code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import math
from datetime import datetime, timedelta
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> datetime:
'''simple docstring'''
__UpperCamelCase : List[str] = year % 19
__UpperCamelCase : Any = year % 4
__UpperCamelCase : Optional[Any] = year % 7
__UpperCamelCase : int = math.floor(year / 100)
__UpperCamelCase : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25)
__UpperCamelCase : List[Any] = leap_day_inhibits / 4
__UpperCamelCase : Optional[Any] = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
__UpperCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__UpperCamelCase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
__UpperCamelCase : Optional[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18)
else:
return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
lowercase : Dict = 'will be' if year > datetime.now().year else 'was'
print(f"Easter in {year} {tense} {gauss_easter(year)}")
| 232 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
__lowerCAmelCase : Optional[int] ={"vocab_file": "vocab.txt"}
__lowerCAmelCase : str ={
"vocab_file": {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt",
}
}
__lowerCAmelCase : Dict ={
"YituTech/conv-bert-base": 512,
"YituTech/conv-bert-medium-small": 512,
"YituTech/conv-bert-small": 512,
}
__lowerCAmelCase : int ={
"YituTech/conv-bert-base": {"do_lower_case": True},
"YituTech/conv-bert-medium-small": {"do_lower_case": True},
"YituTech/conv-bert-small": {"do_lower_case": True},
}
class UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ):
__lowercase = VOCAB_FILES_NAMES
__lowercase = PRETRAINED_VOCAB_FILES_MAP
__lowercase = PRETRAINED_INIT_CONFIGURATION
__lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase = ConvBertTokenizer
def __init__( self :Dict , lowercase_ :Dict=None , lowercase_ :List[Any]=None , lowercase_ :Optional[int]=True , lowercase_ :List[str]="[UNK]" , lowercase_ :List[Any]="[SEP]" , lowercase_ :int="[PAD]" , lowercase_ :str="[CLS]" , lowercase_ :List[Any]="[MASK]" , lowercase_ :Optional[Any]=True , lowercase_ :int=None , **lowercase_ :List[str] , )-> int:
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , )
A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , lowercase_ ) != do_lower_case
or normalizer_state.get("strip_accents" , lowercase_ ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , lowercase_ ) != tokenize_chinese_chars
):
A__ = getattr(lowercase_ , normalizer_state.pop("type" ) )
A__ = do_lower_case
A__ = strip_accents
A__ = tokenize_chinese_chars
A__ = normalizer_class(**lowercase_ )
A__ = do_lower_case
def UpperCAmelCase_ ( self :Tuple , lowercase_ :Tuple , lowercase_ :List[str]=None )-> List[Any]:
A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self :Any , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]:
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str , lowercase_ :Optional[str] = None )-> Tuple[str]:
A__ = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
| 237 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : Dict = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : Dict = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : List[str] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : int = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : int = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : int = self.get_env()
_snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
_snake_case : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
_snake_case : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Any = self.get_env()
_snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# next emulate no network
_snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : int = """1"""
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
_snake_case : Dict = """
from transformers import pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
_snake_case : List[str] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
_snake_case : Tuple = self.get_env()
_snake_case : Union[str, Any] = """1"""
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])]
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 1 , result.stderr)
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """
from transformers import AutoModel
"""
_snake_case : Union[str, Any] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
_snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Union[str, Any] = self.get_env()
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
| 317 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json',
}
class _lowercase ( SCREAMING_SNAKE_CASE_ ):
lowercase = """mgp-str"""
def __init__( self : Union[str, Any] , snake_case : Any=[3_2, 1_2_8] , snake_case : int=4 , snake_case : Any=3 , snake_case : Optional[int]=2_7 , snake_case : Union[str, Any]=3_8 , snake_case : List[Any]=5_0_2_5_7 , snake_case : Optional[Any]=3_0_5_2_2 , snake_case : Optional[Any]=7_6_8 , snake_case : Tuple=1_2 , snake_case : str=1_2 , snake_case : Dict=4.0 , snake_case : List[str]=True , snake_case : int=False , snake_case : List[Any]=1e-5 , snake_case : Optional[Any]=0.0 , snake_case : Any=0.0 , snake_case : str=0.0 , snake_case : List[Any]=False , snake_case : str=0.02 , **snake_case : int , ) -> List[str]:
"""simple docstring"""
super().__init__(**snake_case )
UpperCamelCase_ : Optional[Any] = image_size
UpperCamelCase_ : List[Any] = patch_size
UpperCamelCase_ : Dict = num_channels
UpperCamelCase_ : Optional[int] = max_token_length
UpperCamelCase_ : Dict = num_character_labels
UpperCamelCase_ : Dict = num_bpe_labels
UpperCamelCase_ : Union[str, Any] = num_wordpiece_labels
UpperCamelCase_ : Tuple = hidden_size
UpperCamelCase_ : List[Any] = num_hidden_layers
UpperCamelCase_ : Any = num_attention_heads
UpperCamelCase_ : Tuple = mlp_ratio
UpperCamelCase_ : str = distilled
UpperCamelCase_ : List[Any] = layer_norm_eps
UpperCamelCase_ : str = drop_rate
UpperCamelCase_ : Optional[Any] = qkv_bias
UpperCamelCase_ : Dict = attn_drop_rate
UpperCamelCase_ : str = drop_path_rate
UpperCamelCase_ : str = output_aa_attentions
UpperCamelCase_ : Tuple = initializer_range
| 175 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
a__ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
_snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
_snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
_snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert list(infos.keys() ) == expected_configs
_snake_case : Optional[int] = expected_configs[0]
assert expected_config in infos
_snake_case : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
_snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert expected_config in infos
_snake_case : Optional[int] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
| 317 | 0 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase__ ) for s in shape] )}.npy"""
def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : List[str]=(4, 4, 6_4, 6_4) , lowerCAmelCase__ : str=False ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = jnp.bfloataa if fpaa else jnp.floataa
_UpperCAmelCase : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase__ , lowerCAmelCase__ ) ) , dtype=lowerCAmelCase__ )
return image
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Tuple="CompVis/stable-diffusion-v1-4" ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = jnp.bfloataa if fpaa else jnp.floataa
_UpperCAmelCase : List[str] = """bf16""" if fpaa else None
_UpperCAmelCase : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained(
lowerCAmelCase__ , subfolder="unet" , dtype=lowerCAmelCase__ , revision=lowerCAmelCase__ )
return model, params
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : Union[str, Any]=(4, 7_7, 7_6_8) , lowerCAmelCase__ : Optional[Any]=False ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa
_UpperCAmelCase : str = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase__ , lowerCAmelCase__ ) ) , dtype=lowerCAmelCase__ )
return hidden_states
@parameterized.expand(
[
# fmt: off
[8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
] )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=lowerCAmelCase__ )
_UpperCAmelCase : Any = self.get_latents(lowerCAmelCase__ , fpaa=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase__ , fpaa=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = model.apply(
{"params": params} , lowerCAmelCase__ , jnp.array(lowerCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase__ , ).sample
assert sample.shape == latents.shape
_UpperCAmelCase : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
_UpperCAmelCase : Union[str, Any] = jnp.array(lowerCAmelCase__ , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
] )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = self.get_latents(lowerCAmelCase__ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase__ )
_UpperCAmelCase : Dict = self.get_encoder_hidden_states(lowerCAmelCase__ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = model.apply(
{"params": params} , lowerCAmelCase__ , jnp.array(lowerCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase__ , ).sample
assert sample.shape == latents.shape
_UpperCAmelCase : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
_UpperCAmelCase : int = jnp.array(lowerCAmelCase__ , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-2 )
| 145 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class _snake_case ( SCREAMING_SNAKE_CASE_ ):
_lowercase : Any = """ctrl"""
_lowercase : Union[str, Any] = ["""past_key_values"""]
_lowercase : Union[str, Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , a=24_6534 , a=256 , a=1280 , a=8192 , a=48 , a=16 , a=0.1 , a=0.1 , a=1E-6 , a=0.02 , a=True , **a , ) -> Dict:
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = dff
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
super().__init__(**a)
| 137 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 | 0 |
"""simple docstring"""
def A ( snake_case__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [1]
SCREAMING_SNAKE_CASE__ = 0, 0, 0
SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 2
SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 3
SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 5
for _ in range(1 , SCREAMING_SNAKE_CASE__ ):
SCREAMING_SNAKE_CASE__ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
ugly_nums.append(SCREAMING_SNAKE_CASE__ )
if next_num == next_a:
ia += 1
SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
SCREAMING_SNAKE_CASE__ = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F'{ugly_numbers(200) = }')
| 165 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 | 0 |
"""simple docstring"""
from math import factorial
__lowercase = {str(digit): factorial(digit) for digit in range(10)}
def lowercase ( A_ )-> int:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("Parameter number must be int" )
if number < 0:
raise ValueError("Parameter number must be greater than or equal to 0" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) )
def lowercase ( A_ = 60 , A_ = 1_000_000 )-> int:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("Parameters chain_length and number_limit must be int" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"Parameters chain_length and number_limit must be greater than 0" )
# the counter for the chains with the exact desired length
a : Tuple = 0
# the cached sizes of the previous chains
a : dict[int, int] = {}
for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ):
# The temporary set will contain the elements of the chain
a : Optional[int] = set()
a : int = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
a : int = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(SCREAMING_SNAKE_CASE__ )
chain_set_length += 1
a : Optional[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
a : Optional[Any] = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{solution()}''')
| 40 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """efficientnet"""
def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = num_channels
_snake_case : str = image_size
_snake_case : Tuple = width_coefficient
_snake_case : List[str] = depth_coefficient
_snake_case : List[Any] = depth_divisor
_snake_case : str = kernel_sizes
_snake_case : Any = in_channels
_snake_case : Optional[Any] = out_channels
_snake_case : str = depthwise_padding
_snake_case : Tuple = strides
_snake_case : Dict = num_block_repeats
_snake_case : int = expand_ratios
_snake_case : Tuple = squeeze_expansion_ratio
_snake_case : Optional[int] = hidden_act
_snake_case : Optional[int] = hidden_dim
_snake_case : Tuple = pooling_type
_snake_case : Tuple = initializer_range
_snake_case : List[Any] = batch_norm_eps
_snake_case : Optional[Any] = batch_norm_momentum
_snake_case : str = dropout_rate
_snake_case : Union[str, Any] = drop_connect_rate
_snake_case : Optional[int] = sum(lowerCAmelCase) * 4
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> float:
"""simple docstring"""
return 1E-5
| 317 | 0 |
class lowerCAmelCase_ :
def __init__( self ) -> None:
UpperCamelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode
UpperCamelCase : str = False
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
for word in words:
self.insert(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
UpperCamelCase : str = self
for char in word:
if char not in curr.nodes:
UpperCamelCase : Dict = TrieNode()
UpperCamelCase : List[str] = curr.nodes[char]
UpperCamelCase : Optional[int] = True
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> bool:
UpperCamelCase : List[str] = self
for char in word:
if char not in curr.nodes:
return False
UpperCamelCase : Union[str, Any] = curr.nodes[char]
return curr.is_leaf
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
def _delete(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool:
if index == len(SCREAMING_SNAKE_CASE_ ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCamelCase : List[str] = False
return len(curr.nodes ) == 0
UpperCamelCase : List[Any] = word[index]
UpperCamelCase : List[str] = curr.nodes.get(SCREAMING_SNAKE_CASE_ )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCamelCase : Optional[int] = _delete(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self, SCREAMING_SNAKE_CASE_, 0 )
def UpperCamelCase ( snake_case__ : TrieNode , snake_case__ : str ) -> None:
if node.is_leaf:
print(SCREAMING_SNAKE_CASE__ , end=' ' )
for key, value in node.nodes.items():
print_words(SCREAMING_SNAKE_CASE__ , word + key )
def UpperCamelCase ( ) -> bool:
UpperCamelCase : Optional[int] = """banana bananas bandana band apple all beast""".split()
UpperCamelCase : List[str] = TrieNode()
root.insert_many(SCREAMING_SNAKE_CASE__ )
# print_words(root, "")
assert all(root.find(SCREAMING_SNAKE_CASE__ ) for word in words )
assert root.find('banana' )
assert not root.find('bandanas' )
assert not root.find('apps' )
assert root.find('apple' )
assert root.find('all' )
root.delete('all' )
assert not root.find('all' )
root.delete('banana' )
assert not root.find('banana' )
assert root.find('bananas' )
return True
def UpperCamelCase ( snake_case__ : str , snake_case__ : bool ) -> None:
print(str(SCREAMING_SNAKE_CASE__ ) , 'works!' if passes else 'doesn\'t work :(' )
def UpperCamelCase ( ) -> None:
assert test_trie()
def UpperCamelCase ( ) -> None:
print_results('Testing trie functionality' , test_trie() )
if __name__ == "__main__":
main()
| 119 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 | 0 |
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class lowercase ( unittest.TestCase ):
def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=4 , ):
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_attention_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_choices
def a ( self ):
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_attention_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def a ( self ):
snake_case_ = self.prepare_config_and_inputs()
snake_case_ = config_and_inputs
snake_case_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def a ( self ):
snake_case_ = self.prepare_config_and_inputs()
snake_case_ = config_and_inputs
snake_case_ = True
snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Tuple = True
__SCREAMING_SNAKE_CASE : Dict = (
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a ( self ):
snake_case_ = FlaxBertModelTester(self )
@slow
def a ( self ):
snake_case_ = FlaxBertModel.from_pretrained('bert-base-cased' )
snake_case_ = model(np.ones((1, 1) ) )
self.assertIsNotNone(snake_case )
| 285 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
"""configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""],
"""feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""],
"""processing_wav2vec2""": ["""Wav2Vec2Processor"""],
"""tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Wav2Vec2ForAudioFrameClassification""",
"""Wav2Vec2ForCTC""",
"""Wav2Vec2ForMaskedLM""",
"""Wav2Vec2ForPreTraining""",
"""Wav2Vec2ForSequenceClassification""",
"""Wav2Vec2ForXVector""",
"""Wav2Vec2Model""",
"""Wav2Vec2PreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWav2Vec2ForCTC""",
"""TFWav2Vec2Model""",
"""TFWav2Vec2PreTrainedModel""",
"""TFWav2Vec2ForSequenceClassification""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxWav2Vec2ForCTC""",
"""FlaxWav2Vec2ForPreTraining""",
"""FlaxWav2Vec2Model""",
"""FlaxWav2Vec2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[str] = tempfile.mkdtemp()
# fmt: off
__A : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""]
# fmt: on
__A : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
__A : List[Any] = {
"""do_resize""": True,
"""size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.5, 0.5, 0.5],
"""image_std""": [0.5, 0.5, 0.5],
}
__A : Optional[int] = os.path.join(self.tmpdirname , _UpperCAmelCase)
with open(self.image_processor_file , 'w' , encoding='utf-8') as fp:
json.dump(_UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase):
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
__A : str = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : List[Any] = self.get_tokenizer()
__A : int = self.get_image_processor()
__A : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
processor.save_pretrained(self.tmpdirname)
__A : str = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast))
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
__A : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
__A : int = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0)
__A : Any = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast))
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.get_image_processor()
__A : int = self.get_tokenizer()
__A : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
__A : Dict = self.prepare_image_inputs()
__A : int = image_processor(_UpperCAmelCase , return_tensors='np')
__A : str = processor(images=_UpperCAmelCase , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.get_image_processor()
__A : Tuple = self.get_tokenizer()
__A : str = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
__A : Optional[Any] = """lower newer"""
__A : Union[str, Any] = processor(text=_UpperCAmelCase)
__A : Optional[int] = tokenizer(_UpperCAmelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = self.get_image_processor()
__A : Optional[int] = self.get_tokenizer()
__A : Dict = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
__A : int = """lower newer"""
__A : List[Any] = self.prepare_image_inputs()
__A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase)
self.assertListEqual(list(inputs.keys()) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'])
# test if it raises when no input is passed
with self.assertRaises(_UpperCAmelCase):
processor()
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Tuple = self.get_image_processor()
__A : Optional[int] = self.get_tokenizer()
__A : int = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
__A : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A : Union[str, Any] = processor.batch_decode(_UpperCAmelCase)
__A : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase)
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = self.get_image_processor()
__A : int = self.get_tokenizer()
__A : Tuple = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
__A : Dict = """lower newer"""
__A : int = self.prepare_image_inputs()
__A : Tuple = processor(text=_UpperCAmelCase , images=_UpperCAmelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 190 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317 | 0 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
@register_to_config
def __init__( self , *,
_SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 768 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE_ : List[Any] = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) )
# parameters for additional clip time embeddings
SCREAMING_SNAKE_CASE_ : List[str] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# parameters for encoder hidden states
SCREAMING_SNAKE_CASE_ : str = clip_extra_context_tokens
SCREAMING_SNAKE_CASE_ : Dict = nn.Linear(
_SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim )
SCREAMING_SNAKE_CASE_ : Tuple = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : List[Any] = nn.LayerNorm(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , *, _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
SCREAMING_SNAKE_CASE_ : int = image_embeddings.shape[0]
SCREAMING_SNAKE_CASE_ : int = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = classifier_free_guidance_embeddings.expand(
_SCREAMING_SNAKE_CASE , -1 )
SCREAMING_SNAKE_CASE_ : int = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
SCREAMING_SNAKE_CASE_ : Tuple = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
SCREAMING_SNAKE_CASE_ : str = self.embedding_proj(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
SCREAMING_SNAKE_CASE_ : Any = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Optional[int] = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens )
SCREAMING_SNAKE_CASE_ : int = clip_extra_context_tokens.permute(0 , 2 , 1 )
SCREAMING_SNAKE_CASE_ : Any = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 253 |
import torch
from torch import nn
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str:
"""simple docstring"""
super().__init__()
_snake_case : List[str] = n_token
_snake_case : Any = d_embed
_snake_case : List[str] = d_proj
_snake_case : Optional[int] = cutoffs + [n_token]
_snake_case : Dict = [0] + self.cutoffs
_snake_case : Optional[Any] = div_val
_snake_case : Tuple = self.cutoffs[0]
_snake_case : List[str] = len(self.cutoffs) - 1
_snake_case : str = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
_snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
_snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters))
_snake_case : Tuple = nn.ModuleList()
_snake_case : int = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
else:
self.out_projs.append(lowerCAmelCase)
self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase))
else:
for i in range(len(self.cutoffs)):
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx))
_snake_case : Tuple = keep_order
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
if proj is None:
_snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
_snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous())
_snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
_snake_case : List[str] = hidden[..., :-1, :].contiguous()
_snake_case : int = labels[..., 1:].contiguous()
_snake_case : int = hidden.view(-1 , hidden.size(-1))
_snake_case : str = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""")
else:
_snake_case : List[Any] = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
_snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
_snake_case : Optional[int] = labels != -100
_snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Union[str, Any] = (
-nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
_snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Any = self.out_layers[i].weight
_snake_case : Optional[int] = self.out_layers[i].bias
if i == 0:
_snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1)
if labels is None:
_snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
_snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Optional[int] = 0
_snake_case : Union[str, Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
_snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx)
_snake_case : Dict = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
_snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx
_snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase)
_snake_case : Dict = hidden.index_select(0 , lowerCAmelCase)
else:
_snake_case : Optional[Any] = hidden
if i == 0:
if labels is not None:
_snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
_snake_case : int = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i]
_snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
_snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
_snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
_snake_case : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""") and self.keep_order) or keep_order:
out.index_copy_(0 , lowerCAmelCase , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
if self.n_clusters == 0:
_snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Tuple = self.out_layers[i].weight
_snake_case : Any = self.out_layers[i].bias
if i == 0:
_snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0]
_snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token))
_snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : List[Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
_snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : Dict = head_logprob[:, -i] + tail_logprob_i
_snake_case : Any = logprob_i
return out
| 317 | 0 |
from collections.abc import Generator
from math import sin
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : bytes) -> bytes:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__) != 32:
raise ValueError("Input must be of length 32")
__UpperCamelCase : str = b""""""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> bytes:
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative")
__UpperCamelCase : int = format(SCREAMING_SNAKE_CASE__ , "08x")[-8:]
__UpperCamelCase : Optional[int] = b""""""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8")
return little_endian_hex
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : bytes) -> bytes:
'''simple docstring'''
__UpperCamelCase : List[str] = b""""""
for char in message:
bit_string += format(SCREAMING_SNAKE_CASE__ , "08b").encode("utf-8")
__UpperCamelCase : Optional[int] = format(len(SCREAMING_SNAKE_CASE__) , "064b").encode("utf-8")
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(SCREAMING_SNAKE_CASE__) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32])
return bit_string
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : bytes) -> Generator[list[int], None, None]:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512")
for pos in range(0 , len(SCREAMING_SNAKE_CASE__) , 512):
__UpperCamelCase : Optional[Any] = bit_string[pos : pos + 512]
__UpperCamelCase : Optional[int] = []
for i in range(0 , 512 , 32):
block_words.append(int(to_little_endian(block[i : i + 32]) , 2))
yield block_words
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int:
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative")
__UpperCamelCase : str = format(SCREAMING_SNAKE_CASE__ , "032b")
__UpperCamelCase : Tuple = """"""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(SCREAMING_SNAKE_CASE__ , 2)
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : int) -> int:
'''simple docstring'''
return (a + b) % 2**32
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : int) -> int:
'''simple docstring'''
if i < 0:
raise ValueError("Input must be non-negative")
if shift < 0:
raise ValueError("Shift must be non-negative")
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : bytes) -> bytes:
'''simple docstring'''
__UpperCamelCase : Any = preprocess(SCREAMING_SNAKE_CASE__)
__UpperCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1))) for i in range(64)]
# Starting states
__UpperCamelCase : List[Any] = 0X67_452_301
__UpperCamelCase : Union[str, Any] = 0XEF_CDA_B89
__UpperCamelCase : Union[str, Any] = 0X98_BAD_CFE
__UpperCamelCase : int = 0X10_325_476
__UpperCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(SCREAMING_SNAKE_CASE__):
__UpperCamelCase : List[str] = aa
__UpperCamelCase : Dict = ba
__UpperCamelCase : int = ca
__UpperCamelCase : str = da
# Hash current chunk
for i in range(64):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase : Any = d ^ (b & (c ^ d))
__UpperCamelCase : List[str] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase : List[Any] = c ^ (d & (b ^ c))
__UpperCamelCase : Optional[int] = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase : Optional[Any] = b ^ c ^ d
__UpperCamelCase : Union[str, Any] = (3 * i + 5) % 16
else:
__UpperCamelCase : Optional[int] = c ^ (b | not_aa(SCREAMING_SNAKE_CASE__))
__UpperCamelCase : str = (7 * i) % 16
__UpperCamelCase : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase : List[str] = d
__UpperCamelCase : Tuple = c
__UpperCamelCase : Optional[Any] = b
__UpperCamelCase : Optional[Any] = sum_aa(SCREAMING_SNAKE_CASE__ , left_rotate_aa(SCREAMING_SNAKE_CASE__ , shift_amounts[i]))
# Add hashed chunk to running total
__UpperCamelCase : List[Any] = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)
__UpperCamelCase : List[str] = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)
__UpperCamelCase : List[Any] = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)
__UpperCamelCase : Tuple = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__)
__UpperCamelCase : Optional[Any] = reformat_hex(SCREAMING_SNAKE_CASE__) + reformat_hex(SCREAMING_SNAKE_CASE__) + reformat_hex(SCREAMING_SNAKE_CASE__) + reformat_hex(SCREAMING_SNAKE_CASE__)
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 232 |
from ...processing_utils import ProcessorMixin
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """feature_extractor"""]
snake_case_ : List[Any] = """TvltImageProcessor"""
snake_case_ : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase)
_snake_case : List[Any] = image_processor
_snake_case : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any:
"""simple docstring"""
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""")
_snake_case : Union[str, Any] = None
if images is not None:
_snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if images_mixed is not None:
_snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if audio is not None:
_snake_case : int = self.feature_extractor(
lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Any = {}
if audio is not None:
output_dict.update(lowerCAmelCase)
if images is not None:
output_dict.update(lowerCAmelCase)
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase)
return output_dict
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 317 | 0 |
'''simple docstring'''
from typing import List
import numpy as np
def UpperCamelCase ( _lowerCamelCase : dict ):
A__ = {key: len(SCREAMING_SNAKE_CASE__ ) for key, value in gen_kwargs.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"Sharding is ambiguous for this dataset: "
+ "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"
+ "\n".join(F"\t- key {key} has length {length}" for key, length in lists_lengths.items() )
+ "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, "
+ "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."
) )
A__ = max(lists_lengths.values() , default=0 )
return max(1 , SCREAMING_SNAKE_CASE__ )
def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int ):
A__ = []
for group_idx in range(SCREAMING_SNAKE_CASE__ ):
A__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
A__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
A__ = range(SCREAMING_SNAKE_CASE__ , start + num_shards_to_add )
shards_indices_per_group.append(SCREAMING_SNAKE_CASE__ )
return shards_indices_per_group
def UpperCamelCase ( _lowerCamelCase : dict , _lowerCamelCase : int ):
A__ = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ )
if num_shards == 1:
return [dict(SCREAMING_SNAKE_CASE__ )]
else:
A__ = _distribute_shards(num_shards=SCREAMING_SNAKE_CASE__ , max_num_jobs=SCREAMING_SNAKE_CASE__ )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(SCREAMING_SNAKE_CASE__ ) )
]
def UpperCamelCase ( _lowerCamelCase : List[dict] ):
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , SCREAMING_SNAKE_CASE__ )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def UpperCamelCase ( _lowerCamelCase : np.random.Generator , _lowerCamelCase : dict ):
A__ = {len(SCREAMING_SNAKE_CASE__ ) for value in gen_kwargs.values() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A__ = {}
for size in list_sizes:
A__ = list(range(SCREAMING_SNAKE_CASE__ ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
A__ = dict(SCREAMING_SNAKE_CASE__ )
for key, value in shuffled_kwargs.items():
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A__ = [value[i] for i in indices_per_size[len(SCREAMING_SNAKE_CASE__ )]]
return shuffled_kwargs
| 237 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
_snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Optional[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : int = num_channels
_snake_case : List[Any] = image_size
_snake_case : Dict = min_resolution
_snake_case : List[Any] = max_resolution
_snake_case : List[Any] = do_resize
_snake_case : Any = size
_snake_case : str = do_center_crop
_snake_case : Union[str, Any] = crop_size
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = MobileNetVaImageProcessingTester(self)
@property
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowerCAmelCase , """do_resize"""))
self.assertTrue(hasattr(lowerCAmelCase , """size"""))
self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop"""))
self.assertTrue(hasattr(lowerCAmelCase , """crop_size"""))
def UpperCamelCase_ ( self : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , Image.Image)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , np.ndarray)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , torch.Tensor)
# Test not batched input
_snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 317 | 0 |
def __lowercase ( lowerCamelCase : int = 1000 ):
UpperCamelCase_ : List[str] = 1, 1
UpperCamelCase_ : List[str] = []
for i in range(1 , n + 1 ):
UpperCamelCase_ : str = prev_numerator + 2 * prev_denominator
UpperCamelCase_ : Any = prev_numerator + prev_denominator
if len(str(SCREAMING_SNAKE_CASE__ ) ) > len(str(SCREAMING_SNAKE_CASE__ ) ):
result.append(SCREAMING_SNAKE_CASE__ )
UpperCamelCase_ : Optional[int] = numerator
UpperCamelCase_ : int = denominator
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 175 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 | 0 |
'''simple docstring'''
from math import asin, atan, cos, radians, sin, sqrt, tan
__a = 6_378_137.0
__a = 6_356_752.314_245
__a = 6_378_137
def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float ):
_UpperCAmelCase : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A
_UpperCAmelCase : Tuple = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) )
_UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) )
_UpperCAmelCase : List[Any] = radians(SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Tuple = radians(SCREAMING_SNAKE_CASE__ )
# Equation
_UpperCAmelCase : str = sin((phi_a - phi_a) / 2 )
_UpperCAmelCase : Union[str, Any] = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
_UpperCAmelCase : List[str] = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 145 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ = datasets.utils.logging.get_logger(__name__)
a__ = ["""names""", """prefix"""]
a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
a__ = ["""encoding_errors""", """on_bad_lines"""]
a__ = ["""date_format"""]
@dataclass
class snake_case ( datasets.BuilderConfig ):
'''simple docstring'''
snake_case_ : str = ","
snake_case_ : Optional[str] = None
snake_case_ : Optional[Union[int, List[int], str]] = "infer"
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None
snake_case_ : Optional[Union[List[int], List[str]]] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None
snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None
snake_case_ : Optional[list] = None
snake_case_ : Optional[list] = None
snake_case_ : bool = False
snake_case_ : Optional[Union[int, List[int]]] = None
snake_case_ : Optional[int] = None
snake_case_ : Optional[Union[str, List[str]]] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : bool = True
snake_case_ : Optional[str] = None
snake_case_ : str = "."
snake_case_ : Optional[str] = None
snake_case_ : str = '"'
snake_case_ : int = 0
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : int = 0
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : Optional[str] = None
snake_case_ : int = 1_00_00
snake_case_ : Optional[datasets.Features] = None
snake_case_ : Optional[str] = "strict"
snake_case_ : Literal["error", "warn", "skip"] = "error"
snake_case_ : Optional[str] = None
def UpperCamelCase_ ( self : List[Any]) -> Dict:
"""simple docstring"""
if self.delimiter is not None:
_snake_case : str = self.delimiter
if self.column_names is not None:
_snake_case : str = self.column_names
@property
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : Dict = {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class snake_case ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
snake_case_ : Union[str, Any] = CsvConfig
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''')
_snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(lowerCAmelCase , (str, list, tuple)):
_snake_case : int = data_files
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : int = [files]
_snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})]
_snake_case : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
_snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files}))
return splits
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_snake_case : List[str] = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()):
# cheaper cast
_snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase)
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase)
return pa_table
def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_snake_case : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values())
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)):
_snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs)
try:
for batch_idx, df in enumerate(lowerCAmelCase):
_snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase)
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase)
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''')
raise
| 317 | 0 |
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
a_ : List[str] = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
a_ : int = parser.parse_args()
if args.model_type == "bert":
a_ : List[str] = BertForMaskedLM.from_pretrained(args.model_name)
a_ : int = 'bert'
else:
raise ValueError('args.model_type should be \"bert\".')
a_ : Union[str, Any] = model.state_dict()
a_ : Optional[int] = {}
for w in ["word_embeddings", "position_embeddings"]:
a_ : List[Any] = state_dict[f"""{prefix}.embeddings.{w}.weight"""]
for w in ["weight", "bias"]:
a_ : str = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""]
a_ : Optional[Any] = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
a_ : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"""
]
a_ : Optional[Any] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"""
]
a_ : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"""
]
a_ : Optional[int] = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"""
]
a_ : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"""
]
a_ : Tuple = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"""
]
a_ : Any = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"""
]
a_ : int = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"""
]
std_idx += 1
a_ : Optional[Any] = state_dict['cls.predictions.decoder.weight']
a_ : List[Any] = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
a_ : str = state_dict[f"""cls.predictions.transform.dense.{w}"""]
a_ : Union[str, Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""]
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 137 |
from __future__ import annotations
from typing import TypedDict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str
snake_case_ : int
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
_snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_snake_case : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ),
}
return response
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
_snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
_snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
_snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ = """Provide a string that I will generate its BWT transform: """
a__ = input(entry_msg).strip()
a__ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 317 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCamelCase (SCREAMING_SNAKE_CASE_ ):
lowerCamelCase__ : str = """SpeechT5FeatureExtractor"""
lowerCamelCase__ : List[str] = """SpeechT5Tokenizer"""
def __init__( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) -> List[Any]:
SCREAMING_SNAKE_CASE__ = kwargs.pop("""audio""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""text""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""text_target""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""audio_target""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""sampling_rate""" , __UpperCAmelCase )
if audio is not None and text is not None:
raise ValueError(
"""Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" )
if audio_target is not None and text_target is not None:
raise ValueError(
"""Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"""You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" )
if audio is not None:
SCREAMING_SNAKE_CASE__ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
elif text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE__ = None
if audio_target is not None:
SCREAMING_SNAKE_CASE__ = self.feature_extractor(audio_target=__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = targets["""input_values"""]
elif text_target is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = targets["""input_ids"""]
else:
SCREAMING_SNAKE_CASE__ = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE__ = labels
SCREAMING_SNAKE_CASE__ = targets.get("""attention_mask""" )
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Tuple , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Tuple ) -> int:
SCREAMING_SNAKE_CASE__ = kwargs.pop("""input_values""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""input_ids""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""labels""" , __UpperCAmelCase )
if input_values is not None and input_ids is not None:
raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"""You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" )
if input_values is not None:
SCREAMING_SNAKE_CASE__ = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
elif input_ids is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and "input_ids" in labels[0]):
SCREAMING_SNAKE_CASE__ = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = targets["""input_ids"""]
else:
SCREAMING_SNAKE_CASE__ = self.feature_extractor.feature_size
SCREAMING_SNAKE_CASE__ = self.feature_extractor.num_mel_bins
SCREAMING_SNAKE_CASE__ = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = feature_size_hack
SCREAMING_SNAKE_CASE__ = targets["""input_values"""]
else:
SCREAMING_SNAKE_CASE__ = None
if inputs is None:
return targets
if targets is not None:
SCREAMING_SNAKE_CASE__ = labels
SCREAMING_SNAKE_CASE__ = targets.get("""attention_mask""" )
if decoder_attention_mask is not None:
SCREAMING_SNAKE_CASE__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : List[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : List[str] ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[Any] ) -> Dict:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
| 165 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
a__ = logging.get_logger(__name__)
# General docstring
a__ = """RegNetConfig"""
# Base docstring
a__ = """facebook/regnet-y-040"""
a__ = [1, 10_88, 7, 7]
# Image classification docstring
a__ = """facebook/regnet-y-040"""
a__ = """tabby, tabby cat"""
a__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : int = nn.Convad(
lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , )
_snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase)
_snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = self.convolution(lowerCAmelCase)
_snake_case : Any = self.normalization(lowerCAmelCase)
_snake_case : List[Any] = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
_snake_case : Dict = config.num_channels
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
_snake_case : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""")
_snake_case : Any = self.embedder(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase)
_snake_case : Tuple = nn.BatchNormad(lowerCAmelCase)
def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor:
"""simple docstring"""
_snake_case : Optional[Any] = self.convolution(lowerCAmelCase)
_snake_case : Optional[int] = self.normalization(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1))
_snake_case : Optional[Any] = nn.Sequential(
nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , )
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
_snake_case : Dict = self.pooler(lowerCAmelCase)
_snake_case : List[str] = self.attention(lowerCAmelCase)
_snake_case : str = hidden_state * attention
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[int] = in_channels != out_channels or stride != 1
_snake_case : Optional[Any] = max(1 , out_channels // config.groups_width)
_snake_case : Union[str, Any] = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Tuple = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Dict = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = hidden_state
_snake_case : int = self.layer(lowerCAmelCase)
_snake_case : Dict = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : str = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : int = in_channels != out_channels or stride != 1
_snake_case : Dict = max(1 , out_channels // config.groups_width)
_snake_case : Tuple = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Dict = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = hidden_state
_snake_case : List[Any] = self.layer(lowerCAmelCase)
_snake_case : List[str] = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : int = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer
_snake_case : Optional[int] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , )
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : List[str] = self.layers(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
_snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]):
self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase))
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
_snake_case : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_snake_case : Optional[int] = hidden_states + (hidden_state,)
_snake_case : Dict = stage_module(lowerCAmelCase)
if output_hidden_states:
_snake_case : Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = RegNetConfig
snake_case_ : List[Any] = """regnet"""
snake_case_ : Any = """pixel_values"""
snake_case_ : Optional[Any] = True
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
if isinstance(lowerCAmelCase , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""")
elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]:
"""simple docstring"""
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : Optional[Any] = value
a__ = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
a__ = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Any = config
_snake_case : Any = RegNetEmbeddings(lowerCAmelCase)
_snake_case : Dict = RegNetEncoder(lowerCAmelCase)
_snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
_snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : str = self.embedder(lowerCAmelCase)
_snake_case : Optional[Any] = self.encoder(
lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : Tuple = encoder_outputs[0]
_snake_case : Optional[Any] = self.pooler(lowerCAmelCase)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Union[str, Any] = config.num_labels
_snake_case : List[Any] = RegNetModel(lowerCAmelCase)
# classification head
_snake_case : Union[str, Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
_snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : str = outputs.pooler_output if return_dict else outputs[1]
_snake_case : Optional[Any] = self.classifier(lowerCAmelCase)
_snake_case : Any = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_snake_case : List[Any] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_snake_case : Optional[int] = """single_label_classification"""
else:
_snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
_snake_case : List[str] = MSELoss()
if self.num_labels == 1:
_snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze())
else:
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
elif self.config.problem_type == "single_label_classification":
_snake_case : Dict = CrossEntropyLoss()
_snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
_snake_case : Optional[int] = BCEWithLogitsLoss()
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
if not return_dict:
_snake_case : Optional[Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
| 317 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class _A ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
UpperCAmelCase : int = ["""image_processor""", """feature_extractor"""]
UpperCAmelCase : List[Any] = """TvltImageProcessor"""
UpperCAmelCase : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str):
super().__init__(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase)
a : List[Any] = image_processor
a : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Dict=False , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any , ):
if images is None and audio is None:
raise ValueError("You need to specify either an `images` or `audio` input to process.")
a : Union[str, Any] = None
if images is not None:
a : Any = self.image_processor(__UpperCAmelCase , mask_pixel=__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase)
if images_mixed is not None:
a : Union[str, Any] = self.image_processor(__UpperCAmelCase , is_mixed=__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase)
if audio is not None:
a : int = self.feature_extractor(
__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , mask_audio=__UpperCAmelCase , **__UpperCAmelCase)
a : Any = {}
if audio is not None:
output_dict.update(__UpperCAmelCase)
if images is not None:
output_dict.update(__UpperCAmelCase)
if images_mixed_dict is not None:
output_dict.update(__UpperCAmelCase)
return output_dict
@property
def __snake_case ( self : Union[str, Any]):
a : Optional[Any] = self.image_processor.model_input_names
a : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 40 |
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list:
_snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ )
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# use last results for better performance - dynamic programming
_snake_case : Optional[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_snake_case : List[Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_snake_case : Optional[int] = j
return prefix_result
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
return max(prefix_function(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
UpperCAmelCase__ : Optional[Any] = DiTPipeline
UpperCAmelCase__ : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
UpperCAmelCase__ : Any = PipelineTesterMixin.required_optional_params - {
"""latents""",
"""num_images_per_prompt""",
"""callback""",
"""callback_steps""",
}
UpperCAmelCase__ : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
UpperCAmelCase__ : Dict = False
def snake_case_ ( self ) -> Any:
torch.manual_seed(0 )
UpperCamelCase : Dict = TransformeraDModel(
sample_size=16, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=SCREAMING_SNAKE_CASE_, activation_fn='gelu-approximate', num_embeds_ada_norm=1000, norm_type='ada_norm_zero', norm_elementwise_affine=SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Optional[int] = AutoencoderKL()
UpperCamelCase : Any = DDIMScheduler()
UpperCamelCase : str = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Dict:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : str = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Tuple = """cpu"""
UpperCamelCase : Optional[Any] = self.get_dummy_components()
UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = pipe(**SCREAMING_SNAKE_CASE_ ).images
UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 16, 16, 3) )
UpperCamelCase : Dict = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] )
UpperCamelCase : int = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE_, 1e-3 )
def snake_case_ ( self ) -> str:
self._test_inference_batch_single_identical(relax_max_difference=SCREAMING_SNAKE_CASE_, expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def snake_case_ ( self ) -> Dict:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> str:
UpperCamelCase : Dict = torch.manual_seed(0 )
UpperCamelCase : Tuple = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
UpperCamelCase : Dict = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
UpperCamelCase : Any = pipe.get_label_ids(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipe(SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=40, output_type='np' ).images
for word, image in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = load_numpy(
F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-2
def snake_case_ ( self ) -> List[str]:
UpperCamelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
UpperCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
UpperCamelCase : List[Any] = ["""vase""", """umbrella"""]
UpperCamelCase : Optional[int] = pipe.get_label_ids(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = torch.manual_seed(0 )
UpperCamelCase : int = pipe(SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=25, output_type='np' ).images
for word, image in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : List[str] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 119 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = """ Hello world! cécé herlolip"""
a__ = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
_snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
_snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : int = val
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
_snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
_snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval()
hub_interface.model.load_state_dict(sd["""model"""] )
return hub_interface
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
_snake_case , _snake_case : List[str] = emb.weight.shape
_snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]:
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval()
else:
_snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" )
_snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
_snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 )
if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
_snake_case : Dict = bart.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""]
for src, dest in mnli_rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits
else: # no classification heads to worry about
_snake_case : Dict = bart.model.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""]
_snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ )
if hf_checkpoint_name == "facebook/bart-large":
_snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0]
else:
_snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ):
_snake_case : Any = make_linear_from_emb(model.model.shared )
_snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a__ = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 317 | 0 |
'''simple docstring'''
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or number < 0:
raise ValueError('''Input must be a non-negative integer''' )
lowerCamelCase_ : Optional[int] = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase = 1_000 ) -> int:
'''simple docstring'''
lowerCamelCase_ : Dict = 2**power
lowerCamelCase_ : List[Any] = 0
while n:
lowerCamelCase_, lowerCamelCase_ : List[Any] = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 318 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 1 |
'''simple docstring'''
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
lowerCamelCase_ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',)
lowerCamelCase_ : Dict = torch.permute(_lowercase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(_lowercase ):
# linear layer
lowerCamelCase_ : Any = flax_key_tuple[:-1] + ('''weight''',)
lowerCamelCase_ : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowerCamelCase_ : str = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
'''simple docstring'''
if "metadata" in layer:
lowerCamelCase_ : Any = layer.split('''metadata''' )
lowerCamelCase_ : Tuple = ''''''.join(split_layer[0] )[:-1]
lowerCamelCase_ : Tuple = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
lowerCamelCase_ : Tuple = layer.split('''kvstore''' )
lowerCamelCase_ : List[Any] = ''''''.join(split_layer[0] )[:-1]
lowerCamelCase_ : Optional[int] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
lowerCamelCase_ : Any = layer.split('''/''' )
lowerCamelCase_ : List[Any] = '''/'''.join(split_layer[:-1] )
lowerCamelCase_ : Optional[Any] = (split_layer[-1],)
if "kvstore/path" in layer:
lowerCamelCase_ : int = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
lowerCamelCase_ : Any = '''file'''
else:
lowerCamelCase_ : Dict = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def lowercase_ ( _lowercase , _lowercase ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = rename_keys(_lowercase )
lowerCamelCase_ : str = {}
for k, v in current_block.items():
lowerCamelCase_ : Union[str, Any] = v
lowerCamelCase_ : Tuple = new_current_block
torch.save(_lowercase , _lowercase )
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = WEIGHTS_NAME ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : List[str] = convert_file_size_to_int(_lowercase )
lowerCamelCase_ : Any = []
lowerCamelCase_ : str = {}
lowerCamelCase_ : List[Any] = 0
lowerCamelCase_ : Tuple = 0
os.makedirs(_lowercase , exist_ok=_lowercase )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
lowerCamelCase_ : int = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
lowerCamelCase_ : Tuple = flatten_dict(_lowercase , sep='''/''' )
lowerCamelCase_ : int = {}
for layer in checkpoint_info.keys():
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[Any] = get_key_and_tensorstore_dict(
_lowercase , _lowercase , _lowercase )
if curr_real_layer_name in all_layers:
lowerCamelCase_ : Tuple = content
else:
lowerCamelCase_ : Dict = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
lowerCamelCase_ : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
lowerCamelCase_ : Union[str, Any] = torch.tensor(_lowercase )
lowerCamelCase_ : Any = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
lowerCamelCase_, lowerCamelCase_ : Dict = rename_base_flax_keys(tuple(key.split('''/''' ) ) , _lowercase )
lowerCamelCase_ : Optional[Any] = '''/'''.join(_lowercase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
lowerCamelCase_ : Tuple = os.path.join(
_lowercase , weights_name.replace('''.bin''' , F"""-{len(_lowercase )+1:05d}-of-???.bin""" ) )
rename_and_save_block(_lowercase , _lowercase )
sharded_state_dicts.append(current_block.keys() )
del current_block
lowerCamelCase_ : str = {}
lowerCamelCase_ : Optional[int] = 0
lowerCamelCase_ : Any = raw_weights.to(getattr(_lowercase , _lowercase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
lowerCamelCase_ : Tuple = os.path.join(_lowercase , weights_name.replace('''.bin''' , F"""-{len(_lowercase )+1:05d}-of-???.bin""" ) )
rename_and_save_block(_lowercase , _lowercase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(_lowercase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
lowerCamelCase_ : Optional[Any] = {}
lowerCamelCase_ : str = {}
for idx, shard in enumerate(_lowercase ):
lowerCamelCase_ : List[Any] = weights_name.replace(
'''.bin''' , F"""-{idx+1:05d}-of-{len(_lowercase ):05d}.bin""" ) # len(sharded_state_dicts):05d}
lowerCamelCase_ : Tuple = os.path.join(_lowercase , weights_name.replace('''.bin''' , F"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(_lowercase , os.path.join(_lowercase , _lowercase ) )
lowerCamelCase_ : Dict = shard
for key in shard:
lowerCamelCase_ : List[str] = shard_file
# Add the metadata
lowerCamelCase_ : str = {'''total_size''': total_size}
lowerCamelCase_ : Tuple = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_lowercase , _lowercase ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ : Dict = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n'''
f.write(_lowercase )
return metadata, index
if __name__ == "__main__":
__lowercase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--switch_t5x_checkpoint_path''',
default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''')
parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
__lowercase : int = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def lowercase_ ( ) -> List[str]:
'''simple docstring'''
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
lowerCamelCase_ : Any = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
lowerCamelCase_ : Any = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
lowerCamelCase_ : Optional[Any] = TaTokenizer.from_pretrained('''t5-small''' )
lowerCamelCase_ : int = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
lowerCamelCase_ : str = tokenizer(_lowercase , return_tensors='''pt''' ).input_ids
lowerCamelCase_ : List[str] = model.generate(_lowercase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 318 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__lowercase : str = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class __lowercase ( unittest.TestCase ):
def __init__(self , A , A=7 , A=3 , A=1_8 , A=3_0 , A=4_0_0 , A=None , A=True , A=True , A=None , ):
lowerCamelCase_ : str = size if size is not None else {'''height''': 2_0, '''width''': 2_0}
lowerCamelCase_ : Dict = parent
lowerCamelCase_ : str = batch_size
lowerCamelCase_ : Dict = num_channels
lowerCamelCase_ : Union[str, Any] = image_size
lowerCamelCase_ : Any = min_resolution
lowerCamelCase_ : int = max_resolution
lowerCamelCase_ : Dict = size
lowerCamelCase_ : List[str] = do_normalize
lowerCamelCase_ : Optional[Any] = do_convert_rgb
lowerCamelCase_ : int = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
lowerCamelCase_ : Tuple = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6}
def UpperCAmelCase__ (self ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
lowerCamelCase_ : Any = Image.open(requests.get(A , stream=A ).raw ).convert('''RGB''' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Dict = PixaStructImageProcessor if is_vision_available() else None
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = PixaStructImageProcessingTester(self )
@property
def UpperCAmelCase__ (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , '''do_normalize''' ) )
self.assertTrue(hasattr(A , '''do_convert_rgb''' ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
lowerCamelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
lowerCamelCase_ : List[Any] = 2_0_4_8
lowerCamelCase_ : Dict = image_processor(A , return_tensors='''pt''' , max_patches=A )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) )
def UpperCAmelCase__ (self ):
# Initialize image_processor
lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A , Image.Image )
# Test not batched input
lowerCamelCase_ : Optional[Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ : List[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ : int = image_processor(
A , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCAmelCase__ (self ):
# Initialize image_processor
lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A , Image.Image )
# Test not batched input
lowerCamelCase_ : Any = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
lowerCamelCase_ : List[str] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(A ):
lowerCamelCase_ : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches
lowerCamelCase_ : Any = '''Hello'''
lowerCamelCase_ : Optional[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=A , header_text=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ : Any = image_processor(
A , return_tensors='''pt''' , max_patches=A , header_text=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCAmelCase__ (self ):
# Initialize image_processor
lowerCamelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A )
for image in image_inputs:
self.assertIsInstance(A , np.ndarray )
lowerCamelCase_ : str = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ : Optional[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ : Tuple = image_processor(
A , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def UpperCAmelCase__ (self ):
# Initialize image_processor
lowerCamelCase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A )
for image in image_inputs:
self.assertIsInstance(A , torch.Tensor )
# Test not batched input
lowerCamelCase_ : List[Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ : Optional[int] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ : Optional[Any] = image_processor(
A , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = PixaStructImageProcessingTester(self , num_channels=4 )
lowerCamelCase_ : List[Any] = 3
@property
def UpperCAmelCase__ (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , '''do_normalize''' ) )
self.assertTrue(hasattr(A , '''do_convert_rgb''' ) )
def UpperCAmelCase__ (self ):
# Initialize image_processor
lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A , Image.Image )
# Test not batched input
lowerCamelCase_ : int = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ : Optional[int] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
lowerCamelCase_ : Optional[Any] = image_processor(
A , return_tensors='''pt''' , max_patches=A ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 318 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 1 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowercase : Dict = {
'''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''],
'''tokenization_cpmant''': ['''CpmAntTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : str = [
'''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CpmAntForCausalLM''',
'''CpmAntModel''',
'''CpmAntPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
__lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 318 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__lowercase : Any = logging.get_logger(__name__)
__lowercase : List[str] = {'''vocab_file''': '''spiece.model'''}
__lowercase : str = {
'''vocab_file''': {
'''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''',
}
}
class __lowercase ( _lowercase ):
def __init__(self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ):
lowerCamelCase_ : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
lowerCamelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , )
lowerCamelCase_ : str = 3
lowerCamelCase_ : Optional[int] = do_lower_case
lowerCamelCase_ : Optional[int] = remove_space
lowerCamelCase_ : Dict = keep_accents
lowerCamelCase_ : List[Any] = vocab_file
lowerCamelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
'''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. '''
'''See https://pypi.org/project/jieba/ for installation.''' )
lowerCamelCase_ : Any = jieba
lowerCamelCase_ : str = str.maketrans(''' \n''' , '''\u2582\u2583''' )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def UpperCAmelCase__ (self ):
return len(self.sp_model )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__(self ):
lowerCamelCase_ : int = self.__dict__.copy()
lowerCamelCase_ : Optional[Any] = None
return state
def __setstate__(self , A ):
lowerCamelCase_ : Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCamelCase_ : List[str] = {}
lowerCamelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase__ (self , A ):
if self.remove_space:
lowerCamelCase_ : List[str] = ''' '''.join(inputs.strip().split() )
else:
lowerCamelCase_ : Optional[Any] = inputs
lowerCamelCase_ : Optional[int] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
lowerCamelCase_ : Optional[Any] = unicodedata.normalize('''NFKD''' , A )
lowerCamelCase_ : str = ''''''.join([c for c in outputs if not unicodedata.combining(A )] )
if self.do_lower_case:
lowerCamelCase_ : Any = outputs.lower()
return outputs
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[Any] = self.preprocess_text(A )
lowerCamelCase_ : Tuple = self.sp_model.encode(A , out_type=A )
lowerCamelCase_ : str = []
for piece in pieces:
if len(A ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowerCamelCase_ : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCamelCase_ : Any = cur_pieces[1:]
else:
lowerCamelCase_ : Union[str, Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(A )
else:
new_pieces.append(A )
return new_pieces
def UpperCAmelCase__ (self , A ):
return self.sp_model.PieceToId(A )
def UpperCAmelCase__ (self , A ):
return self.sp_model.IdToPiece(A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = ''''''.join(A ).replace(A , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A , token_ids_a=A , already_has_special_tokens=A )
if token_ids_a is not None:
return ([0] * len(A )) + [1] + ([0] * len(A )) + [1, 1]
return ([0] * len(A )) + [1, 1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = [self.sep_token_id]
lowerCamelCase_ : List[str] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , A )
elif not os.path.isfile(self.vocab_file ):
with open(A , '''wb''' ) as fi:
lowerCamelCase_ : List[Any] = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCAmelCase__ (self , *A , **A ):
lowerCamelCase_ : Optional[Any] = super()._decode(*A , **A )
lowerCamelCase_ : Dict = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' )
return text
| 318 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowercase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=A ).to(A )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' )
lowerCamelCase_ : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids
lowerCamelCase_ : Optional[Any] = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids
lowerCamelCase_ : Tuple = model(input_ids.to(A ) , labels=labels.to(A ) ).loss
lowerCamelCase_ : int = -(labels.shape[-1] * loss.item())
lowerCamelCase_ : Tuple = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 318 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Dict = DDIMPipeline
lowerCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowerCamelCase : Dict = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowerCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowerCamelCase : Optional[Any] = False
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Dict = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
lowerCamelCase_ : Dict = DDIMScheduler()
lowerCamelCase_ : Optional[Any] = {'''unet''': unet, '''scheduler''': scheduler}
return components
def UpperCAmelCase__ (self , A , A=0 ):
if str(A ).startswith('''mps''' ):
lowerCamelCase_ : Dict = torch.manual_seed(A )
else:
lowerCamelCase_ : Tuple = torch.Generator(device=A ).manual_seed(A )
lowerCamelCase_ : str = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''cpu'''
lowerCamelCase_ : List[Any] = self.get_dummy_components()
lowerCamelCase_ : List[Any] = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : List[Any] = self.get_dummy_inputs(A )
lowerCamelCase_ : Any = pipe(**A ).images
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 3_2, 3_2, 3) )
lowerCamelCase_ : Any = np.array(
[1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] )
lowerCamelCase_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A , 1E-3 )
def UpperCAmelCase__ (self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def UpperCAmelCase__ (self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def UpperCAmelCase__ (self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def UpperCAmelCase__ (self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = '''google/ddpm-cifar10-32'''
lowerCamelCase_ : Optional[Any] = UNetaDModel.from_pretrained(A )
lowerCamelCase_ : List[str] = DDIMScheduler()
lowerCamelCase_ : Union[str, Any] = DDIMPipeline(unet=A , scheduler=A )
ddim.to(A )
ddim.set_progress_bar_config(disable=A )
lowerCamelCase_ : Dict = torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = ddim(generator=A , eta=0.0 , output_type='''numpy''' ).images
lowerCamelCase_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : Optional[Any] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = '''google/ddpm-ema-bedroom-256'''
lowerCamelCase_ : int = UNetaDModel.from_pretrained(A )
lowerCamelCase_ : Optional[int] = DDIMScheduler.from_pretrained(A )
lowerCamelCase_ : List[str] = DDIMPipeline(unet=A , scheduler=A )
ddpm.to(A )
ddpm.set_progress_bar_config(disable=A )
lowerCamelCase_ : int = torch.manual_seed(0 )
lowerCamelCase_ : Dict = ddpm(generator=A , output_type='''numpy''' ).images
lowerCamelCase_ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
lowerCamelCase_ : Dict = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 318 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Tuple = BioGptTokenizer
lowerCamelCase : Tuple = False
def UpperCAmelCase__ (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCamelCase_ : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
lowerCamelCase_ : str = dict(zip(A , range(len(A ) ) ) )
lowerCamelCase_ : Any = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(A ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(A ) )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = '''lower newer'''
lowerCamelCase_ : Optional[Any] = '''lower newer'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file )
lowerCamelCase_ : Optional[Any] = '''lower'''
lowerCamelCase_ : Tuple = ['''low''', '''er</w>''']
lowerCamelCase_ : List[str] = tokenizer.tokenize(A )
self.assertListEqual(A , A )
lowerCamelCase_ : List[str] = tokens + ['''<unk>''']
lowerCamelCase_ : List[str] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
lowerCamelCase_ : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=A )
lowerCamelCase_ : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A )
lowerCamelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A )
lowerCamelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(A , A )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 318 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 1 |
'''simple docstring'''
__lowercase : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def lowercase_ ( ) -> None:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = input('''Enter message: ''' )
lowerCamelCase_ : Optional[Any] = input('''Enter key [alphanumeric]: ''' )
lowerCamelCase_ : Tuple = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCamelCase_ : Tuple = '''encrypt'''
lowerCamelCase_ : Dict = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith('''d''' ):
lowerCamelCase_ : Optional[int] = '''decrypt'''
lowerCamelCase_ : Dict = decrypt_message(_lowercase , _lowercase )
print(F"""\n{mode.title()}ed message:""" )
print(_lowercase )
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
return translate_message(_lowercase , _lowercase , '''encrypt''' )
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
return translate_message(_lowercase , _lowercase , '''decrypt''' )
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> str:
'''simple docstring'''
lowerCamelCase_ : Tuple = []
lowerCamelCase_ : Optional[Any] = 0
lowerCamelCase_ : List[Any] = key.upper()
for symbol in message:
lowerCamelCase_ : Union[str, Any] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
lowerCamelCase_ : Tuple = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float:
'''simple docstring'''
lowerCamelCase_ : Tuple = x
lowerCamelCase_ : Any = y
for step in range(_lowercase ): # noqa: B007
lowerCamelCase_ : str = a * a - b * b + x
lowerCamelCase_ : Optional[int] = 2 * a * b + y
lowerCamelCase_ : Optional[int] = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowercase_ ( _lowercase ) -> tuple:
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowercase_ ( _lowercase ) -> tuple:
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) )
def lowercase_ ( _lowercase = 800 , _lowercase = 600 , _lowercase = -0.6 , _lowercase = 0 , _lowercase = 3.2 , _lowercase = 50 , _lowercase = True , ) -> Image.Image:
'''simple docstring'''
lowerCamelCase_ : Dict = Image.new('''RGB''' , (image_width, image_height) )
lowerCamelCase_ : str = img.load()
# loop through the image-coordinates
for image_x in range(_lowercase ):
for image_y in range(_lowercase ):
# determine the figure-coordinates based on the image-coordinates
lowerCamelCase_ : Tuple = figure_width / image_width * image_height
lowerCamelCase_ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowerCamelCase_ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowerCamelCase_ : List[Any] = get_distance(_lowercase , _lowercase , _lowercase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowerCamelCase_ : Dict = get_color_coded_rgb(_lowercase )
else:
lowerCamelCase_ : List[str] = get_black_and_white_rgb(_lowercase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
__lowercase : Optional[int] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 318 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowercase : Dict = {
'''configuration_encodec''': [
'''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EncodecConfig''',
],
'''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] = [
'''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EncodecModel''',
'''EncodecPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
__lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 318 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Dict = MgpstrTokenizer
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Optional[Any] = {}
lowerCamelCase : int = False
def UpperCAmelCase__ (self ):
super().setUp()
# fmt: off
lowerCamelCase_ : Tuple = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
lowerCamelCase_ : Optional[Any] = dict(zip(A , range(len(A ) ) ) )
lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(A ) + '''\n''' )
def UpperCAmelCase__ (self , **A ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = '''tester'''
lowerCamelCase_ : Optional[int] = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''' )
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
lowerCamelCase_ : Optional[int] = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token} )
lowerCamelCase_ : List[Any] = tokenizer.encode([special_token] , add_special_tokens=A )
self.assertEqual(len(A ) , 1 )
lowerCamelCase_ : str = tokenizer.decode(A , skip_special_tokens=A )
self.assertTrue(special_token not in decoded )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
lowerCamelCase_, lowerCamelCase_ : str = self.get_input_output_texts(A )
lowerCamelCase_ : Dict = tokenizer.tokenize(A )
lowerCamelCase_ : Tuple = tokenizer.convert_tokens_to_ids(A )
lowerCamelCase_ : Tuple = tokenizer.encode(A , add_special_tokens=A )
self.assertListEqual(A , A )
lowerCamelCase_ : int = tokenizer.convert_ids_to_tokens(A )
self.assertNotEqual(len(A ) , 0 )
lowerCamelCase_ : Dict = tokenizer.decode(A )
self.assertIsInstance(A , A )
self.assertEqual(text_a.replace(''' ''' , '''''' ) , A )
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''' )
def UpperCAmelCase__ (self ):
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' )
def UpperCAmelCase__ (self ):
pass
| 318 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 1 |
'''simple docstring'''
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def lowercase_ ( _lowercase = 8 ) -> str:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = ascii_letters + digits + punctuation
return "".join(secrets.choice(_lowercase ) for _ in range(_lowercase ) )
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
i -= len(_lowercase )
lowerCamelCase_ : List[Any] = i // 3
lowerCamelCase_ : int = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
lowerCamelCase_ : Optional[int] = (
chars_incl
+ random(_lowercase , quotient + remainder )
+ random(_lowercase , _lowercase )
+ random(_lowercase , _lowercase )
)
lowerCamelCase_ : List[Any] = list(_lowercase )
shuffle(_lowercase )
return "".join(_lowercase )
# random is a generalised function for letters, characters and numbers
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
return "".join(secrets.choice(_lowercase ) for _ in range(_lowercase ) )
def lowercase_ ( _lowercase , _lowercase ) -> Optional[int]:
'''simple docstring'''
pass # Put your code here...
def lowercase_ ( _lowercase , _lowercase ) -> Union[str, Any]:
'''simple docstring'''
pass # Put your code here...
def lowercase_ ( _lowercase , _lowercase ) -> int:
'''simple docstring'''
pass # Put your code here...
def lowercase_ ( _lowercase , _lowercase = 8 ) -> bool:
'''simple docstring'''
if len(_lowercase ) < min_length:
# Your Password must be at least 8 characters long
return False
lowerCamelCase_ : Tuple = any(char in ascii_uppercase for char in password )
lowerCamelCase_ : Tuple = any(char in ascii_lowercase for char in password )
lowerCamelCase_ : int = any(char in digits for char in password )
lowerCamelCase_ : List[Any] = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def lowercase_ ( ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Any = int(input('''Please indicate the max length of your password: ''' ).strip() )
lowerCamelCase_ : Tuple = input(
'''Please indicate the characters that must be in your password: ''' ).strip()
print('''Password generated:''' , password_generator(_lowercase ) )
print(
'''Alternative Password generated:''' , alternative_password_generator(_lowercase , _lowercase ) , )
print('''[If you are thinking of using this passsword, You better save it.]''' )
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
__lowercase : Any = 8.3_14_45_98
def lowercase_ ( _lowercase , _lowercase ) -> float:
'''simple docstring'''
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
__lowercase : Optional[Any] = 300
__lowercase : Dict = 28
__lowercase : Optional[int] = rms_speed_of_molecule(temperature, molar_mass)
print(f'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
| 318 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowercase ( unittest.TestCase ):
def __init__(self , A , A=3 , A=3_2 , A=3 , A=1_0 , A=[1_0, 2_0, 3_0, 4_0] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , ):
lowerCamelCase_ : Dict = parent
lowerCamelCase_ : List[str] = batch_size
lowerCamelCase_ : Union[str, Any] = image_size
lowerCamelCase_ : Tuple = num_channels
lowerCamelCase_ : Any = embeddings_size
lowerCamelCase_ : Optional[int] = hidden_sizes
lowerCamelCase_ : List[str] = depths
lowerCamelCase_ : Tuple = is_training
lowerCamelCase_ : str = use_labels
lowerCamelCase_ : List[str] = hidden_act
lowerCamelCase_ : List[Any] = num_labels
lowerCamelCase_ : int = scope
lowerCamelCase_ : Optional[int] = len(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values
def UpperCAmelCase__ (self ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : str = FlaxRegNetModel(config=A )
lowerCamelCase_ : str = model(A )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : Optional[Any] = self.num_labels
lowerCamelCase_ : Optional[Any] = FlaxRegNetForImageClassification(config=A )
lowerCamelCase_ : int = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_ : int = config_and_inputs
lowerCamelCase_ : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : List[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
lowerCamelCase : str = False
lowerCamelCase : Optional[Any] = False
lowerCamelCase : List[Any] = False
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = FlaxRegNetModelTester(self )
lowerCamelCase_ : str = ConfigTester(self , config_class=A , has_text_modality=A )
def UpperCAmelCase__ (self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ (self ):
return
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def UpperCAmelCase__ (self ):
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : List[str] = model_class(A )
lowerCamelCase_ : List[Any] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ : str = [*signature.parameters.keys()]
lowerCamelCase_ : List[str] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , A )
def UpperCAmelCase__ (self ):
def check_hidden_states_output(A , A , A ):
lowerCamelCase_ : Tuple = model_class(A )
lowerCamelCase_ : Optional[int] = model(**self._prepare_for_class(A , A ) )
lowerCamelCase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase_ : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
lowerCamelCase_, lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : Optional[Any] = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase_ : int = True
check_hidden_states_output(A , A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase_ : Optional[int] = self._prepare_for_class(A , A )
lowerCamelCase_ : Union[str, Any] = model_class(A )
@jax.jit
def model_jitted(A , **A ):
return model(pixel_values=A , **A )
with self.subTest('''JIT Enabled''' ):
lowerCamelCase_ : List[str] = model_jitted(**A ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowerCamelCase_ : Any = model_jitted(**A ).to_tuple()
self.assertEqual(len(A ) , len(A ) )
for jitted_output, output in zip(A , A ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __lowercase ( unittest.TestCase ):
@cached_property
def UpperCAmelCase__ (self ):
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
lowerCamelCase_ : Tuple = self.default_image_processor
lowerCamelCase_ : int = prepare_img()
lowerCamelCase_ : Dict = image_processor(images=A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = model(**A )
# verify the logits
lowerCamelCase_ : Dict = (1, 1_0_0_0)
self.assertEqual(outputs.logits.shape , A )
lowerCamelCase_ : Optional[Any] = jnp.array([-0.41_80, -1.50_51, -3.48_36] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) )
| 318 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 1 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
__lowercase : Tuple = list[list[int]]
# assigning initial values to the grid
__lowercase : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
__lowercase : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool:
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def lowercase_ ( _lowercase ) -> tuple[int, int] | None:
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def lowercase_ ( _lowercase ) -> Matrix | None:
'''simple docstring'''
if location := find_empty_location(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[int] = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(_lowercase , _lowercase , _lowercase , _lowercase ):
lowerCamelCase_ : Dict = digit
if sudoku(_lowercase ) is not None:
return grid
lowerCamelCase_ : Dict = 0
return None
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
for row in grid:
for cell in row:
print(_lowercase , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('''\nExample grid:\n''' + '''=''' * 20)
print_solution(example_grid)
print('''\nExample grid solution:''')
__lowercase : Dict = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('''Cannot find a solution.''')
| 318 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
__lowercase : Tuple = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> List[int]:
'''simple docstring'''
if isinstance(_lowercase , np.ndarray ):
return list(tensor.shape )
lowerCamelCase_ : Dict = tf.shape(_lowercase )
if tensor.shape == tf.TensorShape(_lowercase ):
return dynamic
lowerCamelCase_ : Union[str, Any] = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )]
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = None ) -> tf.Tensor:
'''simple docstring'''
return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowercase , name=_lowercase )
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> Any:
'''simple docstring'''
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
lowerCamelCase_, lowerCamelCase_ : Dict = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowerCamelCase_ : str = [1] * inputs.shape.rank
lowerCamelCase_ : Optional[int] = shape_list(_lowercase )[axis]
lowerCamelCase_ : List[Any] = tf.reshape(_lowercase , _lowercase )
lowerCamelCase_ : Union[str, Any] = tf.reshape(_lowercase , _lowercase )
# Compute layer normalization using the batch_normalization
# function.
lowerCamelCase_ : str = tf.nn.batch_normalization(
_lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , )
return outputs
def lowercase_ ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> int:
'''simple docstring'''
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowerCamelCase_ : str = tf.shape(_lowercase )
lowerCamelCase_ : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowerCamelCase_ : Any = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(_lowercase , _lowercase )
def lowercase_ ( _lowercase ) -> tf.Tensor:
'''simple docstring'''
if not isinstance(_lowercase , tf.Tensor ):
lowerCamelCase_ : List[Any] = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowerCamelCase_ : int = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowerCamelCase_ : List[str] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowerCamelCase_ : Union[str, Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase_ ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> None:
'''simple docstring'''
tf.debugging.assert_less(
_lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=(
F"""The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding """
F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."""
) , )
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Any:
'''simple docstring'''
lowerCamelCase_ : List[Any] = 64_512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowerCamelCase_ : str = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """
F"""bytes: {bad_attributes}""" )
lowerCamelCase_ : List[Any] = np.asarray(_lowercase )
lowerCamelCase_ : Optional[Any] = 1
lowerCamelCase_ : Optional[int] = np.array_split(_lowercase , _lowercase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowerCamelCase_ : Optional[int] = np.array_split(_lowercase , _lowercase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_lowercase ):
lowerCamelCase_ : List[str] = chunk_data
else:
lowerCamelCase_ : List[Any] = data
def lowercase_ ( _lowercase , _lowercase ) -> int:
'''simple docstring'''
if name in group.attrs:
lowerCamelCase_ : Tuple = [n.decode('''utf8''' ) if hasattr(_lowercase , '''decode''' ) else n for n in group.attrs[name]]
else:
lowerCamelCase_ : Optional[int] = []
lowerCamelCase_ : str = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(_lowercase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase_ ( _lowercase ) -> Union[str, Any]:
'''simple docstring'''
def _expand_single_ad_tensor(_lowercase ):
if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(_lowercase , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
| 318 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowercase ( _lowercase , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
lowerCamelCase : Any = "ssube/stable-diffusion-x4-upscaler-onnx"
def UpperCAmelCase__ (self , A=0 ):
lowerCamelCase_ : Optional[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(A ) )
lowerCamelCase_ : Tuple = torch.manual_seed(A )
lowerCamelCase_ : Optional[int] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : str = self.get_dummy_inputs()
lowerCamelCase_ : Dict = pipe(**A ).images
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : int = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
lowerCamelCase_ : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Any = self.get_dummy_inputs()
lowerCamelCase_ : Union[str, Any] = pipe(**A ).images
lowerCamelCase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : List[Any] = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
lowerCamelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : int = self.get_dummy_inputs()
lowerCamelCase_ : Optional[int] = pipe(**A ).images
lowerCamelCase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : str = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
lowerCamelCase_ : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : int = self.get_dummy_inputs()
lowerCamelCase_ : Dict = pipe(**A ).images
lowerCamelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : Union[str, Any] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
lowerCamelCase_ : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : List[str] = self.get_dummy_inputs()
lowerCamelCase_ : Any = pipe(**A ).images
lowerCamelCase_ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : Tuple = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
@property
def UpperCAmelCase__ (self ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ort.SessionOptions()
lowerCamelCase_ : Optional[int] = False
return options
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : Tuple = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
lowerCamelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[str] = torch.manual_seed(0 )
lowerCamelCase_ : List[str] = pipe(
prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=1_0 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Any = output.images
lowerCamelCase_ : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : Tuple = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : Dict = init_image.resize((1_2_8, 1_2_8) )
lowerCamelCase_ : int = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' )
lowerCamelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Any = pipe(
prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=2_0 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Any = output.images
lowerCamelCase_ : Union[str, Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
lowerCamelCase_ : Union[str, Any] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 318 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 1 |
'''simple docstring'''
import random
class __lowercase :
@staticmethod
def UpperCAmelCase__ (A ):
lowerCamelCase_ : int = [ord(A ) for i in text]
lowerCamelCase_ : List[Any] = []
lowerCamelCase_ : Tuple = []
for i in plain:
lowerCamelCase_ : Optional[Any] = random.randint(1 , 3_0_0 )
lowerCamelCase_ : Optional[int] = (i + k) * k
cipher.append(A )
key.append(A )
return cipher, key
@staticmethod
def UpperCAmelCase__ (A , A ):
lowerCamelCase_ : List[str] = []
for i in range(len(A ) ):
lowerCamelCase_ : List[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(A ) )
return "".join(A )
if __name__ == "__main__":
__lowercase , __lowercase : Optional[Any] = Onepad().encrypt('''Hello''')
print(c, k)
print(Onepad().decrypt(c, k))
| 318 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 1 |
'''simple docstring'''
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = tempfile.mkdtemp()
lowerCamelCase_ : Union[str, Any] = 5
# Realm tok
lowerCamelCase_ : int = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , '''realm_tokenizer''' )
os.makedirs(A , exist_ok=A )
lowerCamelCase_ : Dict = os.path.join(A , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , '''realm_block_records''' )
os.makedirs(A , exist_ok=A )
def UpperCAmelCase__ (self ):
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = RealmConfig(num_block_records=self.num_block_records )
return config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
} )
return dataset
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = np.array(
[
B'''This is the first record''',
B'''This is the second record''',
B'''This is the third record''',
B'''This is the fourth record''',
B'''This is the fifth record''',
B'''This is a longer longer longer record''',
] , dtype=A , )
return block_records
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = self.get_config()
lowerCamelCase_ : Optional[Any] = self.get_dummy_retriever()
lowerCamelCase_ : Union[str, Any] = retriever.tokenizer
lowerCamelCase_ : Dict = np.array([0, 3] , dtype='''long''' )
lowerCamelCase_ : Any = tokenizer(['''Test question'''] ).input_ids
lowerCamelCase_ : List[Any] = tokenizer(
['''the fourth'''] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids
lowerCamelCase_ : List[Any] = config.reader_seq_len
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Dict = retriever(
A , A , answer_ids=A , max_length=A , return_tensors='''np''' )
self.assertEqual(len(A ) , 2 )
self.assertEqual(len(A ) , 2 )
self.assertEqual(len(A ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_config()
lowerCamelCase_ : Optional[int] = self.get_dummy_retriever()
lowerCamelCase_ : Optional[int] = retriever.tokenizer
lowerCamelCase_ : Union[str, Any] = np.array([0, 3, 5] , dtype='''long''' )
lowerCamelCase_ : Dict = tokenizer(['''Test question'''] ).input_ids
lowerCamelCase_ : List[str] = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=A , return_token_type_ids=A , return_attention_mask=A , ).input_ids
lowerCamelCase_ : List[Any] = config.reader_seq_len
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[Any] = retriever(
A , A , answer_ids=A , max_length=A , return_tensors='''np''' )
self.assertEqual([False, True, True] , A )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
# Test local path
lowerCamelCase_ : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download:
lowerCamelCase_ : Any = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME )
lowerCamelCase_ : Dict = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' )
self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
| 318 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 1 |
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowercase_ ( _lowercase ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = {}
lowerCamelCase_ : List[str] = tokenizer(example['''content'''] , truncation=_lowercase )['''input_ids''']
lowerCamelCase_ : List[Any] = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
__lowercase : Union[str, Any] = HfArgumentParser(PretokenizationArguments)
__lowercase : Optional[Any] = parser.parse_args()
if args.num_workers is None:
__lowercase : str = multiprocessing.cpu_count()
__lowercase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
__lowercase : Tuple = time.time()
__lowercase : List[Any] = load_dataset(args.dataset_name, split='''train''')
print(f'Dataset loaded in {time.time()-t_start:.2f}s')
__lowercase : List[Any] = time.time()
__lowercase : Any = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'Dataset tokenized in {time.time()-t_start:.2f}s')
__lowercase : Union[str, Any] = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'Data pushed to the hub in {time.time()-t_start:.2f}s')
| 318 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowercase : List[Any] = abspath(join(dirname(dirname(dirname(__file__))), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowercase )
def lowercase_ ( _lowercase ) -> Union[str, Any]:
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
lowerCamelCase_ : int = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(_lowercase , id=_lowercase )
| 318 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase = 10 , _lowercase = 22 ) -> int:
'''simple docstring'''
lowerCamelCase_ : Tuple = range(1 , _lowercase )
lowerCamelCase_ : Dict = range(1 , _lowercase )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'{solution(10, 22) = }')
| 318 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
lowerCamelCase_ : Any = sum(_lowercase )
lowerCamelCase_ : List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
lowerCamelCase_ : Dict = True
for i in range(1 , s + 1 ):
lowerCamelCase_ : str = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
lowerCamelCase_ : List[Any] = dp[i][j - 1]
if arr[i - 1] <= j:
lowerCamelCase_ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
lowerCamelCase_ : int = s - 2 * j
break
return diff
| 318 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowercase :
@staticmethod
def UpperCAmelCase__ (*A , **A ):
pass
@is_pipeline_test
@require_vision
class __lowercase ( unittest.TestCase ):
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
lowerCamelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowerCamelCase_ : int = image_classifier(A , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(A ) , [
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}],
[{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}],
] , )
lowerCamelCase_ : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
] , )
@require_tf
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
lowerCamelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowerCamelCase_ : List[Any] = image_classifier(A , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(A ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , )
lowerCamelCase_ : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
[
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
{'''score''': 0.3_33, '''label''': ANY(A )},
],
] , )
@slow
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
lowerCamelCase_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowerCamelCase_ : str = image_classifier(A , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(A ) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
lowerCamelCase_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
lowerCamelCase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowerCamelCase_ : Optional[Any] = image_classifier(A , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(A ) , [
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
] , )
lowerCamelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(A ) , [
[
{'''score''': 0.5_11, '''label''': '''remote'''},
{'''score''': 0.4_85, '''label''': '''cat'''},
{'''score''': 0.0_04, '''label''': '''plane'''},
],
]
* 5 , )
| 318 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : str = logging.get_logger(__name__)
def lowercase_ ( _lowercase , _lowercase=False , _lowercase=False , _lowercase=False ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : Any = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def lowercase_ ( _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
lowerCamelCase_ : int = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase_ : Optional[int] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
lowerCamelCase_ : Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCamelCase_ : Optional[int] = in_proj_bias[: config.hidden_size]
lowerCamelCase_ : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase_ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase_ : Dict = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase_ : Tuple = in_proj_bias[-config.hidden_size :]
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : str = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Optional[Any] = dct.pop(_lowercase )
lowerCamelCase_ : Tuple = val
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : Optional[Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowercase )
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : Any = False
lowerCamelCase_ : int = False
lowerCamelCase_ : List[Any] = False
if "vqa" in checkpoint_url:
lowerCamelCase_ : List[Any] = True
lowerCamelCase_ : Tuple = 3_129
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : Any = '''vqa2-id2label.json'''
lowerCamelCase_ : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : Tuple = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowerCamelCase_ : Tuple = ViltForQuestionAnswering(_lowercase )
elif "nlvr" in checkpoint_url:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : Optional[int] = 2
lowerCamelCase_ : int = {0: '''False''', 1: '''True'''}
lowerCamelCase_ : List[Any] = {v: k for k, v in config.idalabel.items()}
lowerCamelCase_ : Any = 3
lowerCamelCase_ : Optional[int] = ViltForImagesAndTextClassification(_lowercase )
elif "irtr" in checkpoint_url:
lowerCamelCase_ : Dict = True
lowerCamelCase_ : Any = ViltForImageAndTextRetrieval(_lowercase )
elif "mlm_itm" in checkpoint_url:
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : List[Any] = ViltForMaskedLM(_lowercase )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
lowerCamelCase_ : List[Any] = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''state_dict''']
lowerCamelCase_ : str = create_rename_keys(_lowercase , _lowercase , _lowercase , _lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
read_in_q_k_v(_lowercase , _lowercase )
if mlm_model or irtr_model:
lowerCamelCase_ : Optional[Any] = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
lowerCamelCase_, lowerCamelCase_ : List[Any] = model.load_state_dict(_lowercase , strict=_lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowercase )
# Define processor
lowerCamelCase_ : int = ViltImageProcessor(size=384 )
lowerCamelCase_ : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowerCamelCase_ : str = ViltProcessor(_lowercase , _lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
lowerCamelCase_ : Dict = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_lowercase ).raw )
lowerCamelCase_ : Tuple = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_lowercase ).raw )
lowerCamelCase_ : Union[str, Any] = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
lowerCamelCase_ : Any = processor(_lowercase , _lowercase , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = processor(_lowercase , _lowercase , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
lowerCamelCase_ : Tuple = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=_lowercase ).raw )
if mlm_model:
lowerCamelCase_ : List[Any] = '''a bunch of [MASK] laying on a [MASK].'''
else:
lowerCamelCase_ : Union[str, Any] = '''How many cats are there?'''
lowerCamelCase_ : Union[str, Any] = processor(_lowercase , _lowercase , return_tensors='''pt''' )
lowerCamelCase_ : str = model(**_lowercase )
# Verify outputs
if mlm_model:
lowerCamelCase_ : Dict = torch.Size([1, 11, 30_522] )
lowerCamelCase_ : int = torch.tensor([-12.50_61, -12.51_23, -12.51_74] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 )
# verify masked token prediction equals "cats"
lowerCamelCase_ : str = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
lowerCamelCase_ : int = torch.Size([1, 3_129] )
lowerCamelCase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 )
# verify vqa prediction equals "2"
lowerCamelCase_ : Optional[Any] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
lowerCamelCase_ : Tuple = torch.Size([1, 2] )
lowerCamelCase_ : str = torch.tensor([-2.87_21, 2.12_91] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
processor.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__lowercase : Union[str, Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 318 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase_ ( _lowercase ) -> list[int]:
'''simple docstring'''
lowerCamelCase_ : Tuple = str(_lowercase )
lowerCamelCase_ : List[Any] = [n]
for i in range(1 , len(_lowercase ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if len(str(_lowercase ) ) > 3:
if not is_prime(int(str(_lowercase )[-3:] ) ) or not is_prime(int(str(_lowercase )[:3] ) ):
return False
return True
def lowercase_ ( _lowercase = 11 ) -> list[int]:
'''simple docstring'''
lowerCamelCase_ : list[int] = []
lowerCamelCase_ : Union[str, Any] = 13
while len(_lowercase ) != count:
if validate(_lowercase ):
lowerCamelCase_ : Optional[int] = list_truncated_nums(_lowercase )
if all(is_prime(_lowercase ) for i in list_nums ):
list_truncated_primes.append(_lowercase )
num += 2
return list_truncated_primes
def lowercase_ ( ) -> int:
'''simple docstring'''
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(f'{sum(compute_truncated_primes(11)) = }')
| 318 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class __lowercase :
def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=2 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=False , A=True , A="None" , A=3 , A=4 , A=None , ):
lowerCamelCase_ : Tuple = parent
lowerCamelCase_ : Any = batch_size
lowerCamelCase_ : List[str] = seq_length
lowerCamelCase_ : Dict = is_training
lowerCamelCase_ : Any = use_input_mask
lowerCamelCase_ : Optional[Any] = use_token_type_ids
lowerCamelCase_ : List[Any] = use_labels
lowerCamelCase_ : Union[str, Any] = vocab_size
lowerCamelCase_ : Dict = hidden_size
lowerCamelCase_ : str = num_hidden_layers
lowerCamelCase_ : Union[str, Any] = num_attention_heads
lowerCamelCase_ : Tuple = intermediate_size
lowerCamelCase_ : Any = hidden_act
lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob
lowerCamelCase_ : int = attention_probs_dropout_prob
lowerCamelCase_ : Tuple = max_position_embeddings
lowerCamelCase_ : Any = type_vocab_size
lowerCamelCase_ : List[Any] = type_sequence_label_size
lowerCamelCase_ : str = initializer_range
lowerCamelCase_ : Dict = num_labels
lowerCamelCase_ : Tuple = num_choices
lowerCamelCase_ : Optional[int] = relative_attention
lowerCamelCase_ : Optional[int] = position_biased_input
lowerCamelCase_ : Dict = pos_att_type
lowerCamelCase_ : List[str] = scope
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ : Tuple = None
if self.use_input_mask:
lowerCamelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ : str = None
if self.use_token_type_ids:
lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_ : Tuple = None
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : List[str] = None
if self.use_labels:
lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ : int = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Any = TFDebertaVaModel(config=A )
lowerCamelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowerCamelCase_ : str = [input_ids, input_mask]
lowerCamelCase_ : int = model(A )
lowerCamelCase_ : Union[str, Any] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : int = TFDebertaVaForMaskedLM(config=A )
lowerCamelCase_ : Tuple = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : Dict = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Any = self.num_labels
lowerCamelCase_ : Dict = TFDebertaVaForSequenceClassification(config=A )
lowerCamelCase_ : str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : Optional[int] = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Tuple = self.num_labels
lowerCamelCase_ : Any = TFDebertaVaForTokenClassification(config=A )
lowerCamelCase_ : Union[str, Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : Any = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : List[str] = TFDebertaVaForQuestionAnswering(config=A )
lowerCamelCase_ : Dict = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : List[str] = model(A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
),
) : int = config_and_inputs
lowerCamelCase_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __lowercase ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : Optional[int] = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCamelCase : List[str] = (
{
"feature-extraction": TFDebertaVaModel,
"fill-mask": TFDebertaVaForMaskedLM,
"question-answering": TFDebertaVaForQuestionAnswering,
"text-classification": TFDebertaVaForSequenceClassification,
"token-classification": TFDebertaVaForTokenClassification,
"zero-shot": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase : Dict = False
lowerCamelCase : List[Any] = False
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = TFDebertaVaModelTester(self )
lowerCamelCase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=3_7 )
def UpperCAmelCase__ (self ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
self.assertIsNotNone(A )
@require_tf
class __lowercase ( unittest.TestCase ):
@unittest.skip(reason='''Model not available yet''' )
def UpperCAmelCase__ (self ):
pass
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
lowerCamelCase_ : Any = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
lowerCamelCase_ : Dict = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowerCamelCase_ : Optional[Any] = model(A , attention_mask=A )[0]
lowerCamelCase_ : Any = tf.constant(
[[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , A , atol=1E-4 )
| 318 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
import queue
class __lowercase :
def __init__(self , A ):
lowerCamelCase_ : Optional[int] = data
lowerCamelCase_ : str = None
lowerCamelCase_ : int = None
def lowercase_ ( ) -> TreeNode:
'''simple docstring'''
print('''\n********Press N to stop entering at any point of time********\n''' )
lowerCamelCase_ : List[str] = input('''Enter the value of the root node: ''' ).strip().lower()
lowerCamelCase_ : queue.Queue = queue.Queue()
lowerCamelCase_ : Optional[int] = TreeNode(int(_lowercase ) )
q.put(_lowercase )
while not q.empty():
lowerCamelCase_ : Optional[Any] = q.get()
lowerCamelCase_ : Dict = F"""Enter the left node of {node_found.data}: """
lowerCamelCase_ : Optional[int] = input(_lowercase ).strip().lower() or '''n'''
if check == "n":
return tree_node
lowerCamelCase_ : Optional[Any] = TreeNode(int(_lowercase ) )
lowerCamelCase_ : str = left_node
q.put(_lowercase )
lowerCamelCase_ : int = F"""Enter the right node of {node_found.data}: """
lowerCamelCase_ : List[str] = input(_lowercase ).strip().lower() or '''n'''
if check == "n":
return tree_node
lowerCamelCase_ : Union[str, Any] = TreeNode(int(_lowercase ) )
lowerCamelCase_ : Optional[Any] = right_node
q.put(_lowercase )
raise
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
lowerCamelCase_ : queue.Queue = queue.Queue()
q.put(_lowercase )
while not q.empty():
lowerCamelCase_ : Optional[int] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
lowerCamelCase_ : queue.Queue = queue.Queue()
q.put(_lowercase )
while not q.empty():
lowerCamelCase_ : List[str] = []
while not q.empty():
lowerCamelCase_ : Optional[Any] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(_lowercase )
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
lowerCamelCase_ : list[TreeNode] = []
lowerCamelCase_ : int = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(_lowercase )
lowerCamelCase_ : Optional[Any] = n.left
# end of while means current node doesn't have left child
lowerCamelCase_ : List[Any] = stack.pop()
# start to traverse its right child
lowerCamelCase_ : Any = n.right
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
lowerCamelCase_ : list[TreeNode] = []
lowerCamelCase_ : List[Any] = node
while n or stack:
while n:
stack.append(_lowercase )
lowerCamelCase_ : Tuple = n.left
lowerCamelCase_ : int = stack.pop()
print(n.data , end=''',''' )
lowerCamelCase_ : List[str] = n.right
def lowercase_ ( _lowercase ) -> None:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or not node:
return
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = [], []
lowerCamelCase_ : str = node
stacka.append(_lowercase )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCamelCase_ : Tuple = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(_lowercase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def lowercase_ ( _lowercase = "" , _lowercase=50 , _lowercase="*" ) -> str:
'''simple docstring'''
if not s:
return "\n" + width * char
lowerCamelCase_, lowerCamelCase_ : Tuple = divmod(width - len(_lowercase ) - 2 , 2 )
return F"""{left * char} {s} {(left + extra) * char}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
__lowercase : TreeNode = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 50 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 318 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 1 |
'''simple docstring'''
from math import pow, sqrt
def lowercase_ ( *_lowercase ) -> bool:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = len(_lowercase ) > 0 and all(value > 0.0 for value in values )
return result
def lowercase_ ( _lowercase , _lowercase ) -> float | ValueError:
'''simple docstring'''
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(_lowercase , _lowercase )
else ValueError('''Input Error: Molar mass values must greater than 0.''' )
)
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError:
'''simple docstring'''
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(_lowercase , _lowercase , _lowercase )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError:
'''simple docstring'''
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(_lowercase , _lowercase , _lowercase )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError:
'''simple docstring'''
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(_lowercase , _lowercase , _lowercase )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError:
'''simple docstring'''
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(_lowercase , _lowercase , _lowercase )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
| 318 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : Optional[int] = StableDiffusionInpaintPipeline
lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowerCamelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCamelCase : List[str] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCamelCase : List[str] = frozenset([] )
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=A , )
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
torch.manual_seed(0 )
lowerCamelCase_ : Tuple = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
lowerCamelCase_ : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , )
lowerCamelCase_ : List[str] = CLIPTextModel(A )
lowerCamelCase_ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowerCamelCase_ : List[Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ (self , A , A=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
lowerCamelCase_ : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A )
lowerCamelCase_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase_ : Dict = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((6_4, 6_4) )
lowerCamelCase_ : Union[str, Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((6_4, 6_4) )
if str(A ).startswith('''mps''' ):
lowerCamelCase_ : List[str] = torch.manual_seed(A )
else:
lowerCamelCase_ : Dict = torch.Generator(device=A ).manual_seed(A )
lowerCamelCase_ : str = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : Optional[int] = self.get_dummy_components()
lowerCamelCase_ : Optional[int] = StableDiffusionInpaintPipeline(**A )
lowerCamelCase_ : str = sd_pipe.to(A )
sd_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[int] = self.get_dummy_inputs(A )
lowerCamelCase_ : int = sd_pipe(**A ).images
lowerCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowerCamelCase_ : str = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCAmelCase__ (self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
lowerCamelCase_ : List[str] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
lowerCamelCase_ : List[Any] = '''stabilityai/stable-diffusion-2-inpainting'''
lowerCamelCase_ : Dict = StableDiffusionInpaintPipeline.from_pretrained(A , safety_checker=A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Optional[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = pipe(
prompt=A , image=A , mask_image=A , generator=A , output_type='''np''' , )
lowerCamelCase_ : Tuple = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
lowerCamelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
lowerCamelCase_ : Optional[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
lowerCamelCase_ : Tuple = '''stabilityai/stable-diffusion-2-inpainting'''
lowerCamelCase_ : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(
A , torch_dtype=torch.floataa , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : str = '''Face of a yellow cat, high resolution, sitting on a park bench'''
lowerCamelCase_ : int = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , mask_image=A , generator=A , output_type='''np''' , )
lowerCamelCase_ : Union[str, Any] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def UpperCAmelCase__ (self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCamelCase_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
lowerCamelCase_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
lowerCamelCase_ : List[str] = '''stabilityai/stable-diffusion-2-inpainting'''
lowerCamelCase_ : Optional[int] = PNDMScheduler.from_pretrained(A , subfolder='''scheduler''' )
lowerCamelCase_ : Any = StableDiffusionInpaintPipeline.from_pretrained(
A , safety_checker=A , scheduler=A , torch_dtype=torch.floataa , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCamelCase_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench'''
lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 )
lowerCamelCase_ : List[Any] = pipe(
prompt=A , image=A , mask_image=A , generator=A , num_inference_steps=2 , output_type='''np''' , )
lowerCamelCase_ : Union[str, Any] = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9
| 318 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 1 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[Any] = jnp.ones((batch_size, length) ) / length
return scores
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = None
lowerCamelCase_ : str = 2_0
lowerCamelCase_ : List[str] = self._get_uniform_logits(batch_size=2 , length=A )
# tweak scores to not be uniform anymore
lowerCamelCase_ : Union[str, Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
lowerCamelCase_ : str = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
lowerCamelCase_ : List[Any] = jax.nn.softmax(A , axis=-1 )
lowerCamelCase_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ : str = FlaxTemperatureLogitsWarper(temperature=1.3 )
lowerCamelCase_ : str = jax.nn.softmax(temp_dist_warper_sharper(A , scores.copy() , cur_len=A ) , axis=-1 )
lowerCamelCase_ : Dict = jax.nn.softmax(temp_dist_warper_smoother(A , scores.copy() , cur_len=A ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = None
lowerCamelCase_ : Dict = 1_0
lowerCamelCase_ : Tuple = 2
# create ramp distribution
lowerCamelCase_ : Dict = np.broadcast_to(np.arange(A )[None, :] , (batch_size, vocab_size) ).copy()
lowerCamelCase_ : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size
lowerCamelCase_ : Optional[Any] = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ : List[str] = top_k_warp(A , A , cur_len=A )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
lowerCamelCase_ : Union[str, Any] = 5
lowerCamelCase_ : Union[str, Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
lowerCamelCase_ : List[str] = np.broadcast_to(np.arange(A )[None, :] , (batch_size, length) ).copy()
lowerCamelCase_ : str = top_k_warp_safety_check(A , A , cur_len=A )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = None
lowerCamelCase_ : Optional[int] = 1_0
lowerCamelCase_ : List[str] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
lowerCamelCase_ : int = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
lowerCamelCase_ : Union[str, Any] = FlaxTopPLogitsWarper(0.8 )
lowerCamelCase_ : Tuple = np.exp(top_p_warp(A , A , cur_len=A ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
lowerCamelCase_ : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(A , A , atol=1E-3 ) )
# check edge cases with negative and extreme logits
lowerCamelCase_ : List[str] = np.broadcast_to(np.arange(A )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
lowerCamelCase_ : int = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
lowerCamelCase_ : Any = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
lowerCamelCase_ : Tuple = top_p_warp(A , A , cur_len=A )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = 2_0
lowerCamelCase_ : Tuple = 4
lowerCamelCase_ : Optional[Any] = 0
lowerCamelCase_ : Dict = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=A )
# check that min length is applied at length 5
lowerCamelCase_ : List[str] = ids_tensor((batch_size, 2_0) , vocab_size=2_0 )
lowerCamelCase_ : List[Any] = 5
lowerCamelCase_ : Optional[Any] = self._get_uniform_logits(A , A )
lowerCamelCase_ : List[Any] = min_dist_processor(A , A , cur_len=A )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] )
# check that min length is not applied anymore at length 15
lowerCamelCase_ : Tuple = self._get_uniform_logits(A , A )
lowerCamelCase_ : int = 1_5
lowerCamelCase_ : str = min_dist_processor(A , A , cur_len=A )
self.assertFalse(jnp.isinf(A ).any() )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = 2_0
lowerCamelCase_ : Any = 4
lowerCamelCase_ : Union[str, Any] = 0
lowerCamelCase_ : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A )
# check that all scores are -inf except the bos_token_id score
lowerCamelCase_ : Union[str, Any] = ids_tensor((batch_size, 1) , vocab_size=2_0 )
lowerCamelCase_ : List[str] = 1
lowerCamelCase_ : int = self._get_uniform_logits(A , A )
lowerCamelCase_ : Optional[int] = logits_processor(A , A , cur_len=A )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
lowerCamelCase_ : List[Any] = 3
lowerCamelCase_ : Union[str, Any] = self._get_uniform_logits(A , A )
lowerCamelCase_ : Tuple = logits_processor(A , A , cur_len=A )
self.assertFalse(jnp.isinf(A ).any() )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = 2_0
lowerCamelCase_ : Any = 4
lowerCamelCase_ : Any = 0
lowerCamelCase_ : Optional[Any] = 5
lowerCamelCase_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=A , eos_token_id=A )
# check that all scores are -inf except the eos_token_id when max_length is reached
lowerCamelCase_ : Any = ids_tensor((batch_size, 4) , vocab_size=2_0 )
lowerCamelCase_ : str = 4
lowerCamelCase_ : List[Any] = self._get_uniform_logits(A , A )
lowerCamelCase_ : List[Any] = logits_processor(A , A , cur_len=A )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
lowerCamelCase_ : Optional[Any] = 3
lowerCamelCase_ : int = self._get_uniform_logits(A , A )
lowerCamelCase_ : Union[str, Any] = logits_processor(A , A , cur_len=A )
self.assertFalse(jnp.isinf(A ).any() )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = 4
lowerCamelCase_ : Tuple = 1_0
lowerCamelCase_ : Union[str, Any] = 1_5
lowerCamelCase_ : Any = 2
lowerCamelCase_ : Optional[Any] = 1
lowerCamelCase_ : Optional[Any] = 1_5
# dummy input_ids and scores
lowerCamelCase_ : int = ids_tensor((batch_size, sequence_length) , A )
lowerCamelCase_ : Optional[Any] = input_ids.copy()
lowerCamelCase_ : Optional[int] = self._get_uniform_logits(A , A )
lowerCamelCase_ : Any = scores.copy()
# instantiate all dist processors
lowerCamelCase_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ : int = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ : Dict = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=A )
lowerCamelCase_ : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A )
lowerCamelCase_ : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=A , eos_token_id=A )
lowerCamelCase_ : Dict = 1_0
# no processor list
lowerCamelCase_ : Any = temp_dist_warp(A , A , cur_len=A )
lowerCamelCase_ : List[str] = top_k_warp(A , A , cur_len=A )
lowerCamelCase_ : Dict = top_p_warp(A , A , cur_len=A )
lowerCamelCase_ : int = min_dist_proc(A , A , cur_len=A )
lowerCamelCase_ : Optional[Any] = bos_dist_proc(A , A , cur_len=A )
lowerCamelCase_ : List[Any] = eos_dist_proc(A , A , cur_len=A )
# with processor list
lowerCamelCase_ : int = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ : Dict = processor(A , A , cur_len=A )
# scores should be equal
self.assertTrue(jnp.allclose(A , A , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = 4
lowerCamelCase_ : Optional[int] = 1_0
lowerCamelCase_ : List[Any] = 1_5
lowerCamelCase_ : Optional[Any] = 2
lowerCamelCase_ : Optional[int] = 1
lowerCamelCase_ : Any = 1_5
# dummy input_ids and scores
lowerCamelCase_ : Optional[int] = ids_tensor((batch_size, sequence_length) , A )
lowerCamelCase_ : Optional[Any] = input_ids.copy()
lowerCamelCase_ : List[str] = self._get_uniform_logits(A , A )
lowerCamelCase_ : Tuple = scores.copy()
# instantiate all dist processors
lowerCamelCase_ : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 )
lowerCamelCase_ : Optional[Any] = FlaxTopKLogitsWarper(3 )
lowerCamelCase_ : List[Any] = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
lowerCamelCase_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=A )
lowerCamelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A )
lowerCamelCase_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=A , eos_token_id=A )
lowerCamelCase_ : Tuple = 1_0
# no processor list
def run_no_processor_list(A , A , A ):
lowerCamelCase_ : List[Any] = temp_dist_warp(A , A , cur_len=A )
lowerCamelCase_ : Tuple = top_k_warp(A , A , cur_len=A )
lowerCamelCase_ : int = top_p_warp(A , A , cur_len=A )
lowerCamelCase_ : List[Any] = min_dist_proc(A , A , cur_len=A )
lowerCamelCase_ : List[Any] = bos_dist_proc(A , A , cur_len=A )
lowerCamelCase_ : List[str] = eos_dist_proc(A , A , cur_len=A )
return scores
# with processor list
def run_processor_list(A , A , A ):
lowerCamelCase_ : List[str] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
lowerCamelCase_ : Tuple = processor(A , A , cur_len=A )
return scores
lowerCamelCase_ : Optional[Any] = jax.jit(A )
lowerCamelCase_ : Any = jax.jit(A )
lowerCamelCase_ : Dict = jitted_run_no_processor_list(A , A , A )
lowerCamelCase_ : Any = jitted_run_processor_list(A , A , A )
# scores should be equal
self.assertTrue(jnp.allclose(A , A , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 318 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 1 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__lowercase : Tuple = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowercase : str = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__lowercase : List[Any] = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def lowercase_ ( _lowercase ) -> str:
'''simple docstring'''
def remove_articles(_lowercase ):
lowerCamelCase_ : List[str] = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(_lowercase , ''' ''' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
lowerCamelCase_ : str = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def lowercase_ ( _lowercase , _lowercase ) -> Union[str, Any]:
'''simple docstring'''
return int(normalize_answer(_lowercase ) == normalize_answer(_lowercase ) )
def lowercase_ ( _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ : int = [any(compute_exact(_lowercase , _lowercase ) for ref in refs ) for pred, refs in zip(_lowercase , _lowercase )]
return (sum(_lowercase ) / len(_lowercase )) * 100
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
'''simple docstring'''
lowerCamelCase_ : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams]
lowerCamelCase_ : Dict = Counter(_lowercase )
lowerCamelCase_ : List[str] = Counter(_lowercase )
lowerCamelCase_ : List[Any] = Counter()
for sgram, scount in sgramcounter.items():
lowerCamelCase_ : Any = scount * numref
lowerCamelCase_ : List[Any] = Counter(_lowercase )
lowerCamelCase_ : List[Any] = Counter()
for cgram, ccount in cgramcounter.items():
lowerCamelCase_ : Dict = ccount * numref
# KEEP
lowerCamelCase_ : str = sgramcounter_rep & cgramcounter_rep
lowerCamelCase_ : int = keepgramcounter_rep & rgramcounter
lowerCamelCase_ : List[str] = sgramcounter_rep & rgramcounter
lowerCamelCase_ : str = 0
lowerCamelCase_ : List[Any] = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
lowerCamelCase_ : str = 1
lowerCamelCase_ : Dict = 1
if len(_lowercase ) > 0:
lowerCamelCase_ : Union[str, Any] = keeptmpscorea / len(_lowercase )
if len(_lowercase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
lowerCamelCase_ : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() )
lowerCamelCase_ : Optional[int] = 0
if keepscore_precision > 0 or keepscore_recall > 0:
lowerCamelCase_ : Optional[int] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
lowerCamelCase_ : int = sgramcounter_rep - cgramcounter_rep
lowerCamelCase_ : Tuple = delgramcounter_rep - rgramcounter
lowerCamelCase_ : Any = sgramcounter_rep - rgramcounter
lowerCamelCase_ : str = 0
lowerCamelCase_ : int = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
lowerCamelCase_ : Any = 1
if len(_lowercase ) > 0:
lowerCamelCase_ : Union[str, Any] = deltmpscorea / len(_lowercase )
# ADDITION
lowerCamelCase_ : Optional[Any] = set(_lowercase ) - set(_lowercase )
lowerCamelCase_ : str = set(_lowercase ) & set(_lowercase )
lowerCamelCase_ : Optional[int] = set(_lowercase ) - set(_lowercase )
lowerCamelCase_ : int = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
lowerCamelCase_ : str = 1
lowerCamelCase_ : Dict = 1
if len(_lowercase ) > 0:
lowerCamelCase_ : List[Any] = addtmpscore / len(_lowercase )
if len(_lowercase ) > 0:
lowerCamelCase_ : Optional[Any] = addtmpscore / len(_lowercase )
lowerCamelCase_ : Union[str, Any] = 0
if addscore_precision > 0 or addscore_recall > 0:
lowerCamelCase_ : Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = len(_lowercase )
lowerCamelCase_ : Union[str, Any] = ssent.split(''' ''' )
lowerCamelCase_ : Tuple = csent.split(''' ''' )
lowerCamelCase_ : Optional[Any] = []
lowerCamelCase_ : Optional[int] = []
lowerCamelCase_ : List[Any] = []
lowerCamelCase_ : Any = []
lowerCamelCase_ : List[str] = []
lowerCamelCase_ : List[str] = []
lowerCamelCase_ : Optional[Any] = []
lowerCamelCase_ : Optional[int] = []
lowerCamelCase_ : Dict = []
lowerCamelCase_ : int = []
for rsent in rsents:
lowerCamelCase_ : Dict = rsent.split(''' ''' )
lowerCamelCase_ : Union[str, Any] = []
lowerCamelCase_ : List[Any] = []
lowerCamelCase_ : str = []
ragramslist.append(_lowercase )
for i in range(0 , len(_lowercase ) - 1 ):
if i < len(_lowercase ) - 1:
lowerCamelCase_ : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowercase )
if i < len(_lowercase ) - 2:
lowerCamelCase_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowercase )
if i < len(_lowercase ) - 3:
lowerCamelCase_ : Optional[int] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowercase )
ragramslist.append(_lowercase )
ragramslist.append(_lowercase )
ragramslist.append(_lowercase )
for i in range(0 , len(_lowercase ) - 1 ):
if i < len(_lowercase ) - 1:
lowerCamelCase_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowercase )
if i < len(_lowercase ) - 2:
lowerCamelCase_ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowercase )
if i < len(_lowercase ) - 3:
lowerCamelCase_ : Tuple = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowercase )
for i in range(0 , len(_lowercase ) - 1 ):
if i < len(_lowercase ) - 1:
lowerCamelCase_ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowercase )
if i < len(_lowercase ) - 2:
lowerCamelCase_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowercase )
if i < len(_lowercase ) - 3:
lowerCamelCase_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowercase )
((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) : Dict = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) : Any = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) : Optional[Any] = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) : List[Any] = SARIngram(_lowercase , _lowercase , _lowercase , _lowercase )
lowerCamelCase_ : str = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
lowerCamelCase_ : List[Any] = sum([delascore, delascore, delascore, delascore] ) / 4
lowerCamelCase_ : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4
lowerCamelCase_ : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def lowercase_ ( _lowercase , _lowercase = True , _lowercase = "13a" , _lowercase = True ) -> Optional[Any]:
'''simple docstring'''
if lowercase:
lowerCamelCase_ : Optional[int] = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
lowerCamelCase_ : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(_lowercase )()(_lowercase )
else:
lowerCamelCase_ : str = sacrebleu.TOKENIZERS[tokenizer]()(_lowercase )
elif tokenizer == "moses":
lowerCamelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(_lowercase , return_str=_lowercase , escape=_lowercase )
elif tokenizer == "penn":
lowerCamelCase_ : Optional[Any] = sacremoses.MosesTokenizer().penn_tokenize(_lowercase , return_str=_lowercase )
else:
lowerCamelCase_ : List[Any] = sentence
if not return_str:
lowerCamelCase_ : Any = normalized_sent.split()
return normalized_sent
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> List[str]:
'''simple docstring'''
if not (len(_lowercase ) == len(_lowercase ) == len(_lowercase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
lowerCamelCase_ : str = 0
for src, pred, refs in zip(_lowercase , _lowercase , _lowercase ):
sari_score += SARIsent(normalize(_lowercase ) , normalize(_lowercase ) , [normalize(_lowercase ) for sent in refs] )
lowerCamelCase_ : List[str] = sari_score / len(_lowercase )
return 100 * sari_score
def lowercase_ ( _lowercase , _lowercase , _lowercase="exp" , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ : Any = len(references[0] )
if any(len(_lowercase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
lowerCamelCase_ : Optional[int] = [[refs[i] for refs in references] for i in range(_lowercase )]
lowerCamelCase_ : Union[str, Any] = sacrebleu.corpus_bleu(
_lowercase , _lowercase , smooth_method=_lowercase , smooth_value=_lowercase , force=_lowercase , lowercase=_lowercase , use_effective_order=_lowercase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase ( datasets.Metric ):
def UpperCAmelCase__ (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def UpperCAmelCase__ (self , A , A , A ):
lowerCamelCase_ : int = {}
result.update({'''sari''': compute_sari(sources=A , predictions=A , references=A )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=A , references=A )} )
result.update({'''exact''': compute_em(predictions=A , references=A )} )
return result
| 318 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 1 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Dict = {'''vocab_file''': '''spiece.model'''}
__lowercase : str = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
}
}
__lowercase : int = {
'''google/bigbird-roberta-base''': 4096,
'''google/bigbird-roberta-large''': 4096,
'''google/bigbird-base-trivia-itc''': 4096,
}
class __lowercase ( _lowercase ):
lowerCamelCase : str = VOCAB_FILES_NAMES
lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : List[str] = ["input_ids", "attention_mask"]
lowerCamelCase : List[int] = []
def __init__(self , A , A="<unk>" , A="<s>" , A="</s>" , A="<pad>" , A="[SEP]" , A="[MASK]" , A="[CLS]" , A = None , **A , ):
lowerCamelCase_ : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token
lowerCamelCase_ : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token
lowerCamelCase_ : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token
lowerCamelCase_ : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token
lowerCamelCase_ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token
lowerCamelCase_ : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
lowerCamelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A , eos_token=A , unk_token=A , pad_token=A , sep_token=A , mask_token=A , cls_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , )
lowerCamelCase_ : int = vocab_file
lowerCamelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCAmelCase__ (self ):
return self.sp_model.get_piece_size()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__(self ):
lowerCamelCase_ : Any = self.__dict__.copy()
lowerCamelCase_ : Tuple = None
return state
def __setstate__(self , A ):
lowerCamelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCamelCase_ : Optional[Any] = {}
lowerCamelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase__ (self , A ):
return self.sp_model.encode(A , out_type=A )
def UpperCAmelCase__ (self , A ):
return self.sp_model.piece_to_id(A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Union[str, Any] = self.sp_model.IdToPiece(A )
return token
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = []
lowerCamelCase_ : Tuple = ''''''
lowerCamelCase_ : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
lowerCamelCase_ : List[Any] = True
lowerCamelCase_ : int = []
else:
current_sub_tokens.append(A )
lowerCamelCase_ : List[Any] = False
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCAmelCase__ (self , A , A = False , A = None , A = True , **A , ):
lowerCamelCase_ : List[Any] = kwargs.pop('''use_source_tokenizer''' , A )
lowerCamelCase_ : List[Any] = self.convert_ids_to_tokens(A , skip_special_tokens=A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowerCamelCase_ : Any = []
lowerCamelCase_ : Union[str, Any] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
lowerCamelCase_ : int = []
sub_texts.append(A )
else:
current_sub_text.append(A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(A ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
lowerCamelCase_ : Dict = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(A ) )
else:
lowerCamelCase_ : int = ''''''.join(A )
lowerCamelCase_ : List[Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowerCamelCase_ : Dict = self.clean_up_tokenization(A )
return clean_text
else:
return text
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase_ : List[str] = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , A )
elif not os.path.isfile(self.vocab_file ):
with open(A , '''wb''' ) as fi:
lowerCamelCase_ : int = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCAmelCase__ (self , A , A = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase_ : Optional[int] = [self.cls_token_id]
lowerCamelCase_ : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A , token_ids_a=A , already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Optional[Any] = [self.sep_token_id]
lowerCamelCase_ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 318 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , ) -> int:
'''simple docstring'''
lowerCamelCase_ : Any = {}
if train_file is not None:
lowerCamelCase_ : List[str] = [train_file]
if eval_file is not None:
lowerCamelCase_ : Optional[Any] = [eval_file]
if test_file is not None:
lowerCamelCase_ : Dict = [test_file]
lowerCamelCase_ : Dict = datasets.load_dataset('''csv''' , data_files=_lowercase )
lowerCamelCase_ : Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() )
lowerCamelCase_ : str = features_name.pop(_lowercase )
lowerCamelCase_ : int = list(set(ds[list(files.keys() )[0]][label_name] ) )
lowerCamelCase_ : Dict = {label: i for i, label in enumerate(_lowercase )}
lowerCamelCase_ : Dict = tokenizer.model_input_names
lowerCamelCase_ : Optional[Any] = {}
if len(_lowercase ) == 1:
for k in files.keys():
lowerCamelCase_ : List[str] = ds[k].map(
lambda _lowercase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' ) , batched=_lowercase , )
elif len(_lowercase ) == 2:
for k in files.keys():
lowerCamelCase_ : int = ds[k].map(
lambda _lowercase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' , ) , batched=_lowercase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
lowerCamelCase_ : Tuple = {k: v for k, v in ex.items() if k in input_names}
lowerCamelCase_ : str = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
lowerCamelCase_ : str = {k: v for k, v in ex.items() if k in input_names}
lowerCamelCase_ : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
lowerCamelCase_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
lowerCamelCase_ : Dict = labelaid[ex[label_name]]
yield (d, label)
lowerCamelCase_ : List[Any] = (
tf.data.Dataset.from_generator(
_lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
lowerCamelCase_ : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
lowerCamelCase_ : List[Any] = (
tf.data.Dataset.from_generator(
_lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
lowerCamelCase_ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
lowerCamelCase_ : Union[str, Any] = (
tf.data.Dataset.from_generator(
_lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
lowerCamelCase_ : Any = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowercase : int = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : int = field(metadata={"help": "Which column contains the label"} )
lowerCamelCase : str = field(default=_lowercase , metadata={"help": "The path of the training file"} )
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The path of the development file"} )
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The path of the test file"} )
lowerCamelCase : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : bool = field(default=_lowercase , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
F"""16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : int = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowercase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
lowerCamelCase_ : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowercase ) , labelaid=_lowercase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
lowerCamelCase_ : Tuple = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
def compute_metrics(_lowercase ) -> Dict:
lowerCamelCase_ : Optional[Any] = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
lowerCamelCase_ : List[str] = TFTrainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowerCamelCase_ : str = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : Tuple = trainer.evaluate()
lowerCamelCase_ : Optional[Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(_lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
results.update(_lowercase )
return results
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : List[str] = XLMProphetNetTokenizer
lowerCamelCase : Optional[Any] = False
lowerCamelCase : Optional[int] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Any = XLMProphetNetTokenizer(A , keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = '''[PAD]'''
lowerCamelCase_ : List[Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(A ) , 1_0_1_2 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = XLMProphetNetTokenizer(A , keep_accents=A )
lowerCamelCase_ : Tuple = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
lowerCamelCase_ : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
lowerCamelCase_ : Dict = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4]
] , )
lowerCamelCase_ : Dict = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def UpperCAmelCase__ (self ):
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''Hello World!'''
lowerCamelCase_ : Union[str, Any] = [3_5_3_8_9, 6_6_7_2, 4_9, 2]
self.assertListEqual(A , self.big_tokenizer.encode(A ) )
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : Union[str, Any] = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 318 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 1 |
'''simple docstring'''
import math
import flax.linen as nn
import jax.numpy as jnp
def lowercase_ ( _lowercase , _lowercase , _lowercase = 1 , _lowercase = 1 , _lowercase = 1.0e4 , _lowercase = False , _lowercase = 1.0 , ) -> jnp.ndarray:
'''simple docstring'''
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even"""
lowerCamelCase_ : List[str] = float(embedding_dim // 2 )
lowerCamelCase_ : Optional[int] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
lowerCamelCase_ : Any = min_timescale * jnp.exp(jnp.arange(_lowercase , dtype=jnp.floataa ) * -log_timescale_increment )
lowerCamelCase_ : Optional[Any] = jnp.expand_dims(_lowercase , 1 ) * jnp.expand_dims(_lowercase , 0 )
# scale embeddings
lowerCamelCase_ : List[Any] = scale * emb
if flip_sin_to_cos:
lowerCamelCase_ : Dict = jnp.concatenate([jnp.cos(_lowercase ), jnp.sin(_lowercase )] , axis=1 )
else:
lowerCamelCase_ : Union[str, Any] = jnp.concatenate([jnp.sin(_lowercase ), jnp.cos(_lowercase )] , axis=1 )
lowerCamelCase_ : Union[str, Any] = jnp.reshape(_lowercase , [jnp.shape(_lowercase )[0], embedding_dim] )
return signal
class __lowercase ( nn.Module ):
lowerCamelCase : int = 32
lowerCamelCase : jnp.dtype = jnp.floataa
@nn.compact
def __call__(self , A ):
lowerCamelCase_ : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(A )
lowerCamelCase_ : Tuple = nn.silu(A )
lowerCamelCase_ : Union[str, Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(A )
return temb
class __lowercase ( nn.Module ):
lowerCamelCase : int = 32
lowerCamelCase : bool = False
lowerCamelCase : float = 1
@nn.compact
def __call__(self , A ):
return get_sinusoidal_embeddings(
A , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 318 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 1 |
'''simple docstring'''
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : List[Any] = [False] * len(_lowercase )
lowerCamelCase_ : int = [-1] * len(_lowercase )
def dfs(_lowercase , _lowercase ):
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : Tuple = c
for u in graph[v]:
if not visited[u]:
dfs(_lowercase , 1 - c )
for i in range(len(_lowercase ) ):
if not visited[i]:
dfs(_lowercase , 0 )
for i in range(len(_lowercase ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__lowercase : List[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 318 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers import DonutProcessor
__lowercase : Union[str, Any] = '''naver-clova-ix/donut-base'''
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = DonutProcessor.from_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
lowerCamelCase_ : Any = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
lowerCamelCase_ : Optional[int] = self.processor.tokenajson(A )
self.assertDictEqual(A , A )
| 318 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 1 |
'''simple docstring'''
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''):
__lowercase : Any = {
'''linear''': PIL.Image.Resampling.BILINEAR,
'''bilinear''': PIL.Image.Resampling.BILINEAR,
'''bicubic''': PIL.Image.Resampling.BICUBIC,
'''lanczos''': PIL.Image.Resampling.LANCZOS,
'''nearest''': PIL.Image.Resampling.NEAREST,
}
else:
__lowercase : Optional[Any] = {
'''linear''': PIL.Image.LINEAR,
'''bilinear''': PIL.Image.BILINEAR,
'''bicubic''': PIL.Image.BICUBIC,
'''lanczos''': PIL.Image.LANCZOS,
'''nearest''': PIL.Image.NEAREST,
}
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Tuple = (images / 2 + 0.5).clamp(0 , 1 )
lowerCamelCase_ : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
lowerCamelCase_ : int = numpy_to_pil(_lowercase )
return images
def lowercase_ ( _lowercase ) -> Any:
'''simple docstring'''
if images.ndim == 3:
lowerCamelCase_ : Tuple = images[None, ...]
lowerCamelCase_ : List[str] = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
lowerCamelCase_ : List[str] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
lowerCamelCase_ : Tuple = [Image.fromarray(_lowercase ) for image in images]
return pil_images
| 318 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase = 100 , ) -> float:
'''simple docstring'''
lowerCamelCase_ : int = x_start
lowerCamelCase_ : Optional[int] = fnc(_lowercase )
lowerCamelCase_ : Any = 0.0
for _ in range(_lowercase ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
lowerCamelCase_ : Optional[int] = (x_end - x_start) / steps + xa
lowerCamelCase_ : Any = fnc(_lowercase )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
lowerCamelCase_ : List[str] = xa
lowerCamelCase_ : List[Any] = fxa
return area
if __name__ == "__main__":
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
return x**3 + x**2
print('''f(x) = x^3 + x^2''')
print('''The area between the curve, x = -5, x = 5 and the x axis is:''')
__lowercase : Dict = 10
while i <= 100000:
print(f'with {i} steps: {trapezoidal_area(f, -5, 5, i)}')
i *= 10
| 318 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 1 |
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__lowercase : List[Any] = 16
__lowercase : Optional[int] = 32
def lowercase_ ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(_lowercase )
lowerCamelCase_ : Any = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCamelCase_ : Tuple = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
lowerCamelCase_ : List[Any] = DataLoader(
tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
lowerCamelCase_ : Any = DataLoader(
tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
model.eval()
lowerCamelCase_ : int = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ : List[str] = model(**_lowercase )
lowerCamelCase_ : List[Any] = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
lowerCamelCase_, lowerCamelCase_ : Dict = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
lowerCamelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
lowerCamelCase_ : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
lowerCamelCase_ : str = metric.compute()
return eval_metric["accuracy"]
def lowercase_ ( _lowercase , _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Tuple = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ : Any = config['''lr''']
lowerCamelCase_ : str = int(config['''num_epochs'''] )
lowerCamelCase_ : List[str] = int(config['''seed'''] )
lowerCamelCase_ : List[str] = int(config['''batch_size'''] )
lowerCamelCase_ : Dict = args.model_name_or_path
set_seed(_lowercase )
lowerCamelCase_, lowerCamelCase_ : str = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
lowerCamelCase_ : int = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowerCamelCase_ : Any = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
lowerCamelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
lowerCamelCase_ : Any = 1
lowerCamelCase_ : str = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowerCamelCase_ : Any = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
lowerCamelCase_ : int = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : int = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
lowerCamelCase_ : Tuple = 0
# We also need to keep track of the stating epoch so files are named properly
lowerCamelCase_ : Dict = 0
lowerCamelCase_ : Any = evaluate.load('''glue''' , '''mrpc''' )
lowerCamelCase_ : int = num_epochs
if args.partial_train_epoch is not None:
lowerCamelCase_ : Optional[int] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
lowerCamelCase_ : Union[str, Any] = args.resume_from_checkpoint.split('''epoch_''' )[1]
lowerCamelCase_ : List[str] = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
lowerCamelCase_ : Optional[Any] = int(_lowercase ) + 1
lowerCamelCase_ : List[Any] = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase )
accelerator.print('''resumed checkpoint performance:''' , _lowercase )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , '''r''' ) as f:
lowerCamelCase_ : Union[str, Any] = json.load(_lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
lowerCamelCase_ : int = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
lowerCamelCase_ : Dict = model(**_lowercase )
lowerCamelCase_ : Optional[int] = outputs.loss
lowerCamelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
lowerCamelCase_ : Optional[Any] = F"""epoch_{epoch}"""
lowerCamelCase_ : Union[str, Any] = os.path.join(args.output_dir , _lowercase )
accelerator.save_state(_lowercase )
lowerCamelCase_ : str = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase )
lowerCamelCase_ : int = accuracy
lowerCamelCase_ : Dict = lr_scheduler.get_lr()[0]
lowerCamelCase_ : Optional[int] = optimizer.param_groups[0]['''lr''']
lowerCamelCase_ : List[str] = epoch
lowerCamelCase_ : str = overall_step
accelerator.print(F"""epoch {epoch}:""" , _lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , '''w''' ) as f:
json.dump(_lowercase , _lowercase )
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=_lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , )
parser.add_argument(
'''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--resume_from_checkpoint''' , type=_lowercase , default=_lowercase , help='''If the training should continue from a checkpoint folder.''' , )
parser.add_argument(
'''--partial_train_epoch''' , type=_lowercase , default=_lowercase , help='''If passed, the training will stop after this number of epochs.''' , )
parser.add_argument(
'''--num_epochs''' , type=_lowercase , default=2 , help='''Number of train epochs.''' , )
lowerCamelCase_ : List[Any] = parser.parse_args()
lowerCamelCase_ : List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 1 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class __lowercase :
def __init__(self , A , A=1_3 , A=2 , A=2_4 , A=1_6 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=None , A=2 , A=2 , ):
lowerCamelCase_ : int = parent
lowerCamelCase_ : List[str] = batch_size
lowerCamelCase_ : List[str] = patch_size
lowerCamelCase_ : Optional[Any] = max_length
lowerCamelCase_ : Any = num_mel_bins
lowerCamelCase_ : Tuple = is_training
lowerCamelCase_ : int = use_labels
lowerCamelCase_ : str = hidden_size
lowerCamelCase_ : List[str] = num_hidden_layers
lowerCamelCase_ : List[str] = num_attention_heads
lowerCamelCase_ : Any = intermediate_size
lowerCamelCase_ : Optional[int] = hidden_act
lowerCamelCase_ : str = hidden_dropout_prob
lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase_ : int = type_sequence_label_size
lowerCamelCase_ : Dict = initializer_range
lowerCamelCase_ : str = scope
lowerCamelCase_ : Tuple = frequency_stride
lowerCamelCase_ : Tuple = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCamelCase_ : List[str] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
lowerCamelCase_ : Dict = (self.max_length - self.patch_size) // self.time_stride + 1
lowerCamelCase_ : int = frequency_out_dimension * time_out_dimension
lowerCamelCase_ : str = num_patches + 2
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
lowerCamelCase_ : str = None
if self.use_labels:
lowerCamelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ : Dict = self.get_config()
return config, input_values, labels
def UpperCAmelCase__ (self ):
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def UpperCAmelCase__ (self , A , A , A ):
lowerCamelCase_ : int = ASTModel(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
),
) : Optional[int] = config_and_inputs
lowerCamelCase_ : Optional[Any] = {'''input_values''': input_values}
return config, inputs_dict
@require_torch
class __lowercase ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : Tuple = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase : Any = (
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
lowerCamelCase : Optional[int] = False
lowerCamelCase : List[str] = False
lowerCamelCase : Optional[int] = False
lowerCamelCase : Optional[Any] = False
def UpperCAmelCase__ (self , A , A , A , A , A ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ASTModelTester(self )
lowerCamelCase_ : List[Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 )
def UpperCAmelCase__ (self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''AST does not use inputs_embeds''' )
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : List[str] = model_class(A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCamelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A , nn.Linear ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_, lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : Dict = model_class(A )
lowerCamelCase_ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ : List[str] = [*signature.parameters.keys()]
lowerCamelCase_ : int = ['''input_values''']
self.assertListEqual(arg_names[:1] , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
@slow
def UpperCAmelCase__ (self ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ : List[str] = ASTModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : Dict = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' )
lowerCamelCase_, lowerCamelCase_ : int = torchaudio.load(_lowercase )
return audio, sampling_rate
@require_torch
@require_torchaudio
class __lowercase ( unittest.TestCase ):
@cached_property
def UpperCAmelCase__ (self ):
return (
ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' )
if is_torchaudio_available()
else None
)
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = self.default_feature_extractor
lowerCamelCase_ : Union[str, Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(A )
lowerCamelCase_ : Union[str, Any] = self.default_feature_extractor
lowerCamelCase_, lowerCamelCase_ : str = prepare_audio()
lowerCamelCase_ : int = audio.squeeze().numpy()
lowerCamelCase_ : Any = feature_extractor(A , sampling_rate=A , return_tensors='''pt''' ).to(A )
# forward pass
with torch.no_grad():
lowerCamelCase_ : Union[str, Any] = model(**A )
# verify the logits
lowerCamelCase_ : Union[str, Any] = torch.Size((1, 5_2_7) )
self.assertEqual(outputs.logits.shape , A )
lowerCamelCase_ : int = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) )
| 318 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 1 |
'''simple docstring'''
from cva import destroyAllWindows, imread, imshow, waitKey
def lowercase_ ( _lowercase ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_, lowerCamelCase_ : str = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(_lowercase ):
for j in range(_lowercase ):
lowerCamelCase_ : int = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
__lowercase : Optional[int] = imread('''image_data/lena.jpg''', 1)
# convert to its negative
__lowercase : str = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows()
| 318 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowercase ( _lowercase ):
lowerCamelCase : torch.FloatTensor
class __lowercase ( _lowercase , _lowercase ):
@register_to_config
def __init__(self , A = 3_2 , A = 6_4 , A = 2_0 , A = 7_6_8 , A=7_7 , A=4 , A = 0.0 , A = "silu" , A = None , A = None , A = "linear" , A = "prd" , A = None , A = None , A = None , ):
super().__init__()
lowerCamelCase_ : str = num_attention_heads
lowerCamelCase_ : Tuple = attention_head_dim
lowerCamelCase_ : Any = num_attention_heads * attention_head_dim
lowerCamelCase_ : str = additional_embeddings
lowerCamelCase_ : int = time_embed_dim or inner_dim
lowerCamelCase_ : Any = embedding_proj_dim or embedding_dim
lowerCamelCase_ : Optional[int] = clip_embed_dim or embedding_dim
lowerCamelCase_ : List[str] = Timesteps(A , A , 0 )
lowerCamelCase_ : Dict = TimestepEmbedding(A , A , out_dim=A , act_fn=A )
lowerCamelCase_ : Optional[int] = nn.Linear(A , A )
if embedding_proj_norm_type is None:
lowerCamelCase_ : List[str] = None
elif embedding_proj_norm_type == "layer":
lowerCamelCase_ : Union[str, Any] = nn.LayerNorm(A )
else:
raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
lowerCamelCase_ : Optional[int] = nn.Linear(A , A )
if encoder_hid_proj_type is None:
lowerCamelCase_ : int = None
elif encoder_hid_proj_type == "linear":
lowerCamelCase_ : Tuple = nn.Linear(A , A )
else:
raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
lowerCamelCase_ : str = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A ) )
if added_emb_type == "prd":
lowerCamelCase_ : Union[str, Any] = nn.Parameter(torch.zeros(1 , 1 , A ) )
elif added_emb_type is None:
lowerCamelCase_ : List[Any] = None
else:
raise ValueError(
F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
lowerCamelCase_ : Union[str, Any] = nn.ModuleList(
[
BasicTransformerBlock(
A , A , A , dropout=A , activation_fn='''gelu''' , attention_bias=A , )
for d in range(A )
] )
if norm_in_type == "layer":
lowerCamelCase_ : Dict = nn.LayerNorm(A )
elif norm_in_type is None:
lowerCamelCase_ : List[str] = None
else:
raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" )
lowerCamelCase_ : List[Any] = nn.LayerNorm(A )
lowerCamelCase_ : Tuple = nn.Linear(A , A )
lowerCamelCase_ : Union[str, Any] = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
lowerCamelCase_ : Union[str, Any] = causal_attention_mask[None, ...]
self.register_buffer('''causal_attention_mask''' , A , persistent=A )
lowerCamelCase_ : List[Any] = nn.Parameter(torch.zeros(1 , A ) )
lowerCamelCase_ : Optional[Any] = nn.Parameter(torch.zeros(1 , A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = {}
def fn_recursive_add_processors(A , A , A ):
if hasattr(A , '''set_processor''' ):
lowerCamelCase_ : int = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , A , A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(A , A , A )
return processors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[Any] = len(self.attn_processors.keys() )
if isinstance(A , A ) and len(A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(A , A , A ):
if hasattr(A , '''set_processor''' ):
if not isinstance(A , A ):
module.set_processor(A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , A , A )
for name, module in self.named_children():
fn_recursive_attn_processor(A , A , A )
def UpperCAmelCase__ (self ):
self.set_attn_processor(AttnProcessor() )
def UpperCAmelCase__ (self , A , A , A , A = None , A = None , A = True , ):
lowerCamelCase_ : Union[str, Any] = hidden_states.shape[0]
lowerCamelCase_ : Any = timestep
if not torch.is_tensor(A ):
lowerCamelCase_ : int = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(A ) and len(timesteps.shape ) == 0:
lowerCamelCase_ : Dict = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
lowerCamelCase_ : List[Any] = timesteps * torch.ones(A , dtype=timesteps.dtype , device=timesteps.device )
lowerCamelCase_ : Any = self.time_proj(A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
lowerCamelCase_ : Optional[Any] = timesteps_projected.to(dtype=self.dtype )
lowerCamelCase_ : str = self.time_embedding(A )
if self.embedding_proj_norm is not None:
lowerCamelCase_ : List[Any] = self.embedding_proj_norm(A )
lowerCamelCase_ : Optional[int] = self.embedding_proj(A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
lowerCamelCase_ : Dict = self.encoder_hidden_states_proj(A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' )
lowerCamelCase_ : Optional[Any] = self.proj_in(A )
lowerCamelCase_ : Optional[Any] = self.positional_embedding.to(hidden_states.dtype )
lowerCamelCase_ : Tuple = []
lowerCamelCase_ : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
lowerCamelCase_ : Optional[int] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
lowerCamelCase_ : Union[str, Any] = hidden_states[:, None, :]
lowerCamelCase_ : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
lowerCamelCase_ : Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(A , -1 , -1 )
additional_embeds.append(A )
lowerCamelCase_ : Tuple = torch.cat(
A , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
lowerCamelCase_ : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
lowerCamelCase_ : List[Any] = F.pad(
A , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
lowerCamelCase_ : int = hidden_states + positional_embeddings
if attention_mask is not None:
lowerCamelCase_ : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
lowerCamelCase_ : Optional[int] = F.pad(A , (0, self.additional_embeddings) , value=0.0 )
lowerCamelCase_ : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
lowerCamelCase_ : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
lowerCamelCase_ : Any = self.norm_in(A )
for block in self.transformer_blocks:
lowerCamelCase_ : str = block(A , attention_mask=A )
lowerCamelCase_ : Optional[int] = self.norm_out(A )
if self.prd_embedding is not None:
lowerCamelCase_ : Any = hidden_states[:, -1]
else:
lowerCamelCase_ : Dict = hidden_states[:, additional_embeddings_len:]
lowerCamelCase_ : Optional[int] = self.proj_to_clip_embeddings(A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 318 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase ) -> list:
'''simple docstring'''
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(_lowercase ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 318 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowercase : int = logging.get_logger(__name__)
__lowercase : List[str] = {
'''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class __lowercase ( _lowercase ):
lowerCamelCase : Dict = "vit"
def __init__(self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-12 , A=2_2_4 , A=1_6 , A=3 , A=True , A=1_6 , **A , ):
super().__init__(**A )
lowerCamelCase_ : List[str] = hidden_size
lowerCamelCase_ : Union[str, Any] = num_hidden_layers
lowerCamelCase_ : Dict = num_attention_heads
lowerCamelCase_ : int = intermediate_size
lowerCamelCase_ : int = hidden_act
lowerCamelCase_ : int = hidden_dropout_prob
lowerCamelCase_ : List[str] = attention_probs_dropout_prob
lowerCamelCase_ : str = initializer_range
lowerCamelCase_ : Union[str, Any] = layer_norm_eps
lowerCamelCase_ : Tuple = image_size
lowerCamelCase_ : Dict = patch_size
lowerCamelCase_ : Optional[int] = num_channels
lowerCamelCase_ : Optional[Any] = qkv_bias
lowerCamelCase_ : Union[str, Any] = encoder_stride
class __lowercase ( _lowercase ):
lowerCamelCase : List[Any] = version.parse("1.11" )
@property
def UpperCAmelCase__ (self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def UpperCAmelCase__ (self ):
return 1E-4
| 318 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 1 |
'''simple docstring'''
__lowercase : Tuple = {
'''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''',
'''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''',
'''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''',
'''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''',
'''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''',
'''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''',
''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''',
'''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''',
'''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/'''
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
__lowercase : Any = {value: key for key, value in MORSE_CODE_DICT.items()}
def lowercase_ ( _lowercase ) -> str:
'''simple docstring'''
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def lowercase_ ( _lowercase ) -> str:
'''simple docstring'''
return "".join(REVERSE_DICT[char] for char in message.split() )
def lowercase_ ( ) -> None:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = '''Morse code here!'''
print(_lowercase )
lowerCamelCase_ : List[str] = encrypt(_lowercase )
print(_lowercase )
lowerCamelCase_ : Tuple = decrypt(_lowercase )
print(_lowercase )
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 1 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "SpeechT5FeatureExtractor"
lowerCamelCase : Any = "SpeechT5Tokenizer"
def __init__(self , A , A ):
super().__init__(A , A )
def __call__(self , *A , **A ):
lowerCamelCase_ : List[str] = kwargs.pop('''audio''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''text''' , A )
lowerCamelCase_ : Tuple = kwargs.pop('''text_target''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''audio_target''' , A )
lowerCamelCase_ : Tuple = kwargs.pop('''sampling_rate''' , A )
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' )
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' )
if audio is not None:
lowerCamelCase_ : Optional[Any] = self.feature_extractor(A , *A , sampling_rate=A , **A )
elif text is not None:
lowerCamelCase_ : Tuple = self.tokenizer(A , **A )
else:
lowerCamelCase_ : int = None
if audio_target is not None:
lowerCamelCase_ : List[str] = self.feature_extractor(audio_target=A , *A , sampling_rate=A , **A )
lowerCamelCase_ : Union[str, Any] = targets['''input_values''']
elif text_target is not None:
lowerCamelCase_ : int = self.tokenizer(A , **A )
lowerCamelCase_ : Dict = targets['''input_ids''']
else:
lowerCamelCase_ : int = None
if inputs is None:
return targets
if targets is not None:
lowerCamelCase_ : List[Any] = labels
lowerCamelCase_ : Any = targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
lowerCamelCase_ : str = decoder_attention_mask
return inputs
def UpperCAmelCase__ (self , *A , **A ):
lowerCamelCase_ : Tuple = kwargs.pop('''input_values''' , A )
lowerCamelCase_ : List[str] = kwargs.pop('''input_ids''' , A )
lowerCamelCase_ : List[str] = kwargs.pop('''labels''' , A )
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' )
if input_values is not None:
lowerCamelCase_ : Dict = self.feature_extractor.pad(A , *A , **A )
elif input_ids is not None:
lowerCamelCase_ : Optional[Any] = self.tokenizer.pad(A , **A )
else:
lowerCamelCase_ : Optional[int] = None
if labels is not None:
if "input_ids" in labels or (isinstance(A , A ) and "input_ids" in labels[0]):
lowerCamelCase_ : Dict = self.tokenizer.pad(A , **A )
lowerCamelCase_ : List[str] = targets['''input_ids''']
else:
lowerCamelCase_ : List[Any] = self.feature_extractor.feature_size
lowerCamelCase_ : Optional[Any] = self.feature_extractor.num_mel_bins
lowerCamelCase_ : Optional[int] = self.feature_extractor.pad(A , *A , **A )
lowerCamelCase_ : Any = feature_size_hack
lowerCamelCase_ : Union[str, Any] = targets['''input_values''']
else:
lowerCamelCase_ : Any = None
if inputs is None:
return targets
if targets is not None:
lowerCamelCase_ : Union[str, Any] = labels
lowerCamelCase_ : Tuple = targets.get('''attention_mask''' )
if decoder_attention_mask is not None:
lowerCamelCase_ : int = decoder_attention_mask
return inputs
def UpperCAmelCase__ (self , *A , **A ):
return self.tokenizer.batch_decode(*A , **A )
def UpperCAmelCase__ (self , *A , **A ):
return self.tokenizer.decode(*A , **A )
| 318 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowercase : List[Any] = logging.get_logger(__name__)
__lowercase : str = '''▁'''
__lowercase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__lowercase : List[Any] = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__lowercase : Any = {
'''facebook/xglm-564M''': 2048,
}
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Any = ["input_ids", "attention_mask"]
def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A = None , **A , ):
lowerCamelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
lowerCamelCase_ : List[Any] = 7
lowerCamelCase_ : Union[str, Any] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
lowerCamelCase_ : Union[str, Any] = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , )
lowerCamelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
lowerCamelCase_ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCamelCase_ : str = 1
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCamelCase_ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
lowerCamelCase_ : Union[str, Any] = len(self.sp_model )
lowerCamelCase_ : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(A )
lowerCamelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__(self ):
lowerCamelCase_ : str = self.__dict__.copy()
lowerCamelCase_ : List[Any] = None
lowerCamelCase_ : int = self.sp_model.serialized_model_proto()
return state
def __setstate__(self , A ):
lowerCamelCase_ : int = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCamelCase_ : List[Any] = {}
lowerCamelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase__ (self , A , A = None ):
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
lowerCamelCase_ : List[str] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A , token_ids_a=A , already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A ))
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A ))
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def UpperCAmelCase__ (self ):
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase__ (self , A ):
return self.sp_model.encode(A , out_type=A )
def UpperCAmelCase__ (self , A ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase_ : List[str] = self.sp_model.PieceToId(A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCAmelCase__ (self , A ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[Any] = ''''''.join(A ).replace(A , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , A )
elif not os.path.isfile(self.vocab_file ):
with open(A , '''wb''' ) as fi:
lowerCamelCase_ : Dict = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 318 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def lowercase_ ( _lowercase=None ) -> Any:
'''simple docstring'''
lowerCamelCase_ : List[str] = argparse.ArgumentParser(add_help=_lowercase , allow_abbrev=_lowercase )
# The main config parser
lowerCamelCase_ : Optional[int] = config_command_parser(_lowercase )
# The subparser to add commands to
lowerCamelCase_ : str = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' )
# Then add other parsers with the parent parser
default_command_parser(_lowercase , parents=[parent_parser] )
update_command_parser(_lowercase , parents=[parent_parser] )
return config_parser
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : List[str] = get_config_parser()
lowerCamelCase_ : Optional[Any] = config_parser.parse_args()
if not hasattr(_lowercase , '''func''' ):
config_parser.print_help()
exit(1 )
# Run
args.func(_lowercase )
if __name__ == "__main__":
main()
| 318 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
__lowercase : Dict = logging.getLogger(__name__)
@dataclass
class __lowercase :
lowerCamelCase : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class __lowercase :
lowerCamelCase : Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} )
lowerCamelCase : Optional[str] = field(
default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool = field(
default=_lowercase , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase : Optional[int] = field(
default=_lowercase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCAmelCase__ (self ):
if self.train_file is not None:
lowerCamelCase_ : Optional[Any] = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase_ : Optional[Any] = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowercase :
lowerCamelCase : PreTrainedTokenizerBase
lowerCamelCase : Union[bool, str, PaddingStrategy] = True
lowerCamelCase : Optional[int] = None
lowerCamelCase : Optional[int] = None
def __call__(self , A ):
lowerCamelCase_ : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCamelCase_ : str = [feature.pop(A ) for feature in features]
lowerCamelCase_ : Any = len(A )
lowerCamelCase_ : List[Any] = len(features[0]['''input_ids'''] )
lowerCamelCase_ : Union[str, Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
lowerCamelCase_ : str = list(chain(*A ) )
lowerCamelCase_ : Any = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCamelCase_ : int = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
lowerCamelCase_ : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def lowercase_ ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase_ : Optional[int] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase_ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase_ : Optional[Any] = {}
if data_args.train_file is not None:
lowerCamelCase_ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase_ : Tuple = data_args.validation_file
lowerCamelCase_ : Optional[Any] = data_args.train_file.split('''.''' )[-1]
lowerCamelCase_ : Dict = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase_ : Optional[Any] = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase_ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase_ : List[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase_ : int = [F"""ending{i}""" for i in range(4 )]
lowerCamelCase_ : List[Any] = '''sent1'''
lowerCamelCase_ : Dict = '''sent2'''
if data_args.max_seq_length is None:
lowerCamelCase_ : str = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCamelCase_ : Optional[int] = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase_ : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
lowerCamelCase_ : Tuple = [[context] * 4 for context in examples[context_name]]
lowerCamelCase_ : List[Any] = examples[question_header_name]
lowerCamelCase_ : Optional[Any] = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
lowerCamelCase_ : Optional[Any] = list(chain(*_lowercase ) )
lowerCamelCase_ : List[Any] = list(chain(*_lowercase ) )
# Tokenize
lowerCamelCase_ : List[str] = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCamelCase_ : Union[str, Any] = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCamelCase_ : List[str] = min(len(_lowercase ) , data_args.max_train_samples )
lowerCamelCase_ : List[str] = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCamelCase_ : Dict = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCamelCase_ : Optional[int] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCamelCase_ : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
lowerCamelCase_ : Any = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCamelCase_ : Tuple = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase_ : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = eval_predictions
lowerCamelCase_ : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase_ : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
lowerCamelCase_ : int = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase_ : Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase_ : List[Any] = last_checkpoint
lowerCamelCase_ : Dict = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase_ : Any = train_result.metrics
lowerCamelCase_ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
lowerCamelCase_ : List[Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''train''' , _lowercase )
trainer.save_metrics('''train''' , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCamelCase_ : str = trainer.evaluate()
lowerCamelCase_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
lowerCamelCase_ : Union[str, Any] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics('''eval''' , _lowercase )
trainer.save_metrics('''eval''' , _lowercase )
lowerCamelCase_ : List[str] = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowercase_ ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 100 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Dict = False
lowerCamelCase_ : str = search_prob
lowerCamelCase_ : Optional[Any] = start_temperate
lowerCamelCase_ : List[Any] = []
lowerCamelCase_ : List[Any] = 0
lowerCamelCase_ : int = None
while not search_end:
lowerCamelCase_ : Optional[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
lowerCamelCase_ : Dict = current_state
scores.append(_lowercase )
iterations += 1
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : Tuple = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCamelCase_ : str = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor
lowerCamelCase_ : Optional[Any] = neighbors.pop(_lowercase )
lowerCamelCase_ : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCamelCase_ : str = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCamelCase_ : Tuple = picked_neighbor
else:
lowerCamelCase_ : Tuple = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCamelCase_ : Dict = picked_neighbor
lowerCamelCase_ : Any = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCamelCase_ : Dict = True
else:
lowerCamelCase_ : Optional[int] = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ) , _lowercase )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
__lowercase : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__lowercase : Optional[Any] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
# starting the problem with initial coordinates (12, 47)
__lowercase : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__lowercase : Optional[Any] = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
def lowercase_ ( _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
return (3 * x**2) - (6 * y)
__lowercase : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__lowercase : Optional[int] = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'{local_min.score()}'
)
__lowercase : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__lowercase : int = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'{local_min.score()}'
)
| 318 |
'''simple docstring'''
from __future__ import annotations
import time
__lowercase : List[Any] = list[tuple[int, int]]
__lowercase : List[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class __lowercase :
def __init__(self , A , A , A , A , A ):
lowerCamelCase_ : Optional[int] = pos_x
lowerCamelCase_ : List[str] = pos_y
lowerCamelCase_ : List[Any] = (pos_y, pos_x)
lowerCamelCase_ : List[str] = goal_x
lowerCamelCase_ : Union[str, Any] = goal_y
lowerCamelCase_ : int = parent
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A )
lowerCamelCase_ : Union[str, Any] = [self.start]
lowerCamelCase_ : List[str] = False
def UpperCAmelCase__ (self ):
while self.node_queue:
lowerCamelCase_ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
lowerCamelCase_ : List[str] = True
return self.retrace_path(A )
lowerCamelCase_ : str = self.get_successors(A )
for node in successors:
self.node_queue.append(A )
if not self.reached:
return [self.start.pos]
return None
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Dict = []
for action in delta:
lowerCamelCase_ : Any = parent.pos_x + action[1]
lowerCamelCase_ : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(A , A , self.target.pos_y , self.target.pos_x , A ) )
return successors
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : int = node
lowerCamelCase_ : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ : List[Any] = current_node.parent
path.reverse()
return path
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : List[str] = BreadthFirstSearch(A , A )
lowerCamelCase_ : Any = BreadthFirstSearch(A , A )
lowerCamelCase_ : Union[str, Any] = False
def UpperCAmelCase__ (self ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
lowerCamelCase_ : List[str] = self.fwd_bfs.node_queue.pop(0 )
lowerCamelCase_ : int = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
lowerCamelCase_ : Optional[Any] = True
return self.retrace_bidirectional_path(
A , A )
lowerCamelCase_ : Optional[int] = current_bwd_node
lowerCamelCase_ : List[str] = current_fwd_node
lowerCamelCase_ : List[str] = {
self.fwd_bfs: self.fwd_bfs.get_successors(A ),
self.bwd_bfs: self.bwd_bfs.get_successors(A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : List[str] = self.fwd_bfs.retrace_path(A )
lowerCamelCase_ : int = self.bwd_bfs.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowercase : List[str] = (0, 0)
__lowercase : List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowercase : Tuple = time.time()
__lowercase : int = BreadthFirstSearch(init, goal)
__lowercase : Dict = bfs.search()
__lowercase : Dict = time.time() - start_bfs_time
print('''Unidirectional BFS computation time : ''', bfs_time)
__lowercase : int = time.time()
__lowercase : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal)
__lowercase : Any = bd_bfs.search()
__lowercase : Dict = time.time() - start_bd_bfs_time
print('''Bidirectional BFS computation time : ''', bd_bfs_time)
| 318 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : int = CpmAntTokenizer
lowerCamelCase : Union[str, Any] = False
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Tuple = [
'''<d>''',
'''</d>''',
'''<s>''',
'''</s>''',
'''</_>''',
'''<unk>''',
'''<pad>''',
'''</n>''',
'''我''',
'''是''',
'''C''',
'''P''',
'''M''',
'''A''',
'''n''',
'''t''',
]
lowerCamelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
@tooslow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' )
lowerCamelCase_ : Union[str, Any] = '''今天天气真好!'''
lowerCamelCase_ : Any = ['''今天''', '''天气''', '''真''', '''好''', '''!''']
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize(A )
self.assertListEqual(A , A )
lowerCamelCase_ : List[str] = '''今天天气真好!'''
lowerCamelCase_ : List[Any] = [tokenizer.bos_token] + tokens
lowerCamelCase_ : Tuple = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
lowerCamelCase_ : int = tokenizer.decode(A )
self.assertEqual(A , A )
| 318 |
'''simple docstring'''
import numpy as np
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def lowercase_ ( _lowercase ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase , _lowercase ) -> tuple[int, int]:
'''simple docstring'''
if b == 0:
return (1, 0)
((lowerCamelCase_), (lowerCamelCase_)) : int = extended_euclid(_lowercase , a % b )
lowerCamelCase_ : Tuple = a // b
return (y, x - k * y)
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
((lowerCamelCase_), (lowerCamelCase_)) : Optional[Any] = extended_euclid(_lowercase , _lowercase )
lowerCamelCase_ : str = na * na
lowerCamelCase_ : Union[str, Any] = ra * x * na + ra * y * na
return (n % m + m) % m
def lowercase_ ( _lowercase , _lowercase ) -> int:
'''simple docstring'''
((lowerCamelCase_), (lowerCamelCase_)) : Union[str, Any] = extended_euclid(_lowercase , _lowercase )
if b < 0:
lowerCamelCase_ : Tuple = (b % n + n) % n
return b
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_, lowerCamelCase_ : Tuple = invert_modulo(_lowercase , _lowercase ), invert_modulo(_lowercase , _lowercase )
lowerCamelCase_ : Union[str, Any] = na * na
lowerCamelCase_ : int = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='''chinese_remainder_theorem''', verbose=True)
testmod(name='''chinese_remainder_theorem2''', verbose=True)
testmod(name='''invert_modulo''', verbose=True)
testmod(name='''extended_euclid''', verbose=True)
| 318 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : int = logging.get_logger(__name__)
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ : Optional[Any] = [144, 192, 240]
lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ : List[str] = [96, 120, 144]
lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ : Any = [64, 80, 96]
lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ : Union[str, Any] = 0.05
lowerCamelCase_ : Union[str, Any] = 2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : Optional[Any] = 512
lowerCamelCase_ : Dict = 16
lowerCamelCase_ : Dict = 21
lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json'''
else:
lowerCamelCase_ : Any = 1_000
lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json'''
lowerCamelCase_ : Optional[Any] = '''huggingface/label-files'''
lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ : List[str] = idalabel
lowerCamelCase_ : str = {v: k for k, v in idalabel.items()}
return config
def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' )
if F""".global_rep.{i}.bias""" in name:
lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ : Tuple = '''mobilevit.''' + name
return name
def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCamelCase_ : List[str] = ''''''
else:
lowerCamelCase_ : Any = '''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase )
if key[:8] == "encoder.":
lowerCamelCase_ : int = key[8:]
if "qkv" in key:
lowerCamelCase_ : List[Any] = key.split('''.''' )
lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1
lowerCamelCase_ : Union[str, Any] = int(key_split[3] )
lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ : Optional[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
lowerCamelCase_ : List[str] = val[:dim, :]
lowerCamelCase_ : Dict = val[dim : dim * 2, :]
lowerCamelCase_ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase_ : List[Any] = val[:dim]
lowerCamelCase_ : Optional[int] = val[dim : dim * 2]
lowerCamelCase_ : int = val[-dim:]
else:
lowerCamelCase_ : int = val
return orig_state_dict
def lowercase_ ( ) -> str:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase )
# load original state_dict
lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval()
else:
lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval()
lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase )
model.load_state_dict(_lowercase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = model(**_lowercase )
lowerCamelCase_ : List[str] = outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ : Dict = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ : List[str] = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
lowerCamelCase_ : str = {
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowercase , organization='''apple''' )
model.push_to_hub(_lowercase , organization='''apple''' )
if __name__ == "__main__":
__lowercase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__lowercase : Optional[int] = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 318 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive
'''simple docstring'''
lowerCamelCase_ : Tuple = len(_lowercase )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
lowerCamelCase_ : Union[str, Any] = array[0]
lowerCamelCase_ : Optional[int] = False
lowerCamelCase_ : List[Any] = 1
lowerCamelCase_ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[str] = [element for element in array[i:] if element >= array[i]]
lowerCamelCase_ : List[str] = longest_subsequence(_lowercase )
if len(_lowercase ) > len(_lowercase ):
lowerCamelCase_ : Any = temp_array
else:
i += 1
lowerCamelCase_ : Optional[int] = [element for element in array[1:] if element >= pivot]
lowerCamelCase_ : str = [pivot, *longest_subsequence(_lowercase )]
if len(_lowercase ) > len(_lowercase ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowercase :
def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=1_6 , A=3_6 , A=6 , A=6 , A=6 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ):
lowerCamelCase_ : Optional[Any] = parent
lowerCamelCase_ : str = batch_size
lowerCamelCase_ : Union[str, Any] = seq_length
lowerCamelCase_ : Union[str, Any] = is_training
lowerCamelCase_ : str = use_input_mask
lowerCamelCase_ : Any = use_token_type_ids
lowerCamelCase_ : Union[str, Any] = use_labels
lowerCamelCase_ : Optional[int] = vocab_size
lowerCamelCase_ : Optional[int] = embedding_size
lowerCamelCase_ : Any = hidden_size
lowerCamelCase_ : Union[str, Any] = num_hidden_layers
lowerCamelCase_ : Optional[int] = num_hidden_groups
lowerCamelCase_ : Tuple = num_attention_heads
lowerCamelCase_ : Optional[Any] = intermediate_size
lowerCamelCase_ : Tuple = hidden_act
lowerCamelCase_ : Dict = hidden_dropout_prob
lowerCamelCase_ : List[str] = attention_probs_dropout_prob
lowerCamelCase_ : Optional[int] = max_position_embeddings
lowerCamelCase_ : Tuple = type_vocab_size
lowerCamelCase_ : Tuple = type_sequence_label_size
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : str = num_labels
lowerCamelCase_ : Union[str, Any] = num_choices
lowerCamelCase_ : List[str] = scope
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ : Tuple = None
if self.use_input_mask:
lowerCamelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ : Union[str, Any] = None
if self.use_token_type_ids:
lowerCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : Union[str, Any] = None
lowerCamelCase_ : Any = None
if self.use_labels:
lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ (self ):
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Tuple = AlbertModel(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : int = model(A , attention_mask=A , token_type_ids=A )
lowerCamelCase_ : int = model(A , token_type_ids=A )
lowerCamelCase_ : Optional[Any] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Optional[Any] = AlbertForPreTraining(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : Optional[int] = model(
A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : List[str] = AlbertForMaskedLM(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Dict = AlbertForQuestionAnswering(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : str = model(
A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : List[str] = self.num_labels
lowerCamelCase_ : Any = AlbertForSequenceClassification(A )
model.to(A )
model.eval()
lowerCamelCase_ : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Optional[Any] = self.num_labels
lowerCamelCase_ : Dict = AlbertForTokenClassification(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Any = self.num_choices
lowerCamelCase_ : Union[str, Any] = AlbertForMultipleChoice(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ : int = model(
A , attention_mask=A , token_type_ids=A , labels=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
),
) : Dict = config_and_inputs
lowerCamelCase_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase : Dict = True
def UpperCAmelCase__ (self , A , A , A=False ):
lowerCamelCase_ : Optional[int] = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if model_class in get_values(A ):
lowerCamelCase_ : Dict = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A )
lowerCamelCase_ : Dict = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
return inputs_dict
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AlbertModelTester(self )
lowerCamelCase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=3_7 )
def UpperCAmelCase__ (self ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase_ : Tuple = type
self.model_tester.create_and_check_model(*A )
@slow
def UpperCAmelCase__ (self ):
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ : str = AlbertModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class __lowercase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' )
lowerCamelCase_ : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
lowerCamelCase_ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase_ : Optional[Any] = model(A , attention_mask=A )[0]
lowerCamelCase_ : Optional[Any] = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , A )
lowerCamelCase_ : Union[str, Any] = torch.tensor(
[[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
| 318 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowercase : Dict = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
def __init__(self , *A , **A ):
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , A , )
super().__init__(*A , **A )
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase , _lowercase ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(0 ) != 0 )
def lowercase_ ( ) -> None:
'''simple docstring'''
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 318 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase , _lowercase ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
lowerCamelCase_ : Optional[Any] = str(bin(_lowercase ) )[2:] # remove the leading "0b"
lowerCamelCase_ : Tuple = str(bin(_lowercase ) )[2:]
lowerCamelCase_ : List[Any] = max(len(_lowercase ) , len(_lowercase ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(_lowercase ) , b_binary.zfill(_lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class __lowercase ( nn.Module ):
def __init__(self , A , A ):
super().__init__()
lowerCamelCase_ : Tuple = module
lowerCamelCase_ : Any = nn.Sequential(
nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , )
lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def UpperCAmelCase__ (self , A , *A , **A ):
return self.module(A , *A , **A ) + self.adapter(A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCamelCase : Tuple = "bigscience/bloom-1b7"
# Constant values
lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4
lowerCamelCase : int = "Hello my name is"
lowerCamelCase : Tuple = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCamelCase : Optional[int] = 10
def UpperCAmelCase__ (self ):
# Models and tokenizer
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# Models and tokenizer
lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.model_abit.config
self.assertTrue(hasattr(A , '''quantization_config''' ) )
lowerCamelCase_ : Tuple = config.to_dict()
lowerCamelCase_ : Optional[Any] = config.to_diff_dict()
lowerCamelCase_ : Any = config.to_json_string()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint()
lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def UpperCAmelCase__ (self ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = BitsAndBytesConfig()
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : int = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = BitsAndBytesConfig()
with self.assertRaises(A ):
lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def UpperCAmelCase__ (self ):
with self.assertRaises(A ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' )
lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa )
lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
lowerCamelCase_ : List[Any] = self.model_fpaa.half()
# Check this does not throw an error
lowerCamelCase_ : List[str] = self.model_fpaa.float()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : List[Any] = '''t5-small'''
lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name )
lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute'''
def UpperCAmelCase__ (self ):
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from transformers import TaForConditionalGeneration
lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules
lowerCamelCase_ : List[Any] = None
# test with `t5-small`
lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[Any] = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Optional[int] = model.generate(**A )
lowerCamelCase_ : Any = modules
def UpperCAmelCase__ (self ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Dict = model.generate(**A )
# test with `flan-t5-small`
lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=A , device_map='''auto''' )
lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
lowerCamelCase_ : Tuple = model.generate(**A )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
# model_name
lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m'''
lowerCamelCase_ : Optional[int] = '''t5-small'''
# Different types of model
lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Sequence classification model
lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=A , device_map='''auto''' )
# CausalLM model
lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' )
# Seq2seq model
lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' )
def UpperCAmelCase__ (self ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
lowerCamelCase_ : List[str] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
super().setUp()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=A , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS )
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''facebook/opt-350m'''
super().setUp()
def UpperCAmelCase__ (self ):
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
lowerCamelCase_ : List[str] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(A ) ):
lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 )
lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 )
lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowerCamelCase_ : Optional[int] = model.forward(**A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(A , A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[Any] = "gpt2-xl"
lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
| 318 | 1 |
'''simple docstring'''
__lowercase : Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__lowercase : Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__lowercase : Dict = {
0: '''Sunday''',
1: '''Monday''',
2: '''Tuesday''',
3: '''Wednesday''',
4: '''Thursday''',
5: '''Friday''',
6: '''Saturday''',
}
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> str:
'''simple docstring'''
assert len(str(_lowercase ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
lowerCamelCase_ : Any = year // 100
lowerCamelCase_ : Optional[int] = (5 * (century % 4) + 2) % 7
lowerCamelCase_ : Any = year % 100
lowerCamelCase_ : Optional[int] = centurian % 12
lowerCamelCase_ : Optional[int] = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
lowerCamelCase_ : Any = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
lowerCamelCase_ : Tuple = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__lowercase : List[Any] = None
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowercase : Optional[Any] = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__lowercase : List[str] = {
'''google/rembert''': 256,
}
__lowercase : List[Any] = '''▁'''
class __lowercase ( _lowercase ):
lowerCamelCase : int = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[Any] = RemBertTokenizer
def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , )
lowerCamelCase_ : Any = do_lower_case
lowerCamelCase_ : Union[str, Any] = remove_space
lowerCamelCase_ : Optional[Any] = keep_accents
lowerCamelCase_ : str = vocab_file
lowerCamelCase_ : str = False if not self.vocab_file else True
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCamelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1]
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : int = [self.sep_token_id]
lowerCamelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 318 | 1 |
'''simple docstring'''
__lowercase : List[str] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
__lowercase : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
__lowercase : Optional[int] = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 318 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 2_2_4, '''width''': 2_2_4},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , A )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A , A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , **A ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCamelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.get_tokenizer()
lowerCamelCase_ : List[Any] = self.get_rust_tokenizer()
lowerCamelCase_ : List[Any] = self.get_image_processor()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A )
lowerCamelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A )
self.assertIsInstance(processor_fast.tokenizer , A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A )
self.assertIsInstance(processor_fast.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
lowerCamelCase_ : Dict = self.get_image_processor(do_normalize=A )
lowerCamelCase_ : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = self.prepare_image_inputs()
lowerCamelCase_ : List[Any] = image_processor(A , return_tensors='''np''' )
lowerCamelCase_ : Optional[int] = processor(images=A , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.get_image_processor()
lowerCamelCase_ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase_ : str = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : int = processor(text=A )
lowerCamelCase_ : Dict = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Any = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : List[Any] = self.prepare_image_inputs()
lowerCamelCase_ : Optional[int] = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = self.get_image_processor()
lowerCamelCase_ : int = self.get_tokenizer()
lowerCamelCase_ : Any = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ : Union[str, Any] = processor.batch_decode(A )
lowerCamelCase_ : Any = tokenizer.batch_decode(A )
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.get_image_processor()
lowerCamelCase_ : Optional[int] = self.get_tokenizer()
lowerCamelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=A , image_processor=A )
lowerCamelCase_ : int = '''Alexandra,T-shirt的价格是15便士。'''
lowerCamelCase_ : str = self.prepare_image_inputs()
lowerCamelCase_ : int = processor(text=A , images=A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 318 | 1 |
'''simple docstring'''
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : Any = np.inf
def set_batch_size(_lowercase ) -> None:
nonlocal batch_size
if isinstance(_lowercase , _lowercase ):
lowerCamelCase_ : str = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowercase , _lowercase ):
lowerCamelCase_ : Optional[int] = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowercase , _lowercase ) and feature.dtype == "binary":
lowerCamelCase_ : List[str] = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowercase , _lowercase )
return None if batch_size is np.inf else batch_size
class __lowercase ( _lowercase ):
def __init__(self , A , A = None , A = None , A = None , A = False , A = False , A = None , **A , ):
super().__init__(
A , split=A , features=A , cache_dir=A , keep_in_memory=A , streaming=A , num_proc=A , **A , )
lowerCamelCase_ : List[str] = path_or_paths if isinstance(A , A ) else {self.split: path_or_paths}
lowerCamelCase_ : Optional[int] = _PACKAGED_DATASETS_MODULES['''parquet'''][1]
lowerCamelCase_ : List[str] = Parquet(
cache_dir=A , data_files=A , features=A , hash=A , **A , )
def UpperCAmelCase__ (self ):
# Build iterable dataset
if self.streaming:
lowerCamelCase_ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowerCamelCase_ : Union[str, Any] = None
lowerCamelCase_ : Optional[int] = None
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : Any = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , num_proc=self.num_proc , )
lowerCamelCase_ : Tuple = self.builder.as_dataset(
split=self.split , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class __lowercase :
def __init__(self , A , A , A = None , **A , ):
lowerCamelCase_ : Any = dataset
lowerCamelCase_ : Tuple = path_or_buf
lowerCamelCase_ : Optional[int] = batch_size or get_writer_batch_size(dataset.features )
lowerCamelCase_ : List[Any] = parquet_writer_kwargs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , '''wb+''' ) as buffer:
lowerCamelCase_ : int = self._write(file_obj=A , batch_size=A , **self.parquet_writer_kwargs )
else:
lowerCamelCase_ : str = self._write(file_obj=self.path_or_buf , batch_size=A , **self.parquet_writer_kwargs )
return written
def UpperCAmelCase__ (self , A , A , **A ):
lowerCamelCase_ : Optional[Any] = 0
lowerCamelCase_ : Tuple = parquet_writer_kwargs.pop('''path_or_buf''' , A )
lowerCamelCase_ : Tuple = self.dataset.features.arrow_schema
lowerCamelCase_ : Optional[int] = pq.ParquetWriter(A , schema=A , **A )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , A ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ):
lowerCamelCase_ : List[Any] = query_table(
table=self.dataset._data , key=slice(A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(A )
written += batch.nbytes
writer.close()
return written
| 318 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
__lowercase : Dict = logging.get_logger(__name__)
__lowercase : str = '''T5Config'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = jnp.zeros_like(_lowercase )
lowerCamelCase_ : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase_ : List[str] = shifted_input_ids.at[:, 0].set(_lowercase )
lowerCamelCase_ : Tuple = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase )
return shifted_input_ids
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Dict = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "mt5"
lowerCamelCase : int = MTaConfig
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = "mt5"
lowerCamelCase : Union[str, Any] = MTaConfig
| 318 | 1 |
'''simple docstring'''
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
__lowercase : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(_lowercase )
class __lowercase ( _lowercase ):
def __init__(self , **A ):
super().__init__(**A )
requires_backends(self , '''vision''' )
requires_backends(self , '''torch''' )
if self.framework != "pt":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
self.check_model_type(A )
def UpperCAmelCase__ (self , **A ):
lowerCamelCase_ : Optional[int] = {}
lowerCamelCase_ : List[Any] = {}
lowerCamelCase_ : List[str] = {}
# preprocess args
if "points_per_batch" in kwargs:
lowerCamelCase_ : Optional[Any] = kwargs['''points_per_batch''']
if "points_per_crop" in kwargs:
lowerCamelCase_ : Union[str, Any] = kwargs['''points_per_crop''']
if "crops_n_layers" in kwargs:
lowerCamelCase_ : str = kwargs['''crops_n_layers''']
if "crop_overlap_ratio" in kwargs:
lowerCamelCase_ : Optional[Any] = kwargs['''crop_overlap_ratio''']
if "crop_n_points_downscale_factor" in kwargs:
lowerCamelCase_ : List[Any] = kwargs['''crop_n_points_downscale_factor''']
# postprocess args
if "pred_iou_thresh" in kwargs:
lowerCamelCase_ : Any = kwargs['''pred_iou_thresh''']
if "stability_score_offset" in kwargs:
lowerCamelCase_ : Dict = kwargs['''stability_score_offset''']
if "mask_threshold" in kwargs:
lowerCamelCase_ : Union[str, Any] = kwargs['''mask_threshold''']
if "stability_score_thresh" in kwargs:
lowerCamelCase_ : List[Any] = kwargs['''stability_score_thresh''']
if "crops_nms_thresh" in kwargs:
lowerCamelCase_ : str = kwargs['''crops_nms_thresh''']
if "output_rle_mask" in kwargs:
lowerCamelCase_ : Tuple = kwargs['''output_rle_mask''']
if "output_bboxes_mask" in kwargs:
lowerCamelCase_ : Dict = kwargs['''output_bboxes_mask''']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , A , *A , A=None , A=None , **A ):
return super().__call__(A , *A , num_workers=A , batch_size=A , **A )
def UpperCAmelCase__ (self , A , A=6_4 , A = 0 , A = 5_1_2 / 1_5_0_0 , A = 3_2 , A = 1 , ):
lowerCamelCase_ : Optional[Any] = load_image(A )
lowerCamelCase_ : Optional[int] = self.image_processor.size['''longest_edge''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processor.generate_crop_boxes(
A , A , A , A , A , A )
lowerCamelCase_ : Dict = self.image_processor(images=A , return_tensors='''pt''' )
with self.device_placement():
if self.framework == "pt":
lowerCamelCase_ : Any = self.get_inference_context()
with inference_context():
lowerCamelCase_ : str = self._ensure_tensor_on_device(A , device=self.device )
lowerCamelCase_ : Any = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) )
lowerCamelCase_ : Optional[Any] = image_embeddings
lowerCamelCase_ : List[Any] = grid_points.shape[1]
lowerCamelCase_ : Any = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '''
'''To return all points at once, set points_per_batch to None''' )
for i in range(0 , A , A ):
lowerCamelCase_ : List[Any] = grid_points[:, i : i + points_per_batch, :, :]
lowerCamelCase_ : List[Any] = input_labels[:, i : i + points_per_batch]
lowerCamelCase_ : Any = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCAmelCase__ (self , A , A=0.88 , A=0.95 , A=0 , A=1 , ):
lowerCamelCase_ : Optional[int] = model_inputs.pop('''input_boxes''' )
lowerCamelCase_ : Optional[int] = model_inputs.pop('''is_last''' )
lowerCamelCase_ : List[Any] = model_inputs.pop('''original_sizes''' ).tolist()
lowerCamelCase_ : Dict = model_inputs.pop('''reshaped_input_sizes''' ).tolist()
lowerCamelCase_ : Any = self.model(**A )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
lowerCamelCase_ : str = model_outputs['''pred_masks''']
lowerCamelCase_ : Any = self.image_processor.post_process_masks(
A , A , A , A , binarize=A )
lowerCamelCase_ : Dict = model_outputs['''iou_scores''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , A , A , A , A , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCAmelCase__ (self , A , A=False , A=False , A=0.7 , ):
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
lowerCamelCase_ : str = []
for model_output in model_outputs:
all_scores.append(model_output.pop('''iou_scores''' ) )
all_masks.extend(model_output.pop('''masks''' ) )
all_boxes.append(model_output.pop('''boxes''' ) )
lowerCamelCase_ : Optional[int] = torch.cat(A )
lowerCamelCase_ : str = torch.cat(A )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Tuple = self.image_processor.post_process_for_mask_generation(
A , A , A , A )
lowerCamelCase_ : List[Any] = defaultdict(A )
for output in model_outputs:
for k, v in output.items():
extra[k].append(A )
lowerCamelCase_ : Optional[Any] = {}
if output_rle_mask:
lowerCamelCase_ : Any = rle_mask
if output_bboxes_mask:
lowerCamelCase_ : Any = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 318 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = 1
lowerCamelCase_ : str = 3
lowerCamelCase_ : Dict = (3_2, 3_2)
lowerCamelCase_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A )
return image
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Any = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(A )
@property
def UpperCAmelCase__ (self ):
def extract(*A , **A ):
class __lowercase :
def __init__(self ):
lowerCamelCase_ : Any = torch.ones([0] )
def UpperCAmelCase__ (self , A ):
self.pixel_values.to(A )
return self
return Out()
return extract
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ : List[Any] = self.dummy_cond_unet
lowerCamelCase_ : Any = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : Union[str, Any] = self.dummy_vae
lowerCamelCase_ : List[Any] = self.dummy_text_encoder
lowerCamelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Dict = 7_7
lowerCamelCase_ : Union[str, Any] = self.dummy_image.to(A )
lowerCamelCase_ : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : int = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Optional[Any] = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : Optional[Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Optional[Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , )
lowerCamelCase_ : int = output.images
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 )
lowerCamelCase_ : Union[str, Any] = alt_pipe(
[prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=A , return_dict=A , )[0]
lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCamelCase_ : str = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.dummy_cond_unet
lowerCamelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=A )
lowerCamelCase_ : List[Any] = self.dummy_vae
lowerCamelCase_ : Dict = self.dummy_text_encoder
lowerCamelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ : Optional[Any] = 7_7
lowerCamelCase_ : str = self.dummy_image.to(A )
# put models in fp16
lowerCamelCase_ : Optional[int] = unet.half()
lowerCamelCase_ : Dict = vae.half()
lowerCamelCase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase_ : Dict = AltDiffusionImgaImgPipeline(
unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , )
lowerCamelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A )
lowerCamelCase_ : Any = alt_pipe.to(A )
alt_pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : Tuple = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ : str = torch.manual_seed(0 )
lowerCamelCase_ : Optional[int] = alt_pipe(
[prompt] , generator=A , num_inference_steps=2 , output_type='''np''' , image=A , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
lowerCamelCase_ : List[str] = init_image.resize((7_6_0, 5_0_4) )
lowerCamelCase_ : List[Any] = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : Any = torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : Dict = output.images[0]
lowerCamelCase_ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowerCamelCase_ : Union[str, Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
lowerCamelCase_ : List[str] = init_image.resize((7_6_8, 5_1_2) )
lowerCamelCase_ : str = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
lowerCamelCase_ : int = '''BAAI/AltDiffusion'''
lowerCamelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained(
A , safety_checker=A , )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
pipe.enable_attention_slicing()
lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation'''
lowerCamelCase_ : List[Any] = torch.manual_seed(0 )
lowerCamelCase_ : Dict = pipe(
prompt=A , image=A , strength=0.75 , guidance_scale=7.5 , generator=A , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 318 | 1 |
'''simple docstring'''
class __lowercase :
def __init__(self , A , A , A ):
lowerCamelCase_ : Any = None
lowerCamelCase_ : List[str] = None
lowerCamelCase_ : Optional[Any] = graph
self._normalize_graph(A , A )
lowerCamelCase_ : Tuple = len(A )
lowerCamelCase_ : Optional[int] = None
def UpperCAmelCase__ (self , A , A ):
if sources is int:
lowerCamelCase_ : Union[str, Any] = [sources]
if sinks is int:
lowerCamelCase_ : int = [sinks]
if len(A ) == 0 or len(A ) == 0:
return
lowerCamelCase_ : Any = sources[0]
lowerCamelCase_ : Any = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(A ) > 1 or len(A ) > 1:
lowerCamelCase_ : Optional[Any] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
lowerCamelCase_ : Optional[int] = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
lowerCamelCase_ : Optional[int] = max_input_flow
lowerCamelCase_ : str = 0
lowerCamelCase_ : List[Any] = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
lowerCamelCase_ : Optional[int] = max_input_flow
lowerCamelCase_ : int = size - 1
def UpperCAmelCase__ (self ):
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Tuple = algorithm(self )
class __lowercase :
def __init__(self , A ):
lowerCamelCase_ : Tuple = flow_network
lowerCamelCase_ : Union[str, Any] = flow_network.verticesCount
lowerCamelCase_ : List[Any] = flow_network.sourceIndex
lowerCamelCase_ : Optional[int] = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
lowerCamelCase_ : Tuple = flow_network.graph
lowerCamelCase_ : List[Any] = False
def UpperCAmelCase__ (self ):
if not self.executed:
self._algorithm()
lowerCamelCase_ : List[Any] = True
def UpperCAmelCase__ (self ):
pass
class __lowercase ( _lowercase ):
def __init__(self , A ):
super().__init__(A )
# use this to save your result
lowerCamelCase_ : Union[str, Any] = -1
def UpperCAmelCase__ (self ):
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class __lowercase ( _lowercase ):
def __init__(self , A ):
super().__init__(A )
lowerCamelCase_ : str = [[0] * self.verticies_count for i in range(self.verticies_count )]
lowerCamelCase_ : Optional[Any] = [0] * self.verticies_count
lowerCamelCase_ : Tuple = [0] * self.verticies_count
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
lowerCamelCase_ : Optional[Any] = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
lowerCamelCase_ : List[Any] = 0
while i < len(A ):
lowerCamelCase_ : List[str] = vertices_list[i]
lowerCamelCase_ : Dict = self.heights[vertex_index]
self.process_vertex(A )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(A ) )
lowerCamelCase_ : List[str] = 0
else:
i += 1
lowerCamelCase_ : Dict = sum(self.preflow[self.source_index] )
def UpperCAmelCase__ (self , A ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(A , A )
self.relabel(A )
def UpperCAmelCase__ (self , A , A ):
lowerCamelCase_ : Any = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[Any] = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
lowerCamelCase_ : List[str] = self.heights[to_index]
if min_height is not None:
lowerCamelCase_ : int = min_height + 1
if __name__ == "__main__":
__lowercase : Union[str, Any] = [0]
__lowercase : Optional[int] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
__lowercase : List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
__lowercase : str = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
__lowercase : Union[str, Any] = flow_network.find_maximum_flow()
print(f'maximum flow is {maximum_flow}')
| 318 |
'''simple docstring'''
from itertools import permutations
def lowercase_ ( _lowercase ) -> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
lowerCamelCase_ : int = [7, 11, 13, 17]
for i, test in enumerate(_lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase_ ( _lowercase = 10 ) -> int:
'''simple docstring'''
return sum(
int(''''''.join(map(_lowercase , _lowercase ) ) )
for num in permutations(range(_lowercase ) )
if is_substring_divisible(_lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 318 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__lowercase : List[str] = {
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class __lowercase ( _lowercase ):
lowerCamelCase : Tuple = "facebook/nllb-200-distilled-600M"
lowerCamelCase : List[str] = (
"This is a tool that translates text from a language to another. It takes three inputs: `text`, which should "
"be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, "
"which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in "
"plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."
)
lowerCamelCase : int = "translator"
lowerCamelCase : Optional[Any] = AutoTokenizer
lowerCamelCase : str = AutoModelForSeqaSeqLM
lowerCamelCase : Dict = LANGUAGE_CODES
lowerCamelCase : int = ["text", "text", "text"]
lowerCamelCase : int = ["text"]
def UpperCAmelCase__ (self , A , A , A ):
if src_lang not in self.lang_to_code:
raise ValueError(F"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"""{tgt_lang} is not a supported language.""" )
lowerCamelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCamelCase_ : Tuple = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
A , return_tensors='''pt''' , src_lang=A , tgt_lang=A )
def UpperCAmelCase__ (self , A ):
return self.model.generate(**A )
def UpperCAmelCase__ (self , A ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
| 318 |
'''simple docstring'''
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = LayoutLMTokenizer
lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast
lowerCamelCase : Optional[int] = True
lowerCamelCase : int = True
def UpperCAmelCase__ (self ):
super().setUp()
lowerCamelCase_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def UpperCAmelCase__ (self , **A ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Any = '''UNwant\u00E9d,running'''
lowerCamelCase_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] )
def UpperCAmelCase__ (self ):
pass
| 318 | 1 |
'''simple docstring'''
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_, lowerCamelCase_ : str = len(_lowercase ), len(grid[0] )
if (
min(_lowercase , _lowercase ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
lowerCamelCase_ : Union[str, Any] = 0
count += depth_first_search(_lowercase , row + 1 , _lowercase , _lowercase )
count += depth_first_search(_lowercase , row - 1 , _lowercase , _lowercase )
count += depth_first_search(_lowercase , _lowercase , col + 1 , _lowercase )
count += depth_first_search(_lowercase , _lowercase , col - 1 , _lowercase )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318 |
'''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)] )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : List[str] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A , config_name=A )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(A , config_name=A )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = AutoConfig.from_pretrained('''gpt2''' )
lowerCamelCase_ : Dict = GenerationConfig.from_model_config(A )
lowerCamelCase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A , A )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = GenerationConfig()
lowerCamelCase_ : Dict = {
'''max_new_tokens''': 1_0_2_4,
'''foo''': '''bar''',
}
lowerCamelCase_ : int = copy.deepcopy(A )
lowerCamelCase_ : str = generation_config.update(**A )
# update_kwargs was not modified (no side effects)
self.assertEqual(A , A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A , {'''foo''': '''bar'''} )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = GenerationConfig()
lowerCamelCase_ : str = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(A )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained(A )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
lowerCamelCase_ : Tuple = GenerationConfig.from_model_config(A )
assert not hasattr(A , '''foo''' ) # no new kwargs should be initialized if from config
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , A )
self.assertEqual(default_config.num_beams , 1 )
lowerCamelCase_ : Tuple = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , A )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A )
lowerCamelCase_ : List[str] = GenerationConfig.from_pretrained(A , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , A )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def UpperCAmelCase__ (cls ):
lowerCamelCase_ : Dict = TOKEN
HfFolder.save_token(A )
@classmethod
def UpperCAmelCase__ (cls ):
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''test-generation-config''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = GenerationConfig(
do_sample=A , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
lowerCamelCase_ : Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=A , use_auth_token=self._token )
lowerCamelCase_ : Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A , getattr(A , A ) )
| 318 | 1 |
'''simple docstring'''
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
__lowercase : Any = logging.get_logger(__name__)
class __lowercase ( _lowercase ):
lowerCamelCase : int = CLIPConfig
lowerCamelCase : str = ["CLIPEncoderLayer"]
def __init__(self , A ):
super().__init__(A )
lowerCamelCase_ : List[str] = CLIPVisionModelWithProjection(config.vision_config )
lowerCamelCase_ : List[str] = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCamelCase_ : List[Any] = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def UpperCAmelCase__ (self , A , A , A=0.5 , A=0.5 ):
lowerCamelCase_ : Any = self.vision_model(A )[0]
lowerCamelCase_ : str = self.p_head(A )
lowerCamelCase_ : Optional[int] = nsfw_detected.flatten()
lowerCamelCase_ : str = nsfw_detected > p_threshold
lowerCamelCase_ : Optional[int] = nsfw_detected.tolist()
if any(A ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(A ):
if nsfw_detected_:
lowerCamelCase_ : List[Any] = np.zeros(images[idx].shape )
lowerCamelCase_ : List[Any] = self.w_head(A )
lowerCamelCase_ : List[str] = watermark_detected.flatten()
lowerCamelCase_ : Dict = watermark_detected > w_threshold
lowerCamelCase_ : str = watermark_detected.tolist()
if any(A ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(A ):
if watermark_detected_:
lowerCamelCase_ : int = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 318 |
'''simple docstring'''
import numpy
class __lowercase :
def __init__(self , A , A ):
lowerCamelCase_ : Optional[int] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase_ : Optional[Any] = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCamelCase_ : Dict = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase_ : Optional[Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCamelCase_ : List[Any] = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCamelCase_ : Optional[int] = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def UpperCAmelCase__ (self , A , A , A ):
for iteration in range(1 , iterations + 1 ):
lowerCamelCase_ : Any = self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F"""Iteration {iteration} Loss: {loss}""" )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[int] = input_arr
lowerCamelCase_ : List[Any] = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCamelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCamelCase_ : Union[str, Any] = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def lowercase_ ( _lowercase ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def lowercase_ ( ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork(
input_array=_lowercase , output_array=_lowercase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 318 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __lowercase :
def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=2 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ):
lowerCamelCase_ : List[str] = parent
lowerCamelCase_ : Union[str, Any] = 1_3
lowerCamelCase_ : Optional[Any] = 7
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : Union[str, Any] = True
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : Optional[Any] = 9_9
lowerCamelCase_ : Optional[Any] = 3_2
lowerCamelCase_ : Dict = 2
lowerCamelCase_ : str = 4
lowerCamelCase_ : Optional[int] = 3_7
lowerCamelCase_ : List[str] = '''gelu'''
lowerCamelCase_ : Union[str, Any] = 0.1
lowerCamelCase_ : Optional[int] = 0.1
lowerCamelCase_ : int = 5_1_2
lowerCamelCase_ : List[str] = 1_6
lowerCamelCase_ : Any = 2
lowerCamelCase_ : List[str] = 0.02
lowerCamelCase_ : Tuple = 3
lowerCamelCase_ : Tuple = 4
lowerCamelCase_ : Optional[Any] = None
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ : Dict = None
if self.use_input_mask:
lowerCamelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ : List[str] = None
if self.use_token_type_ids:
lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_ : str = None
lowerCamelCase_ : List[Any] = None
lowerCamelCase_ : Tuple = None
if self.use_labels:
lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ : List[str] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Union[str, Any] = TFRoFormerModel(config=A )
lowerCamelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowerCamelCase_ : Dict = [input_ids, input_mask]
lowerCamelCase_ : Optional[int] = model(A )
lowerCamelCase_ : Optional[int] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : int = TFRoFormerForCausalLM(config=A )
lowerCamelCase_ : Union[str, Any] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : Optional[Any] = model(A )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : List[str] = TFRoFormerForMaskedLM(config=A )
lowerCamelCase_ : Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : Optional[int] = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : int = self.num_labels
lowerCamelCase_ : Any = TFRoFormerForSequenceClassification(config=A )
lowerCamelCase_ : Dict = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : Optional[int] = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Tuple = self.num_choices
lowerCamelCase_ : Tuple = TFRoFormerForMultipleChoice(config=A )
lowerCamelCase_ : Tuple = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) )
lowerCamelCase_ : Optional[int] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) )
lowerCamelCase_ : Any = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) )
lowerCamelCase_ : Any = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowerCamelCase_ : List[str] = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : List[str] = self.num_labels
lowerCamelCase_ : List[str] = TFRoFormerForTokenClassification(config=A )
lowerCamelCase_ : str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : List[Any] = model(A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ (self , A , A , A , A , A , A , A ):
lowerCamelCase_ : Optional[Any] = TFRoFormerForQuestionAnswering(config=A )
lowerCamelCase_ : Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ : int = model(A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
),
) : Tuple = config_and_inputs
lowerCamelCase_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __lowercase ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : Dict = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCamelCase : Optional[int] = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase : List[str] = False
lowerCamelCase : Any = False
def UpperCAmelCase__ (self , A , A , A , A , A ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = TFRoFormerModelTester(self )
lowerCamelCase_ : Tuple = ConfigTester(self , config_class=A , hidden_size=3_7 )
def UpperCAmelCase__ (self ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(A )
@require_tf
class __lowercase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
lowerCamelCase_ : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ : int = model(A )[0]
# TODO Replace vocab size
lowerCamelCase_ : List[str] = 5_0_0_0_0
lowerCamelCase_ : Optional[int] = [1, 6, vocab_size]
self.assertEqual(output.shape , A )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
lowerCamelCase_ : Any = tf.constant(
[
[
[-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46],
[-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07],
[-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , A , atol=1E-4 )
@require_tf
class __lowercase ( unittest.TestCase ):
lowerCamelCase : str = 1e-4
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = tf.constant([[4, 1_0]] )
lowerCamelCase_ : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
lowerCamelCase_ : int = emba(input_ids.shape )
lowerCamelCase_ : List[str] = tf.constant(
[[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] )
tf.debugging.assert_near(A , A , atol=self.tolerance )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = tf.constant(
[
[0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00],
[0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17],
[0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70],
] )
lowerCamelCase_ : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 )
emba([2, 1_6, 5_1_2] )
lowerCamelCase_ : str = emba.weight[:3, :5]
tf.debugging.assert_near(A , A , atol=self.tolerance )
@require_tf
class __lowercase ( unittest.TestCase ):
lowerCamelCase : Dict = 1e-4
def UpperCAmelCase__ (self ):
# 2,12,16,64
lowerCamelCase_ : str = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
lowerCamelCase_ : Any = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
lowerCamelCase_ : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 )
lowerCamelCase_ : str = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :]
lowerCamelCase_, lowerCamelCase_ : List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
A , A , A )
lowerCamelCase_ : List[str] = tf.constant(
[
[0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00],
[-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43],
[-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85],
[-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71],
[0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80],
[3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53],
] )
lowerCamelCase_ : Optional[Any] = tf.constant(
[
[0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00],
[0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43],
[1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85],
[2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71],
[-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80],
[-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A , atol=self.tolerance )
| 318 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Any = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Union[str, Any] = True
lowerCamelCase : Union[str, Any] = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : Optional[int] = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''</s>'''
lowerCamelCase_ : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(A ) , 1_1_0_3 )
def UpperCAmelCase__ (self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : str = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6_1_0_3
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_0_3
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_0_2_4
lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1]
lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0]
self.assertListEqual(A , A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example''']
lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Dict = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1_0_2_4)
assert batch.attention_mask.shape == (2, 1_0_2_4)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ (self ):
# fmt: off
lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : str = PegasusTokenizer
lowerCamelCase : Optional[Any] = PegasusTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : str = True
def UpperCAmelCase__ (self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ (self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def UpperCAmelCase__ (self , **A ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **A )
def UpperCAmelCase__ (self , A ):
return ("This is a test", "This is a test")
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCamelCase_ : Tuple = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0]
self.assertListEqual(A , A )
@require_torch
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example''']
lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = self._large_tokenizer(
text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4_0_9_6)
assert batch.attention_mask.shape == (2, 4_0_9_6)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
| 318 | 1 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class __lowercase :
def __init__(self , A , A=9_9 , A=1_3 , A=1_6 , A=7 , A=True , A=True , A=True , A=False , A=True , A=2 , A=3_2 , A=4 , A=4 , A=3_0 , A=0 , A=1 , A=2 , A=None , ):
lowerCamelCase_ : Optional[int] = parent
lowerCamelCase_ : Union[str, Any] = batch_size
lowerCamelCase_ : Optional[int] = decoder_seq_length
# For common tests
lowerCamelCase_ : Tuple = self.decoder_seq_length
lowerCamelCase_ : Optional[Any] = is_training
lowerCamelCase_ : Any = use_attention_mask
lowerCamelCase_ : Any = use_labels
lowerCamelCase_ : Tuple = vocab_size
lowerCamelCase_ : str = d_model
lowerCamelCase_ : Tuple = d_model
lowerCamelCase_ : Dict = decoder_layers
lowerCamelCase_ : List[str] = decoder_layers
lowerCamelCase_ : Any = decoder_ffn_dim
lowerCamelCase_ : Any = decoder_attention_heads
lowerCamelCase_ : Optional[int] = decoder_attention_heads
lowerCamelCase_ : Optional[int] = eos_token_id
lowerCamelCase_ : List[Any] = bos_token_id
lowerCamelCase_ : Union[str, Any] = pad_token_id
lowerCamelCase_ : List[Any] = decoder_start_token_id
lowerCamelCase_ : Optional[int] = use_cache
lowerCamelCase_ : int = max_position_embeddings
lowerCamelCase_ : str = None
lowerCamelCase_ : Optional[Any] = decoder_seq_length
lowerCamelCase_ : int = 2
lowerCamelCase_ : List[Any] = 1
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowerCamelCase_ : Optional[Any] = None
if self.use_attention_mask:
lowerCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
lowerCamelCase_ : List[Any] = None
if self.use_labels:
lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
lowerCamelCase_ : Optional[Any] = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def UpperCAmelCase__ (self , A , A , A , A , ):
lowerCamelCase_ : List[str] = True
lowerCamelCase_ : List[str] = TrOCRDecoder(config=A ).to(A ).eval()
lowerCamelCase_ : Dict = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowerCamelCase_ : Any = model(A , use_cache=A )
lowerCamelCase_ : Any = model(A )
lowerCamelCase_ : Tuple = model(A , use_cache=A )
self.parent.assertTrue(len(A ) == len(A ) )
self.parent.assertTrue(len(A ) == len(A ) + 1 )
lowerCamelCase_ : Tuple = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
lowerCamelCase_ : Any = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
lowerCamelCase_ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCamelCase_ : int = model(A )['''last_hidden_state''']
lowerCamelCase_ : str = model(A , past_key_values=A )['''last_hidden_state''']
# select random slice
lowerCamelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCamelCase_ : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowerCamelCase_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(A , A , atol=1E-3 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = config_and_inputs
lowerCamelCase_ : str = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class __lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : Dict = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase : Any = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase : Optional[Any] = True
lowerCamelCase : Optional[int] = False
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = TrOCRStandaloneDecoderModelTester(self , is_training=A )
lowerCamelCase_ : Any = ConfigTester(self , config_class=A )
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*A )
def UpperCAmelCase__ (self ):
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def UpperCAmelCase__ (self ):
pass
| 318 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
__lowercase : str = Lock()
def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(_lowercase )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCamelCase_ : Dict = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCamelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(_lowercase )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCamelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCamelCase_ : Any = max(_lowercase , _lowercase )
# after all swaps are performed, send the values back to main
result_pipe[1].send(_lowercase )
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
lowerCamelCase_ : int = []
lowerCamelCase_ : Tuple = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : List[Any] = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
lowerCamelCase_ : Optional[Any] = temp_rs
lowerCamelCase_ : List[str] = temp_rr
for i in range(1 , len(_lowercase ) - 1 ):
lowerCamelCase_ : str = Pipe()
lowerCamelCase_ : Any = Pipe()
process_array_.append(
Process(
target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
lowerCamelCase_ : Dict = temp_rs
lowerCamelCase_ : Tuple = temp_rr
process_array_.append(
Process(
target=_lowercase , args=(
len(_lowercase ) - 1,
arr[len(_lowercase ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(_lowercase ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(_lowercase ) ):
lowerCamelCase_ : Optional[Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def lowercase_ ( ) -> Any:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = list(range(10 , 0 , -1 ) )
print('''Initial List''' )
print(*_lowercase )
lowerCamelCase_ : Optional[int] = odd_even_transposition(_lowercase )
print('''Sorted List\n''' )
print(*_lowercase )
if __name__ == "__main__":
main()
| 318 | 1 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__lowercase : Optional[Any] = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self , A , A , A = None , A = None ):
lowerCamelCase_ : int = None
lowerCamelCase_ : str = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
lowerCamelCase_ : Dict = os.path.abspath('''examples''' )
for item in os.listdir(A ):
if item not in EXCLUDE_EXAMPLES:
lowerCamelCase_ : Tuple = os.path.join(A , A )
if os.path.isfile(A ) and ".py" in item_path:
with self.subTest(
tested_script=A , feature_script=A , tested_section='''main()''' if parser_only else '''training_function()''' , ):
lowerCamelCase_ : Optional[Any] = compare_against_test(
os.path.join(A , A ) , A , A , A )
lowerCamelCase_ : int = '''\n'''.join(A )
if special_strings is not None:
for string in special_strings:
lowerCamelCase_ : List[str] = diff.replace(A , '''''' )
self.assertEqual(A , '''''' )
def UpperCAmelCase__ (self ):
self.one_complete_example('''complete_nlp_example.py''' , A )
self.one_complete_example('''complete_nlp_example.py''' , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
lowerCamelCase_ : List[Any] = [
''' ''' * 1_6 + '''{\n\n''',
''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 2_0 + '''"epoch": epoch,\n\n''',
''' ''' * 1_6 + '''},\n\n''',
''' ''' * 1_6 + '''step=epoch,\n''',
''' ''' * 1_2,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , A , A , A )
self.one_complete_example('''complete_cv_example.py''' , A , A , A )
@mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} )
class __lowercase ( _lowercase ):
lowerCamelCase : Union[str, Any] = False
@classmethod
def UpperCAmelCase__ (cls ):
super().setUpClass()
lowerCamelCase_ : List[str] = tempfile.mkdtemp()
lowerCamelCase_ : List[str] = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
lowerCamelCase_ : Any = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def UpperCAmelCase__ (cls ):
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = F"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = F"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
lowerCamelCase_ : List[str] = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = F"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}
""".split()
lowerCamelCase_ : str = run_command(self._launch_args + testargs , return_stdout=A )
self.assertNotIn('''epoch 0:''' , A )
self.assertIn('''epoch 1:''' , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[int] = F"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}
""".split()
lowerCamelCase_ : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=A )
if torch.cuda.is_available():
lowerCamelCase_ : Optional[int] = torch.cuda.device_count()
else:
lowerCamelCase_ : List[Any] = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , A )
self.assertIn('''epoch 1:''' , A )
else:
self.assertIn('''epoch 0:''' , A )
self.assertIn('''epoch 1:''' , A )
@slow
def UpperCAmelCase__ (self ):
lowerCamelCase_ : str = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
lowerCamelCase_ : Dict = run_command(self._launch_args + testargs , return_stdout=A )
lowerCamelCase_ : Any = re.findall('''({.+})''' , A )
lowerCamelCase_ : Tuple = [r for r in results if '''accuracy''' in r][-1]
lowerCamelCase_ : str = ast.literal_eval(A )
self.assertGreaterEqual(results['''accuracy'''] , 0.75 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Dict = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def UpperCAmelCase__ (self ):
with tempfile.TemporaryDirectory() as tmpdir:
lowerCamelCase_ : int = F"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(A , '''tracking''' ) ) )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 318 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''0.12.2'''):
raise Exception('''requires fairseq >= 0.12.2''')
if version.parse(fairseq.__version__) > version.parse('''2'''):
raise Exception('''requires fairseq < v2''')
logging.set_verbosity_info()
__lowercase : Union[str, Any] = logging.get_logger(__name__)
__lowercase : List[str] = '''Hello, World!'''
__lowercase : Union[str, Any] = '''en_XX'''
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Tuple = Path('''data_bin''' )
lowerCamelCase_ : Dict = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , )
xmod.eval() # disable dropout
print(_lowercase )
lowerCamelCase_ : Dict = xmod.model.encoder.sentence_encoder
lowerCamelCase_ : List[Any] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
lowerCamelCase_ : Tuple = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our X-MOD config:''' , _lowercase )
lowerCamelCase_ : int = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCamelCase_ : Dict = xmod_sent_encoder.embed_tokens.weight
lowerCamelCase_ : str = xmod_sent_encoder.embed_positions.weight
lowerCamelCase_ : Optional[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
lowerCamelCase_ : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
lowerCamelCase_ : Dict = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCamelCase_ : List[str] = model.roberta.encoder.layer[i]
lowerCamelCase_ : int = xmod_sent_encoder.layers[i]
# self attention
lowerCamelCase_ : Dict = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('''Dimensions of self-attention weights do not match.''' )
lowerCamelCase_ : List[Any] = xmod_layer.self_attn.q_proj.weight
lowerCamelCase_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn.k_proj.weight
lowerCamelCase_ : Tuple = xmod_layer.self_attn.k_proj.bias
lowerCamelCase_ : str = xmod_layer.self_attn.v_proj.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
lowerCamelCase_ : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('''Dimensions of self-attention output weights do not match.''' )
lowerCamelCase_ : List[str] = xmod_layer.self_attn.out_proj.weight
lowerCamelCase_ : int = xmod_layer.self_attn.out_proj.bias
lowerCamelCase_ : Any = xmod_layer.self_attn_layer_norm.weight
lowerCamelCase_ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
lowerCamelCase_ : str = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of intermediate weights do not match.''' )
lowerCamelCase_ : Tuple = xmod_layer.fca.weight
lowerCamelCase_ : str = xmod_layer.fca.bias
# output
lowerCamelCase_ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('''Dimensions of feed-forward weights do not match.''' )
lowerCamelCase_ : Optional[int] = xmod_layer.fca.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.fca.bias
lowerCamelCase_ : Dict = xmod_layer.final_layer_norm.weight
lowerCamelCase_ : Optional[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
lowerCamelCase_ : Optional[int] = xmod_layer.adapter_layer_norm.weight
lowerCamelCase_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('''Lists of language adapters do not match.''' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
lowerCamelCase_ : List[str] = bert_output.adapter_modules[lang_code]
lowerCamelCase_ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
lowerCamelCase_ : List[Any] = from_adapter.fca.weight
lowerCamelCase_ : str = from_adapter.fca.bias
lowerCamelCase_ : Union[str, Any] = from_adapter.fca.weight
lowerCamelCase_ : int = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
lowerCamelCase_ : str = xmod_sent_encoder.layer_norm.weight
lowerCamelCase_ : Any = xmod_sent_encoder.layer_norm.bias
if classification_head:
lowerCamelCase_ : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.bias
lowerCamelCase_ : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight
lowerCamelCase_ : str = xmod.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
lowerCamelCase_ : List[str] = xmod.model.encoder.lm_head.dense.weight
lowerCamelCase_ : Optional[Any] = xmod.model.encoder.lm_head.dense.bias
lowerCamelCase_ : Dict = xmod.model.encoder.lm_head.layer_norm.weight
lowerCamelCase_ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias
lowerCamelCase_ : List[Any] = xmod.model.encoder.lm_head.weight
lowerCamelCase_ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCamelCase_ : Dict = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
lowerCamelCase_ : Tuple = model(_lowercase )[0]
if classification_head:
lowerCamelCase_ : Union[str, Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) )
else:
lowerCamelCase_ : Union[str, Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
lowerCamelCase_ : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
lowerCamelCase_ : Optional[int] = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
__lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
__lowercase : Any = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 318 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : List[str] = logging.get_logger(__name__)
__lowercase : Any = {
'''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class __lowercase ( _lowercase ):
lowerCamelCase : List[Any] = "pegasus"
lowerCamelCase : Union[str, Any] = ["past_key_values"]
lowerCamelCase : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(self , A=5_0_2_6_5 , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A=True , A=True , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0 , A=False , A=0 , A=1 , A=1 , **A , ):
lowerCamelCase_ : Tuple = vocab_size
lowerCamelCase_ : Union[str, Any] = max_position_embeddings
lowerCamelCase_ : Union[str, Any] = d_model
lowerCamelCase_ : Any = encoder_ffn_dim
lowerCamelCase_ : int = encoder_layers
lowerCamelCase_ : Optional[int] = encoder_attention_heads
lowerCamelCase_ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase_ : Optional[int] = decoder_layers
lowerCamelCase_ : Dict = decoder_attention_heads
lowerCamelCase_ : Optional[Any] = dropout
lowerCamelCase_ : Any = attention_dropout
lowerCamelCase_ : Dict = activation_dropout
lowerCamelCase_ : Optional[int] = activation_function
lowerCamelCase_ : Any = init_std
lowerCamelCase_ : Dict = encoder_layerdrop
lowerCamelCase_ : Union[str, Any] = decoder_layerdrop
lowerCamelCase_ : int = use_cache
lowerCamelCase_ : Dict = encoder_layers
lowerCamelCase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , )
@property
def UpperCAmelCase__ (self ):
return self.encoder_attention_heads
@property
def UpperCAmelCase__ (self ):
return self.d_model
| 318 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : str = logging.get_logger(__name__)
__lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __lowercase ( _lowercase ):
lowerCamelCase : int = "ctrl"
lowerCamelCase : Optional[int] = ["past_key_values"]
lowerCamelCase : Optional[int] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ):
lowerCamelCase_ : List[str] = vocab_size
lowerCamelCase_ : Optional[Any] = n_positions
lowerCamelCase_ : List[Any] = n_embd
lowerCamelCase_ : Optional[Any] = n_layer
lowerCamelCase_ : Any = n_head
lowerCamelCase_ : int = dff
lowerCamelCase_ : str = resid_pdrop
lowerCamelCase_ : List[Any] = embd_pdrop
lowerCamelCase_ : List[Any] = layer_norm_epsilon
lowerCamelCase_ : Any = initializer_range
lowerCamelCase_ : Dict = use_cache
super().__init__(**A )
| 318 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __lowercase ( tf.keras.layers.Layer ):
def __init__(self , A , A , A = None , A = None ):
super().__init__()
lowerCamelCase_ : List[Any] = pad_token_id
lowerCamelCase_ : Union[str, Any] = max_length
lowerCamelCase_ : List[Any] = vocab
lowerCamelCase_ : Optional[int] = merges
lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()]
lowerCamelCase_ : Dict = tokenizer.get_vocab()
return cls(A , A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A , *A , **A ):
lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A )
return cls.from_tokenizer(A , *A , **A )
@classmethod
def UpperCAmelCase__ (cls , A ):
return cls(**A )
def UpperCAmelCase__ (self ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = self.tf_tokenizer(A )
lowerCamelCase_ : Any = tf.ones_like(A )
if self.pad_token_id is not None:
# pad the tokens up to max length
lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length
if max_length is not None:
lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs(
A , max_seq_length=A , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 318 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.