCamelCase ).float() snake_case : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
59
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 class snake_case_( a__ , a__ ): __UpperCamelCase = 1 @register_to_config def __init__( self : str , UpperCamelCase_ : int = 2_0_0_0 , UpperCamelCase_ : float = 0.15 , UpperCamelCase_ : float = 0.01 , UpperCamelCase_ : float = 1_348.0 , UpperCamelCase_ : float = 1E-5 , UpperCamelCase_ : int = 1 , ): # standard deviation of the initial noise distribution lowerCAmelCase : Union[str, Any] = sigma_max # setable values lowerCAmelCase : Dict = None self.set_sigmas(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[int] = None ): return sample def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : float = None , UpperCamelCase_ : Union[str, torch.device] = None ): lowerCAmelCase : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase : Dict = torch.linspace(1 , UpperCamelCase_ , UpperCamelCase_ , device=UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : float = None , UpperCamelCase_ : float = None , UpperCamelCase_ : float = None ): lowerCAmelCase : Optional[Any] = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase : Union[str, Any] = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(UpperCamelCase_ ) , math.log(UpperCamelCase_ ) , UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : int , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : bool = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowerCAmelCase : Optional[int] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase : Any = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase : int = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase : Union[str, Any] = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase : Any = self.get_adjacent_sigma(UpperCamelCase_ , UpperCamelCase_ ).to(sample.device ) lowerCAmelCase : Union[str, Any] = torch.zeros_like(UpperCamelCase_ ) lowerCAmelCase : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase : List[str] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase : List[Any] = diffusion.unsqueeze(-1 ) lowerCAmelCase : int = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase : str = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCamelCase_ , device=sample.device , dtype=sample.dtype ) lowerCAmelCase : Optional[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCamelCase_ , prev_sample_mean=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : bool = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCamelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase : Tuple = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase : Optional[int] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase : Tuple = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase : Any = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase : str = step_size.unsqueeze(-1 ) lowerCAmelCase : Optional[Any] = sample + step_size * model_output lowerCAmelCase : List[str] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase : List[Any] = timesteps.to(original_samples.device ) lowerCAmelCase : Optional[int] = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCamelCase_ ) * sigmas[:, None, None, None] ) lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self : Tuple ): return self.config.num_train_timesteps
60
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __lowercase : Dict = logging.getLogger(__name__) @dataclass class __lowercase : lowerCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase : Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase : bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] = field( default=_lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase__ (self ): if self.train_file is not None: lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__(self , A ): lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ : str = [feature.pop(A ) for feature in features] lowerCamelCase_ : Any = len(A ) lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] ) lowerCamelCase_ : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase_ : str = list(chain(*A ) ) lowerCamelCase_ : Any = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ : Optional[Any] = {} if data_args.train_file is not None: lowerCamelCase_ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : Tuple = data_args.validation_file lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ : Dict = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )] lowerCamelCase_ : List[Any] = '''sent1''' lowerCamelCase_ : Dict = '''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ : str = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ : Optional[int] = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]] lowerCamelCase_ : List[Any] = examples[question_header_name] lowerCamelCase_ : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) ) lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) ) # Tokenize lowerCamelCase_ : List[str] = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ : Union[str, Any] = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples ) lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ : Dict = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ : Tuple = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: lowerCamelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : List[Any] = last_checkpoint lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Any = train_result.metrics lowerCamelCase_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ : str = trainer.evaluate() lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) lowerCamelCase_ : List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def lowercase_ ( _lowercase ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
318
0