code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_: int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Any = XLNetTokenizer a__ : Tuple = XLNetTokenizerFast a__ : int = True a__ : Optional[int] = True def _lowercase (self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLNetTokenizer(__a , keep_accents=__a ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self : Dict ): UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(__a ) , 1006 ) def _lowercase (self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowercase (self : Tuple ): UpperCAmelCase_ = XLNetTokenizer(__a , keep_accents=__a ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _lowercase (self : Any ): UpperCAmelCase_ = XLNetTokenizer(__a , do_lower_case=__a ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def _lowercase (self : int ): UpperCAmelCase_ = XLNetTokenizer(__a , do_lower_case=__a ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def _lowercase (self : str ): UpperCAmelCase_ = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _lowercase (self : Optional[int] ): # fmt: off UpperCAmelCase_ = {"input_ids": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase : List[str] = random.Random() def _SCREAMING_SNAKE_CASE (A , A=1.0 , A=None , A=None ) -> List[Any]: """simple docstring""" if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any]=7 , UpperCamelCase : Union[str, Any]=400 , UpperCamelCase : List[Any]=2000 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Dict=0.0 , UpperCamelCase : int=16000 , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = feature_size lowercase__ = padding_value lowercase__ = sampling_rate lowercase__ = return_attention_mask lowercase__ = do_normalize def UpperCamelCase__ (self : int ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : Dict=False , UpperCamelCase : Tuple=False ): '''simple docstring''' def _flatten(UpperCamelCase : Dict ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: lowercase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = WavaVecaFeatureExtractor def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Tuple ): '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowercase__ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) # Test batched lowercase__ = feat_extract(UpperCamelCase , return_tensors='''np''' ).input_values lowercase__ = feat_extract(UpperCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(UpperCamelCase ) lowercase__ = feat_extract(UpperCamelCase , return_tensors='''np''' ).input_values lowercase__ = feat_extract(UpperCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ = [None, 1600, None] for max_length, padding in zip(UpperCamelCase , UpperCamelCase ): lowercase__ = feat_extract(UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = range(800 , 1400 , 200 ) lowercase__ = [floats_list((1, x) )[0] for x in lengths] lowercase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowercase__ = [None, 1600, None] for max_length, padding in zip(UpperCamelCase , UpperCamelCase ): lowercase__ = feat_extract(UpperCamelCase , max_length=UpperCamelCase , padding=UpperCamelCase ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ = feat_extract( UpperCamelCase , truncation=UpperCamelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ = feat_extract( UpperCamelCase , truncation=UpperCamelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ = feat_extract( UpperCamelCase , truncation=UpperCamelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) lowercase__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' import torch lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = np.random.rand(100 ).astype(np.floataa ) lowercase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowercase__ = WavaVecaConfig.from_pretrained(UpperCamelCase ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
2
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 1000 ): '''simple docstring''' A : int = 2**power A : List[Any] = str(snake_case__ ) A : List[str] = list(snake_case__ ) A : List[str] = 0 for i in list_num: sum_of_num += int(snake_case__ ) return sum_of_num if __name__ == "__main__": lowercase : List[str] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) lowercase : Dict = solution(power) print('Sum of the digits is: ', result)
3
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Dict=1.0 , lowerCamelCase : Dict=None , lowerCamelCase : str=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : str=4_0_0 , UpperCAmelCase__ : List[Any]=2_0_0_0 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : List[Any]=1_6_0_0_0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Tuple=True , ) -> List[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Any ) -> List[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Optional[int]=False ) -> Dict: def _flatten(UpperCAmelCase__ : Tuple ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Tuple = WavaVecaFeatureExtractor def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase = WavaVecaFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(UpperCAmelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCAmelCase ( self : int ) -> str: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = feat_extract(UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding=UpperCAmelCase__ ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1_0_0_0 , padding='max_length' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1_0_0_0 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=2_0_0_0 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __UpperCAmelCase ( self : Any ) -> Optional[int]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
4
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Any: super().setUp() _lowercase =['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowercase =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) _lowercase =['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowercase ={'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def __A (self , **UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Optional[int]: _lowercase ='''adapt act apte''' _lowercase ='''adapt act apte''' return input_text, output_text def __A (self ) -> str: _lowercase =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase ='''adapt act apte''' _lowercase =['''adapt''', '''act''', '''ap@@''', '''te'''] _lowercase =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _lowercase =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowercase =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self ) -> Dict: _lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowercase ='''I am a small frog.''' _lowercase =tok([src_text] , padding=UpperCAmelCase , truncation=UpperCAmelCase )['''input_ids'''] _lowercase =tok.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __A (self ) -> Dict: _lowercase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowercase ='''I am a small frog .''' _lowercase ='''.''' _lowercase =tok(UpperCAmelCase )['''input_ids'''] _lowercase =tok(UpperCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
5
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCAmelCase ( a__ , a__ = True , a__ = math.inf , a__ = -math.inf , a__ = math.inf , a__ = -math.inf , a__ = False , a__ = 100 , a__ = 0.01 , a__ = 1 , ) -> Any: __a = False __a = search_prob __a = start_temperate __a = [] __a = 0 __a = None while not search_end: __a = current_state.score() if best_state is None or current_score > best_state.score(): __a = current_state scores.append(a__ ) iterations += 1 __a = None __a = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __a = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor __a = neighbors.pop(a__ ) __a = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __a = change * -1 # in case we are finding minimum if change > 0: # improves the solution __a = picked_neighbor else: __a = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __a = picked_neighbor __a = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __a = True else: __a = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__ ) , a__ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def __lowerCAmelCase ( a__ , a__ ) -> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) A : Tuple = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) A : int = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) A : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) A : Union[str, Any] = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def __lowerCAmelCase ( a__ , a__ ) -> Any: return (3 * x**2) - (6 * y) A : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A : Optional[int] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"{local_min.score()}" ) A : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A : str = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"{local_min.score()}" )
6
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
from manim import * class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' A__ = Rectangle(height=0.5,width=0.5 ) A__ = Rectangle(height=0.25,width=0.25 ) A__ = Rectangle(height=0.46,width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(lowercase_,lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('CPU',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('GPU',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('Model',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) A__ = [] A__ = [] A__ = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) A__ = Rectangle(height=0.46 / 4,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ),buff=0.02,direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0],direction=lowercase_,buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1],direction=lowercase_,buff=0.0 ) self.add(lowercase_ ) model_cpu_arr.append(lowercase_ ) self.add(*lowercase_,*lowercase_,*lowercase_ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('Loaded Checkpoint',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowercase_ ) A__ = [] A__ = [] for i, rect in enumerate(lowercase_ ): A__ = fill.copy().set_fill(lowercase_,opacity=0.7 ) target.move_to(lowercase_ ) ckpt_arr.append(lowercase_ ) A__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowercase_ ) self.add(*lowercase_,*lowercase_ ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model',font_size=1_8,) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_,lowercase_ ) A__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint',font_size=1_8,) blue_text.next_to(lowercase_,DOWN * 2.4,aligned_edge=key_text.get_left() ) self.add(lowercase_ ) A__ = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.',font_size=2_4,) step_a.move_to([2, 2, 0] ) A__ = [meta_mem.copy() for i in range(6 )] A__ = [meta_mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(lowercase_,lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('Disk',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowercase_,run_time=3 ),Write(lowercase_,run_time=1 ),Create(lowercase_,run_time=1 ) ) A__ = [] for i, rect in enumerate(lowercase_ ): A__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowercase_,run_time=1.5 ) ) self.play(*lowercase_ ) self.play(FadeOut(lowercase_ ) ) A__ = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.',font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_,run_time=3 ) ) self.play( FadeOut(lowercase_,lowercase_,*lowercase_,*lowercase_ ),) self.wait()
7
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE : str = 10 def snake_case__( self : Optional[int] , **_UpperCamelCase : str ) ->Optional[Any]: snake_case_ = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_UpperCamelCase ) return config def snake_case__( self : Optional[Any] ) ->Any: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def snake_case__( self : List[str] ) ->int: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def snake_case__( self : List[str] ) ->Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->int: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def snake_case__( self : Optional[Any] ) ->str: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case_ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
8
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :Optional[int]=56 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :int=99 , lowerCAmelCase__ :str=32 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Tuple=2 , lowerCAmelCase__ :Any=7 , lowerCAmelCase__ :Tuple="gelu_new" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :Tuple=512 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Optional[int]=0.02 , lowerCAmelCase__ :int=4 , lowerCAmelCase__ :Any="block_sparse" , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :str=False , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Tuple=3 , ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : List[Any] = is_training __SCREAMING_SNAKE_CASE : Tuple = use_attention_mask __SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = num_choices __SCREAMING_SNAKE_CASE : Optional[int] = rescale_embeddings __SCREAMING_SNAKE_CASE : List[Any] = attention_type __SCREAMING_SNAKE_CASE : Optional[int] = use_bias __SCREAMING_SNAKE_CASE : Any = block_size __SCREAMING_SNAKE_CASE : Dict = num_random_blocks def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Any = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = config_and_inputs __SCREAMING_SNAKE_CASE : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : str = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :int ) -> Optional[Any]: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :int ) -> int: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :Dict ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :Optional[int] ) -> Dict: super().test_hidden_states_output() @slow def __magic_name__( self :Optional[Any] ) -> Tuple: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int]=None , **lowerCAmelCase__ :Union[str, Any] ): return model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : Any = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str]=1E-5 , lowerCAmelCase__ :Optional[int]="outputs" , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
9
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __A = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): lowerCamelCase__: str =[image] lowerCamelCase__: str =[trans(img.convert("RGB" ) ) for img in image] lowerCamelCase__: List[Any] =torch.stack(__a ) return image class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str) ->Any: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase__: int =DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""") def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: int =min(int(num_inference_steps * strength) , UpperCAmelCase_) lowerCamelCase__: Optional[int] =max(num_inference_steps - init_timestep , 0) lowerCamelCase__: Tuple =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=None) ->str: '''simple docstring''' if not isinstance(UpperCAmelCase_ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase_)}""") lowerCamelCase__: str =image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and len(UpperCAmelCase_) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(UpperCAmelCase_)}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") lowerCamelCase__: Union[str, Any] =init_latents.shape lowerCamelCase__: Any =randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_) # get latents print("add noise to latents at timestep" , UpperCAmelCase_) lowerCamelCase__: Tuple =self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =init_latents return latents @torch.no_grad() def __call__(self : str , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] = None , UpperCAmelCase_ : float = 0.8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(UpperCAmelCase_) # 2. Preprocess image lowerCamelCase__: int =preprocess(UpperCAmelCase_) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device) lowerCamelCase__ , lowerCamelCase__: List[Any] =self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , self.device) lowerCamelCase__: Union[str, Any] =timesteps[:1].repeat(UpperCAmelCase_) # 4. Prepare latent variables lowerCamelCase__: str =self.prepare_latents(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.unet.dtype , self.device , UpperCAmelCase_) lowerCamelCase__: List[str] =latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase_): # 1. predict noise model_output lowerCamelCase__: Optional[Any] =self.unet(UpperCAmelCase_ , UpperCAmelCase_).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase__: Optional[int] =self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , eta=UpperCAmelCase_ , use_clipped_model_output=UpperCAmelCase_ , generator=UpperCAmelCase_ , ).prev_sample lowerCamelCase__: str =(image / 2 + 0.5).clamp(0 , 1) lowerCamelCase__: Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowerCamelCase__: Optional[int] =self.numpy_to_pil(UpperCAmelCase_) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase_)
10
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
def _UpperCAmelCase (UpperCamelCase__ : int ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
# Lint as: python3 import itertools import os import re UpperCAmelCase_ = re.compile(r'([A-Z]+)([A-Z][a-z])') UpperCAmelCase_ = re.compile(r'([a-z\d])([A-Z])') UpperCAmelCase_ = re.compile(r'(?<!_)_(?!_)') UpperCAmelCase_ = re.compile(r'(_{2,})') UpperCAmelCase_ = r'^\w+(\.\w+)*$' UpperCAmelCase_ = r'<>:/\|?*' def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , A__ ) __lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , A__ ) return name.lower() def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = _single_underscore_re.split(A__ ) __lowerCamelCase = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != """""" ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(A__ ) def lowerCamelCase__ ( A__ : Dict , A__ : Dict ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , A__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(A__ )}-{split}' def lowerCamelCase__ ( A__ : int , A__ : Tuple , A__ : Optional[Any] , A__ : str=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' __lowerCamelCase = os.path.join(A__ , A__ ) return f'{filepath}*' def lowerCamelCase__ ( A__ : List[str] , A__ : List[Any] , A__ : int , A__ : int=None , A__ : Any=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) __lowerCamelCase = os.path.join(A__ , A__ ) if shard_lengths: __lowerCamelCase = len(A__ ) __lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(A__ )] if filetype_suffix: __lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __lowerCamelCase = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
12
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
def A_ ( _UpperCAmelCase = 3 , _UpperCAmelCase = 7 , _UpperCAmelCase = 1_00_00_00 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 SCREAMING_SNAKE_CASE_: int = 1 for current_denominator in range(1 , limit + 1 ): SCREAMING_SNAKE_CASE_: int = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: SCREAMING_SNAKE_CASE_: Tuple = current_numerator SCREAMING_SNAKE_CASE_: Tuple = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
13
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) A__ = [True] * (num + 1) A__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase_ ): A__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : int = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
14
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
import sys import turtle def UpperCAmelCase ( a_ , a_ ) -> tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase ( a_ , a_ , a_ , a_ , ) -> None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 ) triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 ) triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) SCREAMING_SNAKE_CASE :Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') SCREAMING_SNAKE_CASE :List[str] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
15
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = " " ) -> list: lowercase__ : Optional[int] = [] lowercase__ : Union[str, Any] = 0 for index, char in enumerate(__lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase__ : Union[str, Any] = index + 1 elif index + 1 == len(__lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
"""simple docstring""" import datasets from .evaluate import evaluate _a = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _a = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _a = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int ): __lowercase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __lowercase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __lowercase = evaluate(dataset=UpperCAmelCase__, predictions=UpperCAmelCase__ ) return score
17
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
from __future__ import annotations import requests __lowerCamelCase : int = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int = 1 , lowerCAmelCase : str = "new" , lowerCAmelCase : list | None = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase ) - valid_terms ) ): SCREAMING_SNAKE_CASE_ : List[Any] = f'Invalid search term: {invalid_search_terms}' raise ValueError(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError SCREAMING_SNAKE_CASE_ : Union[str, Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase )} SCREAMING_SNAKE_CASE_ : List[str] = {} for id_ in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
18
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowercase : Optional[Any] = ["""bert-base-uncased""", """bert-base-cased"""] lowercase : Union[str, Any] = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __snake_case ( tf.keras.Model ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__() lowercase : Tuple = tokenizer lowercase : Any = AutoConfig.from_pretrained(snake_case ) lowercase : Optional[int] = TFAutoModel.from_config(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = self.tokenizer(snake_case ) lowercase : Any = self.bert(**snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Any = [ BertTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowercase : str = [TFBertTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case ,use_fast_bert_tokenizer=snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase : str = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowercase : Any = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowercase : str = tokenizer(snake_case ,return_tensors="""tf""" ,padding="""longest""" ) lowercase : Union[str, Any] = tf_tokenizer(snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase : Optional[Any] = tf_tokenizer(self.paired_sentences ) lowercase : str = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase : Any = tf.function(snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): lowercase : Tuple = tf.constant(snake_case ) lowercase : Any = compiled_tokenizer(snake_case ) lowercase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase : Tuple = ModelToSave(tokenizer=snake_case ) lowercase : Dict = tf.convert_to_tensor(self.test_sentences ) lowercase : Optional[int] = model(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase : Union[str, Any] = Path(snake_case ) / """saved.model""" model.save(snake_case ) lowercase : List[Any] = tf.keras.models.load_model(snake_case ) lowercase : List[str] = loaded_model(snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1e-5 )
20
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: _lowercase : Dict = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } _lowercase , _lowercase : int = input_paths_and_base_extractors[compression_format] if input_path is None: _lowercase : Optional[int] = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) assert base_extractor.is_extractable(lowerCamelCase_ ) _lowercase : str = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowercase : Union[str, Any] = file_path.read_text(encoding='utf-8' ) else: _lowercase : List[Any] = output_path.read_text(encoding='utf-8' ) _lowercase : Tuple = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: _lowercase : List[Any] = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } _lowercase : int = input_paths[compression_format] if input_path is None: _lowercase : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) _lowercase : List[Any] = Extractor.infer_extractor_format(lowerCamelCase_ ) assert extractor_format is not None _lowercase : int = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowercase : Optional[int] = file_path.read_text(encoding='utf-8' ) else: _lowercase : Any = output_path.read_text(encoding='utf-8' ) _lowercase : Any = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: import tarfile _lowercase : Union[str, Any] = tmp_path / 'data_dot_dot' directory.mkdir() _lowercase : Tuple = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: import tarfile _lowercase : int = tmp_path / 'data_sym_link' directory.mkdir() _lowercase : Union[str, Any] = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=lowerCamelCase_ ) with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Dict = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } _lowercase : List[Any] = insecure_tar_files[insecure_tar_file] _lowercase : List[str] = tmp_path / 'extracted' TarExtractor.extract(lowerCamelCase_ , lowerCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _lowercase : List[Any] = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 _lowercase : Union[str, Any] = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(lowerCamelCase_ ) assert zipfile.is_zipfile(str(lowerCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase_ ) # but we're right
21
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : Union[str, Any] ): warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
22
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = BlenderbotConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self : Any , __snake_case : str , __snake_case : int=13 , __snake_case : Union[str, Any]=7 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=False , __snake_case : Optional[int]=99 , __snake_case : str=32 , __snake_case : Dict=2 , __snake_case : int=4 , __snake_case : List[Any]=37 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[int]=20 , __snake_case : int=2 , __snake_case : Optional[Any]=1 , __snake_case : List[str]=0 , ) -> Tuple: UpperCAmelCase : int = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Optional[Any] = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : int = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = eos_token_id UpperCAmelCase : str = pad_token_id UpperCAmelCase : int = bos_token_id def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Dict = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def A ( self : List[str] , __snake_case : int , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : Dict = TFBlenderbotModel(config=__snake_case ).get_decoder() UpperCAmelCase : Tuple = inputs_dict['''input_ids'''] UpperCAmelCase : Union[str, Any] = input_ids[:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[Any] = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) UpperCAmelCase , UpperCAmelCase : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : int = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=None , ) -> Any: if attention_mask is None: UpperCAmelCase : str = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : str ) -> int: UpperCAmelCase : str = TFBlenderbotModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case ) def A ( self : int ) -> str: self.config_tester.run_common_tests() def A ( self : Any ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ["""My friends are cool but they eat too many carbs."""] lowerCamelCase__ = """facebook/blenderbot-400M-distill""" @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A ( self : Dict ) -> List[str]: UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Tuple = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
23
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = 'canine' def __init__(self : int , a__ : Optional[int]=768 , a__ : List[str]=12 , a__ : Dict=12 , a__ : Dict=3072 , a__ : Tuple="gelu" , a__ : Union[str, Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Any=1_6384 , a__ : Dict=16 , a__ : Any=0.0_2 , a__ : Any=1E-12 , a__ : Tuple=0 , a__ : List[Any]=0xe_0_0_0 , a__ : List[str]=0xe_0_0_1 , a__ : List[Any]=4 , a__ : Union[str, Any]=4 , a__ : Dict=8 , a__ : Dict=1_6384 , a__ : str=128 , **a__ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = type_vocab_size __snake_case = layer_norm_eps # Character config: __snake_case = downsampling_rate __snake_case = upsampling_kernel_size __snake_case = num_hash_functions __snake_case = num_hash_buckets __snake_case = local_transformer_stride
24
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
"""simple docstring""" from __future__ import annotations import math def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_snake_case ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,_snake_case ,_snake_case ,_snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_snake_case ,_snake_case ,_snake_case ) ,) return min( minimax(depth + 1 ,node_index * 2 ,_snake_case ,_snake_case ,_snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_snake_case ,_snake_case ,_snake_case ) ,) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = [90, 23, 6, 33, 21, 65, 123, 34_423] SCREAMING_SNAKE_CASE__ : Dict = math.log(len(_snake_case ) ,2 ) print("""Optimal value : """ ,end="""""" ) print(minimax(0 ,0 ,_snake_case ,_snake_case ,_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[str] = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "trajectory_transformer" A_ = ["past_key_values"] A_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __a=100 , __a=5 , __a=1 , __a=1 , __a=249 , __a=6 , __a=17 , __a=25 , __a=4 , __a=4 , __a=128 , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0006 , __a=512 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=True , __a=1 , __a=5_0256 , __a=5_0256 , **__a , ): '''simple docstring''' __a : List[Any] = vocab_size __a : str = action_weight __a : List[str] = reward_weight __a : Tuple = value_weight __a : Union[str, Any] = max_position_embeddings __a : List[str] = block_size __a : Optional[int] = action_dim __a : List[Any] = observation_dim __a : Union[str, Any] = transition_dim __a : List[str] = learning_rate __a : str = n_layer __a : List[Any] = n_head __a : Optional[Any] = n_embd __a : int = embd_pdrop __a : Optional[Any] = attn_pdrop __a : Optional[Any] = resid_pdrop __a : List[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Any = kaiming_initializer_range __a : str = use_cache super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
27
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = "Hello world! cécé herlolip" def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = FairseqRobertaModel.from_pretrained(A__ ) roberta.eval() # disable dropout UpperCamelCase = roberta.model.encoder.sentence_encoder UpperCamelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , A__ ) UpperCamelCase = XLMRobertaXLForSequenceClassification(A__ ) if classification_head else XLMRobertaXLForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase = roberta_sent_encoder.embed_tokens.weight UpperCamelCase = roberta_sent_encoder.embed_positions.weight UpperCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCamelCase = roberta_sent_encoder.layer_norm.weight UpperCamelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCamelCase = model.roberta.encoder.layer[i] UpperCamelCase = roberta_sent_encoder.layers[i] UpperCamelCase = layer.attention UpperCamelCase = roberta_layer.self_attn_layer_norm.weight UpperCamelCase = roberta_layer.self_attn_layer_norm.bias # self attention UpperCamelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCamelCase = roberta_layer.self_attn.q_proj.weight UpperCamelCase = roberta_layer.self_attn.q_proj.bias UpperCamelCase = roberta_layer.self_attn.k_proj.weight UpperCamelCase = roberta_layer.self_attn.k_proj.bias UpperCamelCase = roberta_layer.self_attn.v_proj.weight UpperCamelCase = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCamelCase = roberta_layer.self_attn.out_proj.weight UpperCamelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCamelCase = roberta_layer.final_layer_norm.weight UpperCamelCase = roberta_layer.final_layer_norm.bias # intermediate UpperCamelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCamelCase = roberta_layer.fca.weight UpperCamelCase = roberta_layer.fca.bias # output UpperCamelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCamelCase = roberta_layer.fca.weight UpperCamelCase = roberta_layer.fca.bias # end of layer if classification_head: UpperCamelCase = roberta.model.classification_heads['mnli'].dense.weight UpperCamelCase = roberta.model.classification_heads['mnli'].dense.bias UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head UpperCamelCase = roberta.model.encoder.lm_head.dense.weight UpperCamelCase = roberta.model.encoder.lm_head.dense.bias UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.weight UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.bias UpperCamelCase = roberta.model.encoder.lm_head.weight UpperCamelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase = roberta.encode(A__ ).unsqueeze(0 ) # batch of size 1 UpperCamelCase = model(A__ )[0] if classification_head: UpperCamelCase = roberta.model.classification_heads['mnli'](roberta.extract_features(A__ ) ) else: UpperCamelCase = roberta.model(A__ )[0] print(our_output.shape , their_output.shape ) UpperCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCamelCase = torch.allclose(A__ , A__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) _lowerCamelCase : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
28
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[List[PIL.Image.Image], np.ndarray] a :Optional[List[bool]] a :Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
30
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
'''simple docstring''' from collections import defaultdict def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCAmelCase ) if ret % 2 == 0: cuts.append(_UpperCAmelCase ) return ret def UpperCamelCase_ ( ) -> int: """simple docstring""" dfs(1 ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = 10, 9 __SCREAMING_SNAKE_CASE : Dict = defaultdict(list) __SCREAMING_SNAKE_CASE : dict[int, bool] = {} __SCREAMING_SNAKE_CASE : list[int] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
31
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = '''convbert''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Dict=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1E-12 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=9 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = vocab_size a_ : List[str] = hidden_size a_ : List[str] = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = intermediate_size a_ : int = hidden_act a_ : Dict = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : str = max_position_embeddings a_ : List[str] = type_vocab_size a_ : List[str] = initializer_range a_ : Tuple = layer_norm_eps a_ : Optional[int] = embedding_size a_ : List[Any] = head_ratio a_ : List[Any] = conv_kernel_size a_ : Tuple = num_groups a_ : Tuple = classifier_dropout class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a_ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) __A : Any = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __A : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowercase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : Tuple ): for attribute in key.split('''.''' ): lowercase_ : Union[str, Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: lowercase_ : Any = getattr(__snake_case , __snake_case ).shape else: lowercase_ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ : int = value elif weight_type == "weight_g": lowercase_ : Tuple = value elif weight_type == "weight_v": lowercase_ : Optional[Any] = value elif weight_type == "bias": lowercase_ : List[Any] = value elif weight_type == "running_mean": lowercase_ : Optional[Any] = value elif weight_type == "running_var": lowercase_ : List[Any] = value elif weight_type == "num_batches_tracked": lowercase_ : Optional[Any] = value elif weight_type == "inv_freq": lowercase_ : List[Any] = value else: lowercase_ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): lowercase_ : Optional[int] = [] lowercase_ : List[Any] = fairseq_model.state_dict() lowercase_ : Optional[int] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : int = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) lowercase_ : Any = True else: for key, mapped_key in MAPPING.items(): lowercase_ : Optional[int] = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase_ : List[str] = True if "*" in mapped_key: lowercase_ : int = name.split(__snake_case )[0].split('''.''' )[-2] lowercase_ : Any = mapped_key.replace('''*''' , __snake_case ) if "pos_bias_u" in name: lowercase_ : List[Any] = None elif "pos_bias_v" in name: lowercase_ : Optional[Any] = None elif "weight_g" in name: lowercase_ : Tuple = '''weight_g''' elif "weight_v" in name: lowercase_ : Dict = '''weight_v''' elif "bias" in name: lowercase_ : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase_ : Dict = '''weight''' elif "running_mean" in name: lowercase_ : Any = '''running_mean''' elif "inv_freq" in name: lowercase_ : Union[str, Any] = '''inv_freq''' elif "running_var" in name: lowercase_ : int = '''running_var''' elif "num_batches_tracked" in name: lowercase_ : Any = '''num_batches_tracked''' else: lowercase_ : Optional[int] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Union[str, Any] ): lowercase_ : Tuple = full_name.split('''conv_layers.''' )[-1] lowercase_ : List[Any] = name.split('''.''' ) lowercase_ : Union[str, Any] = int(items[0] ) lowercase_ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase_ : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None , __snake_case : Tuple=None , __snake_case : str=True ): if config_path is not None: lowercase_ : Dict = WavaVecaConformerConfig.from_pretrained(__snake_case , hidden_act='''swish''' ) else: lowercase_ : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowercase_ : str = '''rotary''' if is_finetuned: if dict_path: lowercase_ : Tuple = Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ : Tuple = target_dict.pad_index lowercase_ : List[str] = target_dict.bos_index lowercase_ : Dict = target_dict.eos_index lowercase_ : List[str] = len(target_dict.symbols ) lowercase_ : Tuple = os.path.join(__snake_case , '''vocab.json''' ) if not os.path.isdir(__snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) lowercase_ : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowercase_ : Tuple = 0 lowercase_ : List[str] = 1 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__snake_case , __snake_case ) lowercase_ : Optional[int] = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__snake_case , ) lowercase_ : int = True if config.feat_extract_norm == '''layer''' else False lowercase_ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) lowercase_ : Union[str, Any] = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) lowercase_ : Tuple = WavaVecaConformerForCTC(__snake_case ) else: lowercase_ : Union[str, Any] = WavaVecaConformerForPreTraining(__snake_case ) if is_finetuned: lowercase_ , lowercase_ , lowercase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase_ : List[Any] = argparse.Namespace(task='''audio_pretraining''' ) lowercase_ : Union[str, Any] = fairseq.tasks.setup_task(__snake_case ) lowercase_ , lowercase_ , lowercase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__snake_case ) lowercase_ : str = model[0].eval() recursively_load_weights(__snake_case , __snake_case , not is_finetuned ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import qiskit def snake_case_ (_a : int , _a : int ): UpperCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register UpperCAmelCase = qiskit.QuantumCircuit(_a , _a ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase = qiskit.execute(_a , _a , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_a ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
34
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case__ : int = (boundary[1] - boundary[0]) / steps snake_case__ : Optional[int] = boundary[0] snake_case__ : Tuple = boundary[1] snake_case__ : str = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = a + h while x < (b - h): yield x snake_case__ : int = x + h def __snake_case( _lowerCAmelCase ) -> Dict: # enter your function here snake_case__ : Optional[Any] = (x - 0) * (x - 0) return y def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = 0.0 # Lower bound of integration snake_case__ : List[str] = 1.0 # Upper bound of integration snake_case__ : Tuple = 10.0 # define number of steps or resolution snake_case__ : List[str] = [a, b] # define boundary of integration snake_case__ : Dict = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"y = {y}" ) if __name__ == "__main__": main()
35
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
import argparse import json import subprocess def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = ( F"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" " https://api.github.com/repos/huggingface/transformers/actions/runners" ) _lowerCAmelCase : Any = subprocess.run(_lowerCamelCase , shell=_lowerCamelCase , stdout=subprocess.PIPE ) _lowerCAmelCase : Tuple = output.stdout.decode("utf-8" ) _lowerCAmelCase : Dict = json.loads(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Tuple = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def A ( _lowerCamelCase ): '''simple docstring''' return values.split("," ) _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) _snake_case = parser.parse_args() get_runner_status(args.target_runners, args.token)
36
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : torch.FloatTensor class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("DownEncoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase=True ,) -> Optional[int]: super().__init__() lowerCAmelCase__ : Union[str, Any] = layers_per_block lowerCAmelCase__ : Dict = torch.nn.Convad( __UpperCAmelCase ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[Any] = nn.ModuleList([] ) # down lowerCAmelCase__ : str = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Any = output_channel lowerCAmelCase__ : str = block_out_channels[i] lowerCAmelCase__ : Union[str, Any] = i == len(__UpperCAmelCase ) - 1 lowerCAmelCase__ : Tuple = get_down_block( __UpperCAmelCase ,num_layers=self.layers_per_block ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,add_downsample=not is_final_block ,resnet_eps=1E-6 ,downsample_padding=0 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) self.down_blocks.append(__UpperCAmelCase ) # mid lowerCAmelCase__ : Any = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift="""default""" ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # out lowerCAmelCase__ : List[str] = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=__UpperCAmelCase ,eps=1E-6 ) lowerCAmelCase__ : List[str] = nn.SiLU() lowerCAmelCase__ : int = 2 * out_channels if double_z else out_channels lowerCAmelCase__ : Dict = nn.Convad(block_out_channels[-1] ,__UpperCAmelCase ,3 ,padding=1 ) lowerCAmelCase__ : Optional[int] = False def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Any = x lowerCAmelCase__ : Optional[Any] = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(""">=""" ,"""1.11.0""" ): for down_block in self.down_blocks: lowerCAmelCase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) # middle lowerCAmelCase__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: lowerCAmelCase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ) # middle lowerCAmelCase__ : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,__UpperCAmelCase ) else: # down for down_block in self.down_blocks: lowerCAmelCase__ : Union[str, Any] = down_block(__UpperCAmelCase ) # middle lowerCAmelCase__ : Optional[int] = self.mid_block(__UpperCAmelCase ) # post-process lowerCAmelCase__ : str = self.conv_norm_out(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.conv_act(__UpperCAmelCase ) lowerCAmelCase__ : int = self.conv_out(__UpperCAmelCase ) return sample class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("UpDecoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase="group" ,) -> List[Any]: super().__init__() lowerCAmelCase__ : Dict = layers_per_block lowerCAmelCase__ : Any = nn.Convad( __UpperCAmelCase ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Dict = nn.ModuleList([] ) lowerCAmelCase__ : Tuple = in_channels if norm_type == """spatial""" else None # mid lowerCAmelCase__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # up lowerCAmelCase__ : Optional[int] = list(reversed(__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = output_channel lowerCAmelCase__ : int = reversed_block_out_channels[i] lowerCAmelCase__ : Dict = i == len(__UpperCAmelCase ) - 1 lowerCAmelCase__ : Union[str, Any] = get_up_block( __UpperCAmelCase ,num_layers=self.layers_per_block + 1 ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,prev_output_channel=__UpperCAmelCase ,add_upsample=not is_final_block ,resnet_eps=1E-6 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,resnet_time_scale_shift=__UpperCAmelCase ,) self.up_blocks.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = output_channel # out if norm_type == "spatial": lowerCAmelCase__ : Optional[Any] = SpatialNorm(block_out_channels[0] ,__UpperCAmelCase ) else: lowerCAmelCase__ : List[Any] = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=__UpperCAmelCase ,eps=1E-6 ) lowerCAmelCase__ : int = nn.SiLU() lowerCAmelCase__ : Dict = nn.Convad(block_out_channels[0] ,__UpperCAmelCase ,3 ,padding=1 ) lowerCAmelCase__ : Optional[Any] = False def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = z lowerCAmelCase__ : List[Any] = self.conv_in(__UpperCAmelCase ) lowerCAmelCase__ : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(""">=""" ,"""1.11.0""" ): # middle lowerCAmelCase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCAmelCase__ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: # middle lowerCAmelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : str = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCAmelCase__ : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ) else: # middle lowerCAmelCase__ : Any = self.mid_block(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : int = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCAmelCase__ : Dict = up_block(__UpperCAmelCase ,__UpperCAmelCase ) # post-process if latent_embeds is None: lowerCAmelCase__ : Union[str, Any] = self.conv_norm_out(__UpperCAmelCase ) else: lowerCAmelCase__ : List[Any] = self.conv_norm_out(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.conv_act(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.conv_out(__UpperCAmelCase ) return sample class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="random" ,__UpperCAmelCase=False ,__UpperCAmelCase=True ) -> List[Any]: super().__init__() lowerCAmelCase__ : List[str] = n_e lowerCAmelCase__ : Dict = vq_embed_dim lowerCAmelCase__ : List[Any] = beta lowerCAmelCase__ : Union[str, Any] = legacy lowerCAmelCase__ : Dict = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) lowerCAmelCase__ : int = remap if self.remap is not None: self.register_buffer("""used""" ,torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase__ : List[Any] = self.used.shape[0] lowerCAmelCase__ : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase__ : Optional[int] = self.re_embed lowerCAmelCase__ : Dict = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: lowerCAmelCase__ : List[Any] = n_e lowerCAmelCase__ : Tuple = sane_index_shape def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = inds.shape assert len(__UpperCAmelCase ) > 1 lowerCAmelCase__ : Optional[int] = inds.reshape(ishape[0] ,-1 ) lowerCAmelCase__ : Any = self.used.to(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase__ : List[Any] = match.argmax(-1 ) lowerCAmelCase__ : Optional[int] = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase__ : int = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase__ : Union[str, Any] = self.unknown_index return new.reshape(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Dict = inds.shape assert len(__UpperCAmelCase ) > 1 lowerCAmelCase__ : List[str] = inds.reshape(ishape[0] ,-1 ) lowerCAmelCase__ : int = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase__ : Any = 0 # simply set to zero lowerCAmelCase__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,__UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase__ : Optional[int] = z.permute(0 ,2 ,3 ,1 ).contiguous() lowerCAmelCase__ : Tuple = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase__ : Optional[Any] = torch.argmin(torch.cdist(__UpperCAmelCase ,self.embedding.weight ) ,dim=1 ) lowerCAmelCase__ : Dict = self.embedding(__UpperCAmelCase ).view(z.shape ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = None # compute loss for embedding if not self.legacy: lowerCAmelCase__ : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase__ : int = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase__ : Optional[Any] = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase__ : List[Any] = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: lowerCAmelCase__ : Tuple = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis lowerCAmelCase__ : int = self.remap_to_used(__UpperCAmelCase ) lowerCAmelCase__ : Dict = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: lowerCAmelCase__ : Union[str, Any] = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase__ : str = indices.reshape(shape[0] ,-1 ) # add batch axis lowerCAmelCase__ : Dict = self.unmap_to_all(__UpperCAmelCase ) lowerCAmelCase__ : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase__ : Optional[int] = self.embedding(__UpperCAmelCase ) if shape is not None: lowerCAmelCase__ : str = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape lowerCAmelCase__ : Dict = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Dict: lowerCAmelCase__ : int = parameters lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = torch.chunk(__UpperCAmelCase ,2 ,dim=1 ) lowerCAmelCase__ : Optional[Any] = torch.clamp(self.logvar ,-3_0.0 ,2_0.0 ) lowerCAmelCase__ : List[Any] = deterministic lowerCAmelCase__ : str = torch.exp(0.5 * self.logvar ) lowerCAmelCase__ : str = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase__ : Optional[int] = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def UpperCAmelCase_ ( self ,__UpperCAmelCase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase__ : str = randn_tensor( self.mean.shape ,generator=__UpperCAmelCase ,device=self.parameters.device ,dtype=self.parameters.dtype ) lowerCAmelCase__ : List[str] = self.mean + self.std * sample return x def UpperCAmelCase_ ( self ,__UpperCAmelCase=None ) -> str: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=[1, 2, 3] ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase__ : str = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: return self.mean
37
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): def _A ( self : Union[str, Any] ): UpperCamelCase :Union[str, Any] = load_tool("""text-classification""" ) self.tool.setup() UpperCamelCase :str = load_tool("""text-classification""" , remote=__lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" ) def _A ( self : List[str] ): UpperCamelCase :int = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" ) def _A ( self : int ): UpperCamelCase :str = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" ) def _A ( self : Dict ): UpperCamelCase :Optional[int] = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__lowerCamelCase , """positive""" )
38
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''MobileViTFeatureExtractor'''] _a = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( _a ): """simple docstring""" UpperCAmelCase : Dict = ["""pixel_values"""] def __init__( self : List[str] , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 255 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Optional[Any] , ): super().__init__(**__UpperCAmelCase) a : Dict = size if size is not None else {"shortest_edge": 224} a : Dict = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase) a : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} a : Optional[int] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name="crop_size") a : int = do_resize a : List[Any] = size a : Dict = resample a : List[str] = do_center_crop a : Any = crop_size a : Dict = do_rescale a : Optional[int] = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a : Dict = image_std if image_std is not None else OPENAI_CLIP_STD a : Union[str, Any] = do_convert_rgb def __snake_case ( self : List[Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ): a : Optional[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') a : Any = get_resize_output_image_size(__UpperCAmelCase , size=size["shortest_edge"] , default_to_square=__UpperCAmelCase) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Union[str, Any] , ): a : Tuple = get_size_dict(__UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__UpperCAmelCase , size=(size["height"], size["width"]) , data_format=__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[str] , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : int = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__UpperCAmelCase : Union[str, Any] , ): a : Optional[int] = do_resize if do_resize is not None else self.do_resize a : Union[str, Any] = size if size is not None else self.size a : Any = get_size_dict(__UpperCAmelCase , param_name="size" , default_to_square=__UpperCAmelCase) a : Dict = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Any = crop_size if crop_size is not None else self.crop_size a : int = get_size_dict(__UpperCAmelCase , param_name="crop_size" , default_to_square=__UpperCAmelCase) a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize a : Optional[Any] = image_mean if image_mean is not None else self.image_mean a : Union[str, Any] = image_std if image_std is not None else self.image_std a : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a : Any = make_list_of_images(__UpperCAmelCase) if not valid_images(__UpperCAmelCase): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: a : Union[str, Any] = [convert_to_rgb(__UpperCAmelCase) for image in images] # All transformations expect numpy arrays. a : List[str] = [to_numpy_array(__UpperCAmelCase) for image in images] if do_resize: a : int = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase) for image in images] if do_center_crop: a : List[str] = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase) for image in images] if do_rescale: a : List[str] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase) for image in images] if do_normalize: a : List[str] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase) for image in images] a : int = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase) for image in images] a : List[Any] = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase)
40
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
'''simple docstring''' class _lowercase : def __init__( self: Dict , UpperCamelCase__: int , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] ): lowerCamelCase__ : Dict = name lowerCamelCase__ : Union[str, Any] = value lowerCamelCase__ : str = weight def __repr__( self: Dict ): return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def lowerCamelCase_ ( self: int ): return self.value def lowerCamelCase_ ( self: Tuple ): return self.name def lowerCamelCase_ ( self: str ): return self.weight def lowerCamelCase_ ( self: Any ): return self.value / self.weight def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : List[str] = [] for i in range(len(UpperCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = sorted(UpperCamelCase , key=UpperCamelCase , reverse=UpperCamelCase ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ , lowerCamelCase__ : Dict = 0.0, 0.0 for i in range(len(UpperCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def SCREAMING_SNAKE_CASE_ () -> Tuple: pass if __name__ == "__main__": import doctest doctest.testmod()
41
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""image_processor""", """tokenizer"""] __lowercase = """ChineseCLIPImageProcessor""" __lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs.pop('feature_extractor' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.image_processor def __call__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: _snake_case = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: _snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase_ , ) return self.image_processor_class
42
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
from collections.abc import Callable class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase = None) -> None: # Stores actual heap items. __UpperCamelCase :list = [] # Stores indexes of each item for supporting updates and deletion. __UpperCamelCase :dict = {} # Stores current size of heap. __UpperCamelCase :str = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __UpperCamelCase :int = key or (lambda __lowercase: x) def UpperCamelCase__ ( self , __lowercase) -> int | None: return int((i - 1) / 2) if i > 0 else None def UpperCamelCase__ ( self , __lowercase) -> int | None: __UpperCamelCase :Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def UpperCamelCase__ ( self , __lowercase) -> int | None: __UpperCamelCase :Optional[int] = int(2 * i + 2) return right if 0 < right < self.size else None def UpperCamelCase__ ( self , __lowercase , __lowercase) -> None: __UpperCamelCase , __UpperCamelCase :Optional[int] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __UpperCamelCase , __UpperCamelCase :List[Any] = self.arr[j], self.arr[i] def UpperCamelCase__ ( self , __lowercase , __lowercase) -> bool: return self.arr[i][1] < self.arr[j][1] def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :List[str] = self._left(__lowercase) __UpperCamelCase :Tuple = self._right(__lowercase) __UpperCamelCase :List[str] = i if left is not None and not self._cmp(__lowercase , __lowercase): __UpperCamelCase :Optional[Any] = left if right is not None and not self._cmp(__lowercase , __lowercase): __UpperCamelCase :Optional[Any] = right return valid_parent def UpperCamelCase__ ( self , __lowercase) -> None: __UpperCamelCase :Optional[int] = self._parent(__lowercase) while parent is not None and not self._cmp(__lowercase , __lowercase): self._swap(__lowercase , __lowercase) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = parent, self._parent(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> None: __UpperCamelCase :List[str] = self._get_valid_parent(__lowercase) while valid_parent != index: self._swap(__lowercase , __lowercase) __UpperCamelCase , __UpperCamelCase :Dict = valid_parent, self._get_valid_parent(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> None: if item not in self.pos_map: return __UpperCamelCase :Any = self.pos_map[item] __UpperCamelCase :Union[str, Any] = [item, self.key(__lowercase)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__lowercase) self._heapify_down(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> None: if item not in self.pos_map: return __UpperCamelCase :Any = self.pos_map[item] del self.pos_map[item] __UpperCamelCase :Any = self.arr[self.size - 1] __UpperCamelCase :Optional[int] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__lowercase) self._heapify_down(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> None: __UpperCamelCase :Optional[Any] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(__lowercase)]) else: __UpperCamelCase :Optional[Any] = [item, self.key(__lowercase)] __UpperCamelCase :List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def UpperCamelCase__ ( self) -> tuple | None: return self.arr[0] if self.size else None def UpperCamelCase__ ( self) -> tuple | None: __UpperCamelCase :Any = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def lowerCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Dict = {'vocab_file': 'vocab.txt'} _a : str = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } _a : List[str] = { 'openbmb/cpm-ant-10b': 1_024, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: _lowerCAmelCase : List[str] = collections.OrderedDict() with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as reader: _lowerCAmelCase : Tuple = reader.readlines() for index, token in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = token.rstrip("""\n""" ) _lowerCAmelCase : str = index return vocab class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__="<unk>" , a__=200 ): _lowerCAmelCase : Optional[Any] = vocab _lowerCAmelCase : Any = unk_token _lowerCAmelCase : int = max_input_chars_per_word def __A ( self , a__ ): _lowerCAmelCase : Any = list(a__ ) if len(a__ ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Dict = [] while start < len(a__ ): _lowerCAmelCase : Tuple = len(a__ ) _lowerCAmelCase : int = None while start < end: _lowerCAmelCase : str = """""".join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a__ ) _lowerCAmelCase : Union[str, Any] = end return sub_tokens class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] _UpperCamelCase : str = False def __init__( self , a__ , a__="<d>" , a__="</d>" , a__="<s>" , a__="</s>" , a__="<pad>" , a__="<unk>" , a__="</n>" , a__="</_>" , a__="left" , **a__ , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=a__ , eod_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , unk_token=a__ , line_token=a__ , space_token=a__ , padding_side=a__ , **a__ , ) _lowerCAmelCase : Union[str, Any] = bod_token _lowerCAmelCase : List[Any] = eod_token _lowerCAmelCase : List[str] = load_vocab(a__ ) _lowerCAmelCase : Tuple = self.encoder[space_token] _lowerCAmelCase : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a__ : x[1] ) ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __A ( self ): return self.encoder[self.bod_token] @property def __A ( self ): return self.encoder[self.eod_token] @property def __A ( self ): return self.encoder["\n"] @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): _lowerCAmelCase : Dict = [] for x in jieba.cut(a__ , cut_all=a__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a__ ) ) return output_tokens def __A ( self , a__ , **a__ ): _lowerCAmelCase : Any = [i for i in token_ids if i >= 0] _lowerCAmelCase : str = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a__ , **a__ ) def __A ( self , a__ ): return token in self.encoder def __A ( self , a__ ): return "".join(a__ ) def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ , a__ = None ): if os.path.isdir(a__ ): _lowerCAmelCase : int = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _lowerCAmelCase : List[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _lowerCAmelCase : Any = 0 if " " in self.encoder: _lowerCAmelCase : int = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase : int = self.encoder["""\n"""] del self.encoder["\n"] _lowerCAmelCase : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a__ : x[1] ) ) with open(a__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) _lowerCAmelCase : List[str] = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) return [1] + ([0] * len(a__ ))
44
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def lowercase ( lowerCAmelCase__ : str ) -> str: return "".join(sorted(lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ : str ) -> list[str]: return word_by_signature[signature(lowerCAmelCase__ )] lowercase_ = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") lowercase_ = sorted({word.strip().lower() for word in data.splitlines()}) lowercase_ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowercase_ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
45
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE ) lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE ) return torch.mm(SCREAMING_SNAKE_CASE , normalized_text_embeds.t() ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: super().__init__(lowercase ) lowerCAmelCase = CLIPVisionModel(config.vision_config ) lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def _snake_case ( self , lowercase , lowercase ) -> Optional[Any]: lowerCAmelCase = self.vision_model(lowercase )[1] # pooled_output lowerCAmelCase = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() lowerCAmelCase = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() lowerCAmelCase = [] lowerCAmelCase = image_embeds.shape[0] for i in range(lowercase ): lowerCAmelCase = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCAmelCase = special_cos_dist[i][concept_idx] lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) lowerCAmelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCAmelCase = cos_dist[i][concept_idx] lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) lowerCAmelCase = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case ( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = self.vision_model(lowercase )[1] # pooled_output lowerCAmelCase = self.visual_projection(lowercase ) lowerCAmelCase = cosine_distance(lowercase , self.special_care_embeds ) lowerCAmelCase = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase = 0.0 lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) lowerCAmelCase = special_care * 0.01 lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
46
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) class A__ ( A__ ): A__ = ['input_ids', 'attention_mask'] def __init__( self : Any , _a : List[str]="</s>" , _a : Optional[int]="<unk>" , _a : Optional[Any]="<pad>" , _a : Optional[int]=125 , _a : Optional[Any]=None , **_a : Optional[Any] , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _SCREAMING_SNAKE_CASE =[f"<extra_id_{i}>" for i in range(_a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _SCREAMING_SNAKE_CASE =len(set(filter(lambda _a : bool('extra_id' in str(_a ) ) , _a ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token super().__init__( eos_token=_a , unk_token=_a , pad_token=_a , extra_ids=_a , additional_special_tokens=_a , **_a , ) _SCREAMING_SNAKE_CASE =extra_ids _SCREAMING_SNAKE_CASE =2**8 # utf is 8 bits # define special tokens dict _SCREAMING_SNAKE_CASE ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _SCREAMING_SNAKE_CASE =len(self.special_tokens_encoder ) _SCREAMING_SNAKE_CASE =len(_a ) for i, token in enumerate(_a ): _SCREAMING_SNAKE_CASE =self.vocab_size + i - n _SCREAMING_SNAKE_CASE ={v: k for k, v in self.special_tokens_encoder.items()} @property def A ( self : str ) -> Dict: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def A ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_a )) + [1] return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def A ( self : str , _a : List[int] ) -> List[int]: '''simple docstring''' if len(_a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def A ( self : Union[str, Any] , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._add_eos_if_not_present(_a ) if token_ids_a is None: return token_ids_a else: _SCREAMING_SNAKE_CASE =self._add_eos_if_not_present(_a ) return token_ids_a + token_ids_a def A ( self : List[Any] , _a : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[chr(_a ) for i in text.encode('utf-8' )] return tokens def A ( self : List[Any] , _a : List[Any] ) -> List[Any]: '''simple docstring''' if token in self.special_tokens_encoder: _SCREAMING_SNAKE_CASE =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _SCREAMING_SNAKE_CASE =self.added_tokens_encoder[token] elif len(_a ) != 1: _SCREAMING_SNAKE_CASE =self.unk_token_id else: _SCREAMING_SNAKE_CASE =ord(_a ) + self._num_special_tokens return token_id def A ( self : Tuple , _a : Optional[int] ) -> str: '''simple docstring''' if index in self.special_tokens_decoder: _SCREAMING_SNAKE_CASE =self.special_tokens_decoder[index] else: _SCREAMING_SNAKE_CASE =chr(index - self._num_special_tokens ) return token def A ( self : int , _a : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =b'' for token in tokens: if token in self.special_tokens_decoder: _SCREAMING_SNAKE_CASE =self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: _SCREAMING_SNAKE_CASE =self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: _SCREAMING_SNAKE_CASE =token.encode('utf-8' ) elif token in self.added_tokens_encoder: _SCREAMING_SNAKE_CASE =token.encode('utf-8' ) else: _SCREAMING_SNAKE_CASE =bytes([ord(_a )] ) bstring += tok_string _SCREAMING_SNAKE_CASE =bstring.decode('utf-8' , errors='ignore' ) return string def A ( self : int , _a : str , _a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' return ()
47
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
from __future__ import annotations def A ( _SCREAMING_SNAKE_CASE ) -> bool: lowerCamelCase : int = str(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) == 9 and set(_SCREAMING_SNAKE_CASE ) == set("123456789" ) def A ( ) -> int | None: for base_num in range(9999 ,4999 ,-1 ): lowerCamelCase : int = 10_0002 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate for base_num in range(333 ,99 ,-1 ): lowerCamelCase : str = 100_2003 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
48
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( __UpperCAmelCase ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Tuple=7 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : List[str]=32 , __SCREAMING_SNAKE_CASE : Tuple=5 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=512 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Tuple="None" , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = relative_attention __a = position_biased_input __a = pos_att_type __a = scope def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = ids_tensor([self.batch_size] , self.num_choices) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.get_config() __a = 300 return config def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size()) , []) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = DebertaModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE)[0] __a = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE)[0] __a = model(__SCREAMING_SNAKE_CASE)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.num_labels __a = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.num_labels __a = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ : List[str] = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : Any = False UpperCamelCase__ : Any = False UpperCamelCase__ : Dict = False UpperCamelCase__ : Tuple = False def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = DebertaModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Tuple): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''') def _lowerCamelCase ( self : int): '''simple docstring''' pass @slow def _lowerCamelCase ( self : int): '''simple docstring''' __a = DebertaModel.from_pretrained('''microsoft/deberta-base''') __a = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]]) __a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] # compare the actual values for a slice. __a = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4) , F'{output[:, 1:4, 1:4]}')
49
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _UpperCAmelCase : Tuple = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _UpperCAmelCase : List[str] = { """vinai/phobert-base""": 2_56, """vinai/phobert-large""": 2_56, } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = set() lowerCamelCase__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : str = char lowerCamelCase__ : List[Any] = set(_UpperCAmelCase ) return pairs class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Dict="</s>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : Optional[int]="<unk>" , UpperCAmelCase : Any="<pad>" , UpperCAmelCase : int="<mask>" , **UpperCAmelCase : Tuple , ) -> List[Any]: super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : Union[str, Any] = vocab_file lowerCamelCase__ : int = merges_file lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : str = 1 lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : str = 3 self.add_from_file(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase , encoding='utf-8' ) as merges_handle: lowerCamelCase__ : Optional[Any] = merges_handle.read().split('\n' )[:-1] lowerCamelCase__ : List[str] = [tuple(merge.split()[:-1] ) for merge in merges] lowerCamelCase__ : str = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase__ : str = {} def A_ ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : Any = [self.cls_token_id] lowerCamelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A_ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Optional[int] = [self.sep_token_id] lowerCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self : Dict ) -> Any: return len(self.encoder ) def A_ ( self : int ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self : Any , UpperCAmelCase : Optional[Any] ) -> Tuple: if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) lowerCamelCase__ : Dict = get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowerCamelCase__ : Optional[int] = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Dict = bigram lowerCamelCase__ : Dict = [] lowerCamelCase__ : str = 0 while i < len(UpperCAmelCase ): try: lowerCamelCase__ : Dict = word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : str = tuple(UpperCAmelCase ) lowerCamelCase__ : List[Any] = new_word if len(UpperCAmelCase ) == 1: break else: lowerCamelCase__ : int = get_pairs(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = '@@ '.join(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = word[:-4] lowerCamelCase__ : Any = word return word def A_ ( self : int , UpperCAmelCase : List[str] ) -> int: lowerCamelCase__ : str = [] lowerCamelCase__ : List[str] = re.findall(R'\S+\n?' , UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(' ' ) ) ) return split_tokens def A_ ( self : str , UpperCAmelCase : Any ) -> Optional[Any]: return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A_ ( self : Dict , UpperCAmelCase : Dict ) -> Optional[int]: return self.decoder.get(UpperCAmelCase , self.unk_token ) def A_ ( self : str , UpperCAmelCase : Union[str, Any] ) -> Dict: lowerCamelCase__ : Optional[int] = ' '.join(UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def A_ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase__ : Optional[int] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : Optional[int] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.merges_file , UpperCAmelCase ) return out_vocab_file, out_merge_file def A_ ( self : List[str] , UpperCAmelCase : str ) -> Optional[int]: if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return lowerCamelCase__ : Tuple = f.readlines() for lineTmp in lines: lowerCamelCase__ : Dict = lineTmp.strip() lowerCamelCase__ : str = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) lowerCamelCase__ : str = line[:idx] lowerCamelCase__ : int = len(self.encoder )
50
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __snake_case ( a ): def lowerCamelCase ( self : Tuple): """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self._create_example_records() UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2''']) for i, r in enumerate(_snake_case): self.assertDictEqual(_snake_case , example_records[i]) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self._create_example_records() UpperCAmelCase_ = Dataset.from_list(_snake_case) UpperCAmelCase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def lowerCamelCase ( self : Optional[Any]): # checks what happens with missing columns """simple docstring""" UpperCAmelCase_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertDictEqual(dset[0] , {'''col_1''': 1}) self.assertDictEqual(dset[1] , {'''col_1''': None}) # NB: first record is used for columns def lowerCamelCase ( self : Any): # checks if the type can be inferred from the second record """simple docstring""" UpperCAmelCase_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64'''))) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = Dataset.from_list([]) self.assertEqual(len(_snake_case) , 0) self.assertListEqual(dset.column_names , [])
51
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __snake_case ): def __init__( self , A_ , A_ ): '''simple docstring''' super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 100 , A_ = None , A_ = None , A_ = True , ): '''simple docstring''' if audio_length_in_s is None: UpperCamelCase : str = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) UpperCamelCase : Union[str, Any] = int(A_ ) if sample_size % down_scale_factor != 0: UpperCamelCase : List[str] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" " process." ) UpperCamelCase : Any = int(A_ ) UpperCamelCase : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase : Optional[int] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase : Optional[Any] = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ ) # set step values self.scheduler.set_timesteps(A_ , device=audio.device ) UpperCamelCase : Optional[int] = self.scheduler.timesteps.to(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase : Dict = self.unet(A_ , A_ ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase : int = self.scheduler.step(A_ , A_ , A_ ).prev_sample UpperCamelCase : Optional[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase : Dict = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A_ )
52
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE_ : str =True SCREAMING_SNAKE_CASE_ : Dict ="ml.p3.2xlarge" SCREAMING_SNAKE_CASE_ : Dict ="accelerate_sagemaker_execution_role" SCREAMING_SNAKE_CASE_ : Any ="hf-sm" SCREAMING_SNAKE_CASE_ : List[Any] ="us-east-1" SCREAMING_SNAKE_CASE_ : Any =1 SCREAMING_SNAKE_CASE_ : List[Any] ="accelerate-sagemaker-1" SCREAMING_SNAKE_CASE_ : Optional[Any] ="1.6" SCREAMING_SNAKE_CASE_ : Dict ="4.4" SCREAMING_SNAKE_CASE_ : Optional[Any] ="train.py" SCREAMING_SNAKE_CASE_ : List[Any] =[ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] SCREAMING_SNAKE_CASE_ : Tuple =[ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Tuple ): # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , __A ) assert isinstance(converted_args['do_train'] , __A ) assert isinstance(converted_args['epochs'] , __A ) assert isinstance(converted_args['learning_rate'] , __A ) assert isinstance(converted_args['max_steps'] , __A ) with pytest.raises(__A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
53
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
"""simple docstring""" import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
54
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = num % 8 lowerCamelCase_ = octal + (remainder * math.floor(math.pow(10 , UpperCAmelCase_ ) )) counter += 1 lowerCamelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(UpperCAmelCase_ )}''' def __snake_case ( ): print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a : List[Any] = logging.get_logger(__name__) def __magic_name__ ( ) -> str: '''simple docstring''' snake_case_ = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case_ = json.loads(__UpperCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case_ = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case_ = json.loads(__UpperCAmelCase ) if not mpi_options.get('''sagemaker_mpi_enabled''', __UpperCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a ( _lowerCamelCase ): snake_case_ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def A_ ( self : Optional[Any] ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , lowercase_ , ) @cached_property def A_ ( self : List[Any] ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: snake_case_ = torch.device('''cpu''' ) snake_case_ = 0 elif is_sagemaker_model_parallel_available(): snake_case_ = smp.local_rank() snake_case_ = torch.device('''cuda''' , lowercase_ ) snake_case_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) snake_case_ = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) snake_case_ = torch.device('''cuda''' , self.local_rank ) snake_case_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) snake_case_ = torch.device('''cuda''' , self.local_rank ) snake_case_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_ ) return device @property def A_ ( self : Optional[int] ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A_ ( self : Dict ): return not is_sagemaker_model_parallel_available() @property def A_ ( self : Optional[Any] ): return False
56
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
"""simple docstring""" from math import sqrt def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(1 , int(sqrt(_UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(_UpperCamelCase ): total += i + n // i elif i == sqrt(_UpperCamelCase ): total += i return total - n def _lowerCamelCase ( _UpperCamelCase = 1_0000 ): '''simple docstring''' __lowerCAmelCase = sum( i for i in range(1 , _UpperCamelCase ) if sum_of_divisors(sum_of_divisors(_UpperCamelCase ) ) == i and sum_of_divisors(_UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
57
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_50, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_00, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class a_ ( unittest.TestCase ): '''simple docstring''' def snake_case_( self ) -> Union[str, Any]: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def snake_case_( self , A=1 ) -> Optional[int]: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-single' , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def snake_case_( self , A ) -> Optional[int]: TrainingJobAnalytics(A ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) def snake_case_( self ) -> List[str]: # create estimator _SCREAMING_SNAKE_CASE = self.create_estimator() # run training estimator.fit() # result dataframe _SCREAMING_SNAKE_CASE = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _SCREAMING_SNAKE_CASE = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
58
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCamelCase = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ __lowerCamelCase = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def UpperCamelCase ( __lowerCamelCase : int ): def remove_articles(__lowerCamelCase : Dict ): snake_case : Dict = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(__lowerCamelCase , " " , __lowerCamelCase ) def white_space_fix(__lowerCamelCase : Dict ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : Optional[int] ): snake_case : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Dict ): return int(normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): snake_case : Optional[int] = [any(compute_exact(__lowerCamelCase , __lowerCamelCase ) for ref in refs ) for pred, refs in zip(__lowerCamelCase , __lowerCamelCase )] return (sum(__lowerCamelCase ) / len(__lowerCamelCase )) * 100 def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): snake_case : Any = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case : Optional[int] = Counter(__lowerCamelCase ) snake_case : Union[str, Any] = Counter(__lowerCamelCase ) snake_case : List[Any] = Counter() for sgram, scount in sgramcounter.items(): snake_case : Optional[int] = scount * numref snake_case : Dict = Counter(__lowerCamelCase ) snake_case : Optional[int] = Counter() for cgram, ccount in cgramcounter.items(): snake_case : int = ccount * numref # KEEP snake_case : List[Any] = sgramcounter_rep & cgramcounter_rep snake_case : Optional[Any] = keepgramcounter_rep & rgramcounter snake_case : List[Any] = sgramcounter_rep & rgramcounter snake_case : int = 0 snake_case : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case : Optional[int] = 1 snake_case : Optional[Any] = 1 if len(__lowerCamelCase ) > 0: snake_case : Tuple = keeptmpscorea / len(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case : int = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case : Optional[Any] = sgramcounter_rep - cgramcounter_rep snake_case : Optional[int] = delgramcounter_rep - rgramcounter snake_case : Optional[int] = sgramcounter_rep - rgramcounter snake_case : int = 0 snake_case : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case : Any = 1 if len(__lowerCamelCase ) > 0: snake_case : Tuple = deltmpscorea / len(__lowerCamelCase ) # ADDITION snake_case : Any = set(__lowerCamelCase ) - set(__lowerCamelCase ) snake_case : str = set(__lowerCamelCase ) & set(__lowerCamelCase ) snake_case : str = set(__lowerCamelCase ) - set(__lowerCamelCase ) snake_case : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case : List[str] = 1 snake_case : List[Any] = 1 if len(__lowerCamelCase ) > 0: snake_case : Union[str, Any] = addtmpscore / len(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: snake_case : Tuple = addtmpscore / len(__lowerCamelCase ) snake_case : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case : str = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): snake_case : List[str] = len(__lowerCamelCase ) snake_case : Optional[int] = ssent.split(" " ) snake_case : Optional[int] = csent.split(" " ) snake_case : Any = [] snake_case : Dict = [] snake_case : Union[str, Any] = [] snake_case : List[str] = [] snake_case : Any = [] snake_case : List[Any] = [] snake_case : Tuple = [] snake_case : str = [] snake_case : int = [] snake_case : str = [] for rsent in rsents: snake_case : Tuple = rsent.split(" " ) snake_case : Dict = [] snake_case : int = [] snake_case : Optional[Any] = [] ragramslist.append(__lowerCamelCase ) for i in range(0 , len(__lowerCamelCase ) - 1 ): if i < len(__lowerCamelCase ) - 1: snake_case : Any = ragrams[i] + " " + ragrams[i + 1] ragrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 2: snake_case : str = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 3: snake_case : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(__lowerCamelCase ) ragramslist.append(__lowerCamelCase ) ragramslist.append(__lowerCamelCase ) ragramslist.append(__lowerCamelCase ) for i in range(0 , len(__lowerCamelCase ) - 1 ): if i < len(__lowerCamelCase ) - 1: snake_case : List[str] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 2: snake_case : Dict = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 3: snake_case : Any = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(__lowerCamelCase ) for i in range(0 , len(__lowerCamelCase ) - 1 ): if i < len(__lowerCamelCase ) - 1: snake_case : Tuple = cagrams[i] + " " + cagrams[i + 1] cagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 2: snake_case : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(__lowerCamelCase ) if i < len(__lowerCamelCase ) - 3: snake_case : Any = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(__lowerCamelCase ) ((snake_case) , (snake_case) , (snake_case)) : int = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((snake_case) , (snake_case) , (snake_case)) : Optional[int] = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((snake_case) , (snake_case) , (snake_case)) : int = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((snake_case) , (snake_case) , (snake_case)) : Tuple = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case : Tuple = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : str = "13a" , __lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: snake_case : str = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case : Dict = sacrebleu.metrics.bleu._get_tokenizer(__lowerCamelCase )()(__lowerCamelCase ) else: snake_case : List[Any] = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCamelCase ) elif tokenizer == "moses": snake_case : List[Any] = sacremoses.MosesTokenizer().tokenize(__lowerCamelCase , return_str=__lowerCamelCase , escape=__lowerCamelCase ) elif tokenizer == "penn": snake_case : Union[str, Any] = sacremoses.MosesTokenizer().penn_tokenize(__lowerCamelCase , return_str=__lowerCamelCase ) else: snake_case : List[str] = sentence if not return_str: snake_case : Any = normalized_sent.split() return normalized_sent def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): if not (len(__lowerCamelCase ) == len(__lowerCamelCase ) == len(__lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) snake_case : int = 0 for src, pred, refs in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): sari_score += SARIsent(normalize(__lowerCamelCase ) , normalize(__lowerCamelCase ) , [normalize(__lowerCamelCase ) for sent in refs] ) snake_case : Optional[int] = sari_score / len(__lowerCamelCase ) return 100 * sari_score def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]="exp" , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[int]=False , ): snake_case : Dict = len(references[0] ) if any(len(__lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) snake_case : Union[str, Any] = [[refs[i] for refs in references] for i in range(__lowerCamelCase )] snake_case : Optional[int] = sacrebleu.corpus_bleu( __lowerCamelCase , __lowerCamelCase , smooth_method=__lowerCamelCase , smooth_value=__lowerCamelCase , force=__lowerCamelCase , lowercase=__lowerCamelCase , use_effective_order=__lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> int: '''simple docstring''' snake_case : str = {} result.update({"sari": compute_sari(sources=snake_case__ , predictions=snake_case__ , references=snake_case__ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=snake_case__ , references=snake_case__ )} ) result.update({"exact": compute_em(predictions=snake_case__ , references=snake_case__ )} ) return result
59
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : Optional[int] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = """bert-generation""" def __init__( self , lowercase_=5_0358 , lowercase_=1024 , lowercase_=24 , lowercase_=16 , lowercase_=4096 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0 , lowercase_=2 , lowercase_=1 , lowercase_="absolute" , lowercase_=True , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Any = use_cache
61
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): if n_term == "": return [] __UpperCamelCase =[] for temp in range(int(SCREAMING_SNAKE_CASE__ ) ): series.append(F'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": _A = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
62
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): """simple docstring""" __a =None class __SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): """simple docstring""" __a =PandasConfig def UpperCamelCase__ ( self : Optional[int] ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self : int , __a : Optional[Any] ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): _a = data_files if isinstance(__a , __a ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _a = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"files": files} ) ) return splits def UpperCamelCase__ ( self : int , __a : pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a = table_cast(__a , self.config.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self : str , __a : str ): for i, file in enumerate(itertools.chain.from_iterable(__a ) ): with open(__a , "rb" ) as f: _a = pa.Table.from_pandas(pd.read_pickle(__a ) ) yield i, self._cast_table(__a )
63
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union A_ = TypeVar('''T''') A_ = Union[List[T], Tuple[T, ...]] A_ = Union[T, List[T], Dict[str, T]] A_ = Union[str, bytes, os.PathLike]
64
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
import mpmath # for roots of unity import numpy as np class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Optional[int]=None ) -> Dict: """simple docstring""" UpperCAmelCase__ = list(poly_a or [0] )[:] UpperCAmelCase__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCAmelCase__ = self.__multiply() def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__UpperCAmelCase ) <= 1: return dft[0] # UpperCAmelCase__ = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase__ = [[] for i in range(__UpperCAmelCase )] UpperCAmelCase__ = self.root**next_ncol # First half of next step UpperCAmelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase__ = new_dft UpperCAmelCase__ = next_ncol // 2 return dft[0] def lowercase_ (self : str ) -> int: """simple docstring""" UpperCAmelCase__ = self.__dft("A" ) UpperCAmelCase__ = self.__dft("B" ) UpperCAmelCase__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase__ = 2 while next_ncol <= self.c_max_length: UpperCAmelCase__ = [[] for i in range(__UpperCAmelCase )] UpperCAmelCase__ = self.root ** (next_ncol // 2) UpperCAmelCase__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase__ = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = "A = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase__ = "B = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase__ = "A*B = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
65
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case_ :str = inspect.getfile(accelerate.test_utils ) snake_case_ :List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) snake_case_ :Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) snake_case_ :str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def lowerCAmelCase_ ( self: Optional[Any] ) -> List[str]: print(f"""Found {torch.cuda.device_count()} devices.""" ) snake_case_ :Any = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase_ ( self: Optional[Any] ) -> str: print(f"""Found {torch.cuda.device_count()} devices.""" ) snake_case_ :str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]: snake_case_ :List[Any] = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase_ ( self: str ) -> List[str]: print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) snake_case_ :Optional[int] = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": __a = Accelerator() __a = (accelerator.state.process_index + 2, 10) __a = torch.randint(0, 10, shape).to(accelerator.device) __a = "" __a = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __a = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __a = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
66
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Image ) -> Image: '''simple docstring''' A__ , A__ = image.size A__ = 0 A__ = image.load() for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): A__ = pixels[j, i] mean += pixel mean //= width * height for j in range(SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): A__ = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase__ = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
68
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
"""simple docstring""" import os def UpperCAmelCase ( ) -> Union[str, Any]: with open(os.path.dirname(UpperCAmelCase ) + '/p022_names.txt' ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace('"' , '' ).split(',' ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(UpperCAmelCase ): for letter in name: name_score += ord(UpperCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
69
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' from __future__ import annotations import requests A__ : Optional[Any] =set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = 1 , lowerCAmelCase = "new" , lowerCAmelCase = None ): """simple docstring""" _lowerCAmelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase ) - valid_terms ) ): _lowerCAmelCase = f"Invalid search term: {invalid_search_terms}" raise ValueError(lowerCAmelCase ) _lowerCAmelCase = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_29: raise requests.HTTPError _lowerCAmelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase )} _lowerCAmelCase = {} for id_ in range(lowerCAmelCase ): _lowerCAmelCase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
70
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ :Dict = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[Any] = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A_ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def snake_case_ ( A_ : List[str], A_ : int, A_ : Optional[int]=0 ): '''simple docstring''' if name is None: _lowerCamelCase : List[Any] = None else: _lowerCamelCase : List[str] = '''.''' * max(0, spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' _lowerCamelCase : Optional[int] = fmt.format(A_ ) # Print and recurse (if needed). if isinstance(A_, A_ ): if msg is not None: print(A_ ) for k in val.keys(): recursive_print(A_, val[k], spaces + 2 ) elif isinstance(A_, torch.Tensor ): print(A_, ''':''', val.size() ) else: print(A_, ''':''', A_ ) def snake_case_ ( A_ : Optional[int], A_ : Union[str, Any], A_ : List[Any], A_ : Optional[Any], A_ : Any ): '''simple docstring''' _lowerCamelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCamelCase : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCamelCase : List[Any] = param.view(*A_ ) _lowerCamelCase : Any = param.transpose(0, 2 ) _lowerCamelCase : Union[str, Any] = param.transpose(1, 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCamelCase : Any = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCamelCase : Optional[Any] = param.view(*A_ ) _lowerCamelCase : Any = param.transpose(0, 1 ).contiguous() _lowerCamelCase : Any = param.view(*A_ ) return param def snake_case_ ( A_ : Optional[Any], A_ : Tuple, A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = {} # old versions did not store training args _lowerCamelCase : Union[str, Any] = input_state_dict.get('''args''', A_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCamelCase : Optional[Any] = ds_args.padded_vocab_size _lowerCamelCase : List[Any] = ds_args.max_position_embeddings _lowerCamelCase : Dict = ds_args.hidden_size _lowerCamelCase : Union[str, Any] = ds_args.num_layers _lowerCamelCase : Any = ds_args.num_attention_heads _lowerCamelCase : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCamelCase : Optional[int] = config.n_head # The hidden_size per head. _lowerCamelCase : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCamelCase : List[Any] = input_state_dict['''checkpoint_version'''] else: _lowerCamelCase : List[str] = 0.0 # The model. _lowerCamelCase : Tuple = input_state_dict['''model'''] # The language model. _lowerCamelCase : Dict = model['''language_model'''] # The embeddings. _lowerCamelCase : int = lm['''embedding'''] # The word embeddings. _lowerCamelCase : Optional[int] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. _lowerCamelCase : Dict = word_embeddings[: config.vocab_size, :] _lowerCamelCase : str = word_embeddings # The position embeddings. _lowerCamelCase : Tuple = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCamelCase : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _lowerCamelCase : List[Any] = pos_embeddings # The transformer. _lowerCamelCase : str = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. _lowerCamelCase : int = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. _lowerCamelCase : Union[str, Any] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCamelCase : int = layer_re.match(A_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCamelCase : int = int(m.group(1 ) ) # The name of the operation. _lowerCamelCase : str = m.group(2 ) # Is it a weight or a bias? _lowerCamelCase : Any = m.group(3 ) # The name of the layer. _lowerCamelCase : Tuple = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): _lowerCamelCase : List[str] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' _lowerCamelCase : Tuple = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCamelCase : List[Any] = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.floataa ) ).view( 1, 1, A_, A_ ) _lowerCamelCase : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCamelCase : int = torch.tensor(-1E4, dtype=torch.floataa ) _lowerCamelCase : List[str] = masked_bias _lowerCamelCase : Tuple = fix_query_key_value_ordering(A_, A_, 3, A_, A_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCamelCase : Optional[int] = out_val.transpose(0, 1 ).contiguous() # Store. _lowerCamelCase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCamelCase : Tuple = fix_query_key_value_ordering(A_, A_, 3, A_, A_ ) # Store. No change of shape. _lowerCamelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCamelCase : Union[str, Any] = megatron_to_transformers[op_name] _lowerCamelCase : Tuple = val.transpose(0, 1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCamelCase : Any = megatron_to_transformers[op_name] _lowerCamelCase : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCamelCase : Optional[Any] = transformer['''final_layernorm.weight'''] _lowerCamelCase : Optional[Any] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCamelCase : Optional[int] = word_embeddings # It should be done! return output_state_dict def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''', action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''', type=A_, help='''Path to the checkpoint file (.zip archive or direct .pt file)''', ) parser.add_argument( '''--config_file''', default='''''', type=A_, help='''An optional config json file describing the pre-trained model.''', ) _lowerCamelCase : Union[str, Any] = parser.parse_args() # Extract the basename. _lowerCamelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint, '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: _lowerCamelCase : Any = torch.load(A_, map_location='''cpu''' ) else: _lowerCamelCase : Dict = torch.load(args.path_to_checkpoint, map_location='''cpu''' ) _lowerCamelCase : Tuple = input_state_dict.get('''args''', A_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCamelCase : List[str] = '''gelu_fast''' elif ds_args.openai_gelu: _lowerCamelCase : List[Any] = '''gelu_new''' else: _lowerCamelCase : Optional[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" _lowerCamelCase : List[str] = '''gelu_new''' # Spell out all parameters in case the defaults change. _lowerCamelCase : str = GPTaConfig( vocab_size=5_02_57, n_positions=10_24, n_embd=10_24, n_layer=24, n_head=16, n_inner=40_96, activation_function=A_, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1E-5, initializer_range=0.02, summary_type='''cls_index''', summary_use_proj=A_, summary_activation=A_, summary_proj_to_labels=A_, summary_first_dropout=0.1, scale_attn_weights=A_, use_cache=A_, bos_token_id=5_02_56, eos_token_id=5_02_56, ) else: _lowerCamelCase : List[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCamelCase : str = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) _lowerCamelCase : List[Any] = convert_megatron_checkpoint(A_, A_, A_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(A_, A_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCamelCase : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCamelCase : str = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": _lowerCamelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _lowerCamelCase : Tuple = '''gpt2''' _lowerCamelCase : str = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase : Union[str, Any] = type(A_ ).__name__ _lowerCamelCase : Tuple = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(A_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(A_ ) # Store the state_dict to file. _lowerCamelCase : Any = os.path.join(A_, '''pytorch_model.bin''' ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(A_, A_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
72
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a =logging.get_logger(__name__) a ={ """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = '''conditional_detr''' _UpperCAmelCase : int = ['''past_key_values'''] _UpperCAmelCase : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : List[str]=3 ,SCREAMING_SNAKE_CASE__ : int=3_0_0 ,SCREAMING_SNAKE_CASE__ : str=6 ,SCREAMING_SNAKE_CASE__ : Dict=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 ,SCREAMING_SNAKE_CASE__ : int=6 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=8 ,SCREAMING_SNAKE_CASE__ : int=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" ,SCREAMING_SNAKE_CASE__ : List[Any]=2_5_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.02 ,SCREAMING_SNAKE_CASE__ : Tuple=1.0 ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Dict="sine" ,SCREAMING_SNAKE_CASE__ : int="resnet50" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : List[str]=1 ,SCREAMING_SNAKE_CASE__ : int=1 ,SCREAMING_SNAKE_CASE__ : str=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : Dict=0.25 ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __lowerCamelCase : str = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = backbone_config.get('model_type') __lowerCamelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = use_timm_backbone __lowerCamelCase : Dict = backbone_config __lowerCamelCase : int = num_channels __lowerCamelCase : Union[str, Any] = num_queries __lowerCamelCase : List[Any] = d_model __lowerCamelCase : str = encoder_ffn_dim __lowerCamelCase : Union[str, Any] = encoder_layers __lowerCamelCase : Union[str, Any] = encoder_attention_heads __lowerCamelCase : Union[str, Any] = decoder_ffn_dim __lowerCamelCase : Optional[Any] = decoder_layers __lowerCamelCase : int = decoder_attention_heads __lowerCamelCase : Optional[Any] = dropout __lowerCamelCase : Optional[Any] = attention_dropout __lowerCamelCase : Any = activation_dropout __lowerCamelCase : int = activation_function __lowerCamelCase : Dict = init_std __lowerCamelCase : int = init_xavier_std __lowerCamelCase : Any = encoder_layerdrop __lowerCamelCase : str = decoder_layerdrop __lowerCamelCase : Dict = encoder_layers __lowerCamelCase : List[str] = auxiliary_loss __lowerCamelCase : Optional[int] = position_embedding_type __lowerCamelCase : List[str] = backbone __lowerCamelCase : Dict = use_pretrained_backbone __lowerCamelCase : Union[str, Any] = dilation # Hungarian matcher __lowerCamelCase : Dict = class_cost __lowerCamelCase : Dict = bbox_cost __lowerCamelCase : Any = giou_cost # Loss coefficients __lowerCamelCase : List[str] = mask_loss_coefficient __lowerCamelCase : Optional[int] = dice_loss_coefficient __lowerCamelCase : Any = cls_loss_coefficient __lowerCamelCase : str = bbox_loss_coefficient __lowerCamelCase : str = giou_loss_coefficient __lowerCamelCase : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : Union[str, Any]): return self.encoder_attention_heads @property def lowerCAmelCase ( self : int): return self.d_model def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowerCamelCase : str = self.backbone_config.to_dict() __lowerCamelCase : Optional[int] = self.__class__.model_type return output class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Optional[int]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def lowerCAmelCase ( self : Optional[Any]): return 1E-5 @property def lowerCAmelCase ( self : str): return 1_2
73
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
"""simple docstring""" def _snake_case ( snake_case__ : str ): A = 0 for ch in input_str: A = ord(snake_case__ ) A = pow(2 , snake_case__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
74
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a_ : Optional[Any] = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def a_ ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCamelCase_ =list(s_dict.keys() ) for key in keys: lowerCamelCase_ =r'''.*/layers_(\d+)''' lowerCamelCase_ =key if re.match(__snake_case , __snake_case ): lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __snake_case ) lowerCamelCase_ =r'''(encoder|decoder)\/''' if re.match(__snake_case , __snake_case ): lowerCamelCase_ =re.match(__snake_case , __snake_case ).groups() if groups[0] == "encoder": lowerCamelCase_ =re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __snake_case ) lowerCamelCase_ =re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __snake_case ) elif groups[0] == "decoder": lowerCamelCase_ =re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __snake_case ) lowerCamelCase_ =re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __snake_case ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase_ =new_key.replace(__snake_case , __snake_case ) print(F'''{key} -> {new_key}''' ) lowerCamelCase_ =s_dict.pop(__snake_case ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase_ =s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase_ =s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCamelCase_ =s_dict[key].shape[0] lowerCamelCase_ =s_dict[key] for idx in range(__snake_case ): lowerCamelCase_ =expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(__snake_case ) return s_dict a_ : Tuple = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def a_ ( __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # Convert a google style config to the hugging face fromat import regex as re with open(__snake_case , '''r''' ) as f: lowerCamelCase_ =f.read() lowerCamelCase_ =re.findall(r'''(.*) = ([0-9.]*)''' , __snake_case ) lowerCamelCase_ ={} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase_ =float(__snake_case ) if '''.''' in value else int(__snake_case ) lowerCamelCase_ =re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __snake_case )[0] lowerCamelCase_ =str(activation[1] ) lowerCamelCase_ =num_experts lowerCamelCase_ =SwitchTransformersConfig(**__snake_case ) return config def a_ ( __snake_case : Dict , __snake_case : Any , __snake_case : List[str]=None , __snake_case : Any="./" , __snake_case : int=8 ) -> Optional[Any]: """simple docstring""" # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) lowerCamelCase_ =checkpoints.load_tax_checkpoint(__snake_case ) if gin_file is not None: lowerCamelCase_ =convert_gin_to_config(__snake_case , __snake_case ) else: lowerCamelCase_ =SwitchTransformersConfig.from_pretrained(__snake_case ) lowerCamelCase_ =SwitchTransformersForConditionalGeneration(__snake_case ) lowerCamelCase_ =flax_params['''target'''] lowerCamelCase_ =flatten_dict(__snake_case , sep='''/''' ) lowerCamelCase_ =rename_keys(__snake_case ) lowerCamelCase_ =unflatten_dict(__snake_case , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__snake_case , __snake_case ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(__snake_case ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") a_ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
75
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
from __future__ import annotations def lowerCamelCase__ ( _a , _a , _a): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0") if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0") if principal <= 0: raise ValueError("principal must be > 0") return principal * daily_interest_rate * days_between_payments def lowerCamelCase__ ( _a , _a , _a , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0") if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0") if principal <= 0: raise ValueError("principal must be > 0") return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase__ ( _a , _a , _a , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0") if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0") if principal <= 0: raise ValueError("principal must be > 0") return compound_interest( _a , nominal_annual_percentage_rate / 365 , number_of_years * 365) if __name__ == "__main__": import doctest doctest.testmod()
76
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
"""simple docstring""" from __future__ import annotations from random import choice def a_ ( _lowerCAmelCase : Tuple ): '''simple docstring''' return choice(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[Any] = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time lowercase__ : str = [e for e in lst if e < pivot] lowercase__ : List[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
"""simple docstring""" snake_case_ = """Tobias Carryer""" from time import time class A_ : """simple docstring""" def __init__( self :str , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any]=int(time() ) ) -> List[str]: # noqa: B008 UpperCAmelCase = multiplier UpperCAmelCase = increment UpperCAmelCase = modulo UpperCAmelCase = seed def UpperCAmelCase__ ( self :Optional[int] ) -> int: UpperCAmelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case_ = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
78
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
'''simple docstring''' import math def __lowercase ( __lowercase = 100 ) -> int: '''simple docstring''' _A = sum(i * i for i in range(1 , n + 1 ) ) _A = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
79
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : Tuple = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'blip_text_model' def __init__( self , a=3_05_24 , a=7_68 , a=7_68 , a=30_72 , a=7_68 , a=12 , a=8 , a=5_12 , a="gelu" , a=1e-12 , a=0.0 , a=0.0 , a=0.02 , a=3_05_22 , a=2 , a=0 , a=1_02 , a=True , a=True , **a , ): super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , sep_token_id=a , **a , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = encoder_hidden_size UpperCamelCase__ = intermediate_size UpperCamelCase__ = projection_dim UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = hidden_act UpperCamelCase__ = initializer_range UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = is_decoder UpperCamelCase__ = use_cache @classmethod def __a ( cls , a , **a ): cls._set_token_in_kwargs(a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCamelCase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class lowercase_ ( a__ ): __UpperCAmelCase = 'blip_vision_model' def __init__( self , a=7_68 , a=30_72 , a=5_12 , a=12 , a=12 , a=3_84 , a=16 , a="gelu" , a=1e-5 , a=0.0 , a=1e-10 , **a , ): super().__init__(**a ) UpperCamelCase__ = hidden_size UpperCamelCase__ = intermediate_size UpperCamelCase__ = projection_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = patch_size UpperCamelCase__ = image_size UpperCamelCase__ = initializer_range UpperCamelCase__ = attention_dropout UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = hidden_act @classmethod def __a ( cls , a , **a ): cls._set_token_in_kwargs(a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCamelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class lowercase_ ( a__ ): __UpperCAmelCase = 'blip' __UpperCAmelCase = True def __init__( self , a=None , a=None , a=5_12 , a=2.6592 , a=2_56 , **a , ): super().__init__(**a ) if text_config is None: UpperCamelCase__ = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCamelCase__ = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCamelCase__ = BlipTextConfig(**a ) UpperCamelCase__ = BlipVisionConfig(**a ) UpperCamelCase__ = self.vision_config.hidden_size UpperCamelCase__ = projection_dim UpperCamelCase__ = logit_scale_init_value UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.02 UpperCamelCase__ = image_text_hidden_size @classmethod def __a ( cls , a , a , **a ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def __a ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
80
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["image_processor", "tokenizer"] __lowerCAmelCase = "ViTImageProcessor" __lowerCAmelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __A=None , __A=None , **__A ) -> List[Any]: a =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __A , ) a =kwargs.pop('''feature_extractor''' ) a =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A=None , **__A ) -> Any: if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: a =self.tokenizer(__A , return_tensors=__A , **__A ) if visual_prompt is not None: a =self.image_processor(__A , return_tensors=__A , **__A ) if images is not None: a =self.image_processor(__A , return_tensors=__A , **__A ) if visual_prompt is not None and images is not None: a ={ '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a =image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a ={ '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> str: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Tuple: return self.tokenizer.decode(*__A , **__A ) @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __A , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __A , ) return self.image_processor
81
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(snake_case ) ) def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" if index == len(snake_case ): return True # Recursive Step for i in range(snake_case ): if valid_coloring(graph[index] , snake_case , snake_case ): # Color current vertex _lowerCAmelCase = i # Validate coloring if util_color(snake_case , snake_case , snake_case , index + 1 ): return True # Backtrack _lowerCAmelCase = -1 return False def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [-1] * len(snake_case ) if util_color(snake_case , snake_case , snake_case , 0 ): return colored_vertices return []
82
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any=3 ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : Dict=10 ,lowerCamelCase__ : Any=[10, 20, 30, 40] ,lowerCamelCase__ : Union[str, Any]=[1, 1, 2, 1] ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Tuple="relu" ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Union[str, Any]=None ,): '''simple docstring''' _UpperCamelCase : Optional[int] = parent _UpperCamelCase : Tuple = batch_size _UpperCamelCase : str = image_size _UpperCamelCase : Tuple = num_channels _UpperCamelCase : List[str] = embeddings_size _UpperCamelCase : Any = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : Any = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Union[str, Any] = hidden_act _UpperCamelCase : List[Any] = num_labels _UpperCamelCase : Tuple = scope _UpperCamelCase : Union[str, Any] = len(lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = None if self.use_labels: _UpperCamelCase : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = RegNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[Any] = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Dict = RegNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : List[Any] = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = config_and_inputs _UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = RegNetModelTester(self ) _UpperCamelCase : int = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = model_class(lowerCamelCase__ ) _UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ): _UpperCamelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : str = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) _UpperCamelCase , _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : List[str] = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Tuple = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Tuple = RegNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( ): _UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : str ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) _UpperCamelCase : Any = self.default_image_processor _UpperCamelCase : int = prepare_img() _UpperCamelCase : Optional[int] = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : int = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : int = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) )
83
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello world! cécé herlolip' def _snake_case ( lowercase__ : str , lowercase__ : str , lowercase__ : bool ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :str = FairseqRobertaModel.from_pretrained(lowercase__ ) roberta.eval() # disable dropout lowerCAmelCase_ :List[str] = roberta.model.encoder.sentence_encoder lowerCAmelCase_ :int = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCAmelCase_ :Dict = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowercase__ ) lowerCAmelCase_ :Optional[Any] = XLMRobertaXLForSequenceClassification(lowercase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowercase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ :Any = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ :Optional[int] = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ :Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ :Tuple = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ :List[str] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ :BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase_ :TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase_ :RobertaAttention = layer.attention lowerCAmelCase_ :Tuple = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ :Dict = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ :BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ :Union[str, Any] = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ :Union[str, Any] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ :List[Any] = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ :Tuple = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ :Union[str, Any] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ :Tuple = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ :BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ :Optional[Any] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ :Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ :int = roberta_layer.final_layer_norm.weight lowerCAmelCase_ :str = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ :BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ :Optional[Any] = roberta_layer.fca.weight lowerCAmelCase_ :Tuple = roberta_layer.fca.bias # output lowerCAmelCase_ :BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ :int = roberta_layer.fca.weight lowerCAmelCase_ :Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ :str = roberta.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase_ :Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase_ :Tuple = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase_ :int = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase_ :List[Any] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ :Optional[Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ :Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ :List[Any] = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ :Tuple = roberta.model.encoder.lm_head.weight lowerCAmelCase_ :List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ :torch.Tensor = roberta.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ :Any = model(lowercase__ )[0] if classification_head: lowerCAmelCase_ :str = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowercase__ ) ) else: lowerCAmelCase_ :List[Any] = roberta.model(lowercase__ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ :Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase_ :Union[str, Any] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
84
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[int] = "funnel" lowerCAmelCase_ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , a__=30_522 , a__=[4, 4, 4] , a__=None , a__=2 , a__=768 , a__=12 , a__=64 , a__=3_072 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=0.0 , a__=0.1 , a__=None , a__=1e-9 , a__="mean" , a__="relative_shift" , a__=True , a__=True , a__=True , **a__ , ) -> Optional[int]: '''simple docstring''' snake_case_ = vocab_size snake_case_ = block_sizes snake_case_ = [1] * len(a__ ) if block_repeats is None else block_repeats assert len(a__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case_ = num_decoder_layers snake_case_ = d_model snake_case_ = n_head snake_case_ = d_head snake_case_ = d_inner snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = initializer_range snake_case_ = initializer_std snake_case_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' snake_case_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' snake_case_ = attention_type snake_case_ = separate_cls snake_case_ = truncate_seq snake_case_ = pool_q_only super().__init__(**a__ ) @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
85
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( _UpperCamelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : Union[str, Any]): if isinstance(_lowerCamelCase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(_lowerCamelCase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(_lowerCamelCase): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''') class snake_case_ ( __A ): __A : str = ["pixel_values"] def __init__( self : Union[str, Any] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Union[str, Any] , ) -> None: super().__init__(**lowercase_ ) lowercase__ : int = size if size is not None else {"shortest_edge": 2_56} lowercase__ : str = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowercase__ : Optional[int] = get_size_dict(lowercase_ , param_name="crop_size" ) lowercase__ : Optional[Any] = do_resize lowercase__ : Dict = size lowercase__ : Any = do_center_crop lowercase__ : int = crop_size lowercase__ : int = resample lowercase__ : Tuple = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Dict = offset lowercase__ : Tuple = do_normalize lowercase__ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : Dict , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ) -> np.ndarray: lowercase__ : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" in size: lowercase__ : int = get_resize_output_image_size(lowercase_ , size["shortest_edge"] , default_to_square=lowercase_ ) elif "height" in size and "width" in size: lowercase__ : int = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ) -> np.ndarray: lowercase__ : List[str] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : bool = True , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> Any: lowercase__ : Tuple = image.astype(np.floataa ) if offset: lowercase__ : List[str] = image - (scale / 2) return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Tuple , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. lowercase__ : Optional[int] = to_numpy_array(lowercase_ ) if do_resize: lowercase__ : Any = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) if do_center_crop: lowercase__ : Union[str, Any] = self.center_crop(lowercase_ , size=lowercase_ ) if do_rescale: lowercase__ : Any = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_ ) if do_normalize: lowercase__ : Optional[int] = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) lowercase__ : Any = to_channel_dimension_format(lowercase_ , lowercase_ ) return image def __UpperCamelCase ( self : List[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : int , ) -> PIL.Image.Image: lowercase__ : Any = do_resize if do_resize is not None else self.do_resize lowercase__ : str = resample if resample is not None else self.resample lowercase__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Any = offset if offset is not None else self.offset lowercase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Any = image_mean if image_mean is not None else self.image_mean lowercase__ : str = image_std if image_std is not None else self.image_std lowercase__ : Optional[Any] = size if size is not None else self.size lowercase__ : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(lowercase_ , param_name="crop_size" ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowercase__ : Dict = make_batched(lowercase_ ) lowercase__ : Optional[int] = [ [ self._preprocess_image( image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , ) for img in video ] for video in videos ] lowercase__ : Optional[Any] = {"pixel_values": videos} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
87
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = 'The Nymphenburg Palace is a beautiful palace in Munich!' def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } __magic_name__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __magic_name__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""], num_layers=predefined_args["""num_layers"""], units=predefined_args["""units"""], hidden_size=predefined_args["""hidden_size"""], max_length=predefined_args["""max_length"""], num_heads=predefined_args["""num_heads"""], scaled=predefined_args["""scaled"""], dropout=predefined_args["""dropout"""], output_attention=A_, output_all_encodings=A_, use_residual=predefined_args["""use_residual"""], activation=predefined_args.get("""activation""", """gelu""" ), layer_norm_eps=predefined_args.get("""layer_norm_eps""", A_ ), ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __magic_name__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab __magic_name__ = os.path.join(get_home_dir(), """models""" ) __magic_name__ = _load_vocab(A_, A_, A_, cls=A_ ) __magic_name__ = nlp.model.BERTModel( A_, len(A_ ), units=predefined_args["""units"""], embed_size=predefined_args["""embed_size"""], embed_dropout=predefined_args["""embed_dropout"""], word_embed=predefined_args["""word_embed"""], use_pooler=A_, use_token_type_embed=A_, token_type_vocab_size=predefined_args["""token_type_vocab_size"""], use_classifier=A_, use_decoder=A_, ) original_bort.load_parameters(A_, cast_dtype=A_, ignore_extra=A_ ) __magic_name__ = original_bort._collect_params_with_prefix() # Build our config 🤗 __magic_name__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(A_ ), } __magic_name__ = BertConfig.from_dict(A_ ) __magic_name__ = BertForMaskedLM(A_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A_ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A_, A_ ): __magic_name__ = hf_param.shape __magic_name__ = to_torch(params[gluon_param] ) __magic_name__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight, """word_embed.0.weight""" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight, """encoder.position_weight""" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias, """encoder.layer_norm.beta""" ) __magic_name__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight, """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __magic_name__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __magic_name__ = hf_bort_model.bert.encoder.layer[i] # self attention __magic_name__ = layer.attention.self __magic_name__ = check_and_map_params( self_attn.key.bias.data, f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __magic_name__ = check_and_map_params( self_attn.key.weight.data, f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __magic_name__ = check_and_map_params( self_attn.query.bias.data, f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __magic_name__ = check_and_map_params( self_attn.query.weight.data, f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __magic_name__ = check_and_map_params( self_attn.value.bias.data, f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __magic_name__ = check_and_map_params( self_attn.value.weight.data, f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __magic_name__ = layer.attention.output __magic_name__ = check_and_map_params( self_output.dense.bias, f'''encoder.transformer_cells.{i}.proj.bias''' ) __magic_name__ = check_and_map_params( self_output.dense.weight, f'''encoder.transformer_cells.{i}.proj.weight''' ) __magic_name__ = check_and_map_params( self_output.LayerNorm.bias, f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __magic_name__ = check_and_map_params( self_output.LayerNorm.weight, f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __magic_name__ = layer.intermediate __magic_name__ = check_and_map_params( intermediate.dense.bias, f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __magic_name__ = check_and_map_params( intermediate.dense.weight, f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __magic_name__ = layer.output __magic_name__ = check_and_map_params( bert_output.dense.bias, f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __magic_name__ = check_and_map_params( bert_output.dense.weight, f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __magic_name__ = check_and_map_params( bert_output.LayerNorm.bias, f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __magic_name__ = check_and_map_params( bert_output.LayerNorm.weight, f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __magic_name__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) __magic_name__ = tokenizer.encode_plus(A_ )["""input_ids"""] # Get gluon output __magic_name__ = mx.nd.array([input_ids] ) __magic_name__ = original_bort(inputs=A_, token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A_ ) __magic_name__ = BertModel.from_pretrained(A_ ) hf_bort_model.eval() __magic_name__ = tokenizer.encode_plus(A_, return_tensors="""pt""" ) __magic_name__ = hf_bort_model(**A_ )[0] __magic_name__ = output_gluon[0].asnumpy() __magic_name__ = output_hf[0].detach().numpy() __magic_name__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() __magic_name__ = np.allclose(A_, A_, atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""", A_ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
88
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase = '''true''' def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=82 , lowerCAmelCase_=16 ) -> Union[str, Any]: set_seed(42 ) _a : Union[str, Any] = RegressionModel() _a : Dict = deepcopy(lowerCAmelCase_ ) _a : Any = RegressionDataset(length=lowerCAmelCase_ ) _a : List[str] = DataLoader(lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) model.to(accelerator.device ) _a , _a : int = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) return model, ddp_model, dataloader def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: _a : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) _a : Dict = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCAmelCase_ ): _a : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs with accelerator.main_process_first(): _a : int = dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) _a : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase_ ): if use_longest: return tokenizer.pad(lowerCAmelCase_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowerCAmelCase_ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(lowerCAmelCase_ , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=16 ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : Optional[int] = Accelerator(dispatch_batches=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) _a : Optional[Any] = get_dataloader(lowerCAmelCase_ , not dispatch_batches ) _a : List[str] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCAmelCase_ ) _a , _a : Optional[int] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Union[str, Any] = [] for batch in dataloader: _a , _a : Any = batch.values() with torch.no_grad(): _a : str = model(lowerCAmelCase_ ) _a , _a : Optional[int] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _a , _a : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase_ ) targs.append(lowerCAmelCase_ ) _a , _a : Dict = torch.cat(lowerCAmelCase_ ), torch.cat(lowerCAmelCase_ ) return logits, targs def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=82 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=16 ) -> List[Any]: _a , _a , _a : int = get_basic_setup(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a : Union[str, Any] = generate_predictions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert ( len(lowerCAmelCase_ ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase_ )}""" def __lowerCamelCase ( lowerCAmelCase_ = False , lowerCAmelCase_ = False ) -> List[Any]: _a : Optional[Any] = evaluate.load('glue' , 'mrpc' ) _a , _a : Any = get_mrpc_setup(lowerCAmelCase_ , lowerCAmelCase_ ) # First do baseline _a , _a , _a : str = setup['no'] model.to(lowerCAmelCase_ ) model.eval() for batch in dataloader: batch.to(lowerCAmelCase_ ) with torch.inference_mode(): _a : List[Any] = model(**lowerCAmelCase_ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCAmelCase_ , references=batch['labels'] ) _a : Any = metric.compute() # Then do distributed _a , _a , _a : int = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): _a : List[str] = model(**lowerCAmelCase_ ) _a : int = outputs.logits.argmax(dim=-1 ) _a : Optional[int] = batch['labels'] _a , _a : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) _a : Any = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __lowerCamelCase ( ) -> str: _a : Optional[int] = Accelerator(split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _a : Optional[Any] = Accelerator(split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(lowerCAmelCase_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) _a : int = Accelerator() test_torch_metrics(lowerCAmelCase_ , 512 ) accelerator.state._reset_state() def __lowerCamelCase ( lowerCAmelCase_ ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
89
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
90
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
"""simple docstring""" UpperCAmelCase_ : Dict = range(2, 20 + 1) UpperCAmelCase_ : Union[str, Any] = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def _A (__a , __a , __a , __a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = sum(a_i[j] for j in range(__a , len(__a ) ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(__a ) , __a ) ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0, 0 SCREAMING_SNAKE_CASE_ : str = n - i SCREAMING_SNAKE_CASE_ : Dict = memo.get(__a ) if sub_memo is not None: SCREAMING_SNAKE_CASE_ : str = sub_memo.get(__a ) if jumps is not None and len(__a ) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE_ : List[str] = -1 for _k in range(len(__a ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE_ : Optional[Any] = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE_ : Optional[Any] = diff + c for j in range(min(__a , len(__a ) ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = divmod(__a , 10 ) if new_c > 0: add(__a , __a , __a ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] else: SCREAMING_SNAKE_CASE_ : List[Any] = {c: []} SCREAMING_SNAKE_CASE_ : Optional[int] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = next_term(__a , k - 1 , i + dn , __a ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = compute(__a , __a , i + dn , __a ) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE_ : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE_ : List[Any] = 0 while j < len(__a ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__a , (diff, dn, k) ) return (diff, dn) def _A (__a , __a , __a , __a ) -> Optional[int]: """simple docstring""" if i >= n: return 0, i if k > len(__a ): a_i.extend([0 for _ in range(k - len(__a ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE_ : Any = i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = 0, 0, 0 for j in range(len(__a ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE_ : Dict = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE_ : Tuple = 0 for j in range(__a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = a_i[j] + addend SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = divmod(__a , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__a , __a , __a ) return diff, i - start_i def _A (__a , __a , __a ) -> Optional[Any]: """simple docstring""" for j in range(__a , len(__a ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = divmod(__a , 10 ) SCREAMING_SNAKE_CASE_ : Optional[int] = addend // 10 + quotient else: SCREAMING_SNAKE_CASE_ : Tuple = s SCREAMING_SNAKE_CASE_ : Tuple = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = divmod(__a , 10 ) digits.append(__a ) def _A (__a = 10**15 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [1] SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : Dict = 0 while True: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = next_term(__a , 20 , i + dn , __a ) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE_ : List[str] = 0 for j in range(len(__a ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
91
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ): __lowerCAmelCase = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=SCREAMING_SNAKE_CASE_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() def _a ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(SCREAMING_SNAKE_CASE_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
92
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' lowercase_ : int = nn.Parameter(__SCREAMING_SNAKE_CASE ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' lowercase_ : Any = nn.Parameter(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = np.asarray(weights[0] ) lowercase_ : Optional[Any] = np.asarray(weights[1] ) lowercase_ : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , __SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , __SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(__SCREAMING_SNAKE_CASE ).view(-1 , __SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Union[str, Any] = np.asarray(weights[0] ) lowercase_ : Any = np.asarray(weights[1] ) lowercase_ : Optional[int] = np.asarray(weights[2] ) lowercase_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , __SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , __SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , __SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(__SCREAMING_SNAKE_CASE ).view(-1 , __SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" lowercase_ : Union[str, Any] = weights[0][0][0] lowercase_ : Optional[Any] = np.asarray(layer_norm_a[0] ) lowercase_ : List[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__SCREAMING_SNAKE_CASE ) , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) # lsh weights + output lowercase_ : Dict = weights[0][1] if len(__SCREAMING_SNAKE_CASE ) < 4: set_layer_weights_in_torch_lsh(__SCREAMING_SNAKE_CASE , torch_block.attention , __SCREAMING_SNAKE_CASE ) else: set_layer_weights_in_torch_local(__SCREAMING_SNAKE_CASE , torch_block.attention , __SCREAMING_SNAKE_CASE ) # intermediate weighs lowercase_ : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(__SCREAMING_SNAKE_CASE ) == 4: lowercase_ : Any = intermediate_weights[2] # layernorm 2 lowercase_ : List[Any] = np.asarray(intermediate_weights[0][0] ) lowercase_ : Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__SCREAMING_SNAKE_CASE ) , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) # intermediate dense lowercase_ : List[str] = np.asarray(intermediate_weights[1][0] ) lowercase_ : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) # intermediate out lowercase_ : int = np.asarray(intermediate_weights[4][0] ) lowercase_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Tuple = torch_model.reformer # word embeds lowercase_ : Optional[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) if isinstance(weights[3] , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowercase_ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' lowercase_ : Any = nn.Parameter(torch.tensor(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowercase_ : Dict = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # output layer norm lowercase_ : List[str] = np.asarray(weights[7][0] ) lowercase_ : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__SCREAMING_SNAKE_CASE ) , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) # output embeddings lowercase_ : Optional[int] = np.asarray(weights[9][0] ) lowercase_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(__SCREAMING_SNAKE_CASE ) , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : int = ReformerConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Optional[Any] = ReformerModelWithLMHead(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f: lowercase_ : List[str] = pickle.load(__SCREAMING_SNAKE_CASE )['''weights'''] set_model_weights_in_torch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : str = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
93
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" while b: a , a :Optional[Any] = b, a % b return a def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(UpperCAmelCase_ , a % b ) def __lowerCamelCase ( ): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
94
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple =0 # if input_string is "aba" than new_input_string become "a|b|a" a__ : Union[str, Any] ="" a__ : int ="" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring a__ , a__ : List[Any] =0, 0 # length[i] shows the length of palindromic substring with center i a__ : Union[str, Any] =[1 for i in range(len(SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string a__ : Optional[int] =0 for j in range(len(SCREAMING_SNAKE_CASE ) ): a__ : List[Any] =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 a__ : List[str] =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: a__ : Optional[Any] =j - k + 1 # noqa: E741 a__ : Any =j + k - 1 # update max_length and start position if max_length < length[j]: a__ : Optional[int] =length[j] a__ : Any =j # create that string a__ : int =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
95
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __snake_case = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __snake_case = direct_transformers_import(PATH_TO_TRANSFORMERS) __snake_case = transformers.models.auto.configuration_auto.CONFIG_MAPPING __snake_case = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def a ( __a , __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): UpperCamelCase__ :Dict = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , __a , ) is not None ): UpperCamelCase__ :str = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase__ :str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase__ :Optional[Any] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCamelCase__ :str = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCamelCase__ :Tuple = True if not attribute_used: UpperCamelCase__ :Optional[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase__ :Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase__ :str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase__ :Dict = True elif attribute.endswith('''_token_id''' ): UpperCamelCase__ :Dict = True # configuration class specific cases if not case_allowed: UpperCamelCase__ :Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase__ :str = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Dict = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase__ :Union[str, Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCamelCase__ :int = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase__ :Tuple = {} if len(config_class.attribute_map ) > 0: UpperCamelCase__ :int = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase__ :Tuple = inspect.getsourcefile(__a ) UpperCamelCase__ :Union[str, Any] = os.path.dirname(__a ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase__ :Optional[int] = [os.path.join(__a , __a ) for fn in os.listdir(__a ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCamelCase__ :Optional[int] = [] for path in modeling_paths: if os.path.isfile(__a ): with open(__a ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase__ :Optional[int] = [] for config_param, default_value in zip(__a , __a ): # `attributes` here is all the variant names for `config_param` UpperCamelCase__ :Dict = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__a , __a , __a , __a ): unused_attributes.append(attributes[0] ) return sorted(__a ) def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :str = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase__ :List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __a : inspect.isclass(__a ) and issubclass(__a , __a ) and inspect.getmodule(__a ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase__ :List[Any] = check_config_attributes_being_used(__a ) if len(__a ) > 0: UpperCamelCase__ :Dict = unused_attributes if len(__a ) > 0: UpperCamelCase__ :Optional[int] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(__a ) if __name__ == "__main__": check_config_attributes()
97
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
"""simple docstring""" import functools from typing import Any def a_ ( lowerCamelCase , lowerCamelCase ): # Validation if not isinstance(lowerCamelCase , lowerCamelCase ) or len(lowerCamelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or not all( isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie UpperCAmelCase__ = {} UpperCAmelCase__ = 'WORD_KEEPER' for word in words: UpperCAmelCase__ = trie for c in word: if c not in trie_node: UpperCAmelCase__ = {} UpperCAmelCase__ = trie_node[c] UpperCAmelCase__ = True UpperCAmelCase__ = len(lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(lowerCamelCase ) -> bool: if index == len_string: return True UpperCAmelCase__ = trie for i in range(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = trie_node.get(string[i] , lowerCamelCase ) if trie_node is None: return False if trie_node.get(lowerCamelCase , lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
98
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : str = TFAutoModel.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[Any] = AutoModel.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : List[str] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Any = TFAutoModelForPreTraining.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[int] = AutoModelForPreTraining.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> str: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase , from_pt=lowercase) a__ , a__ : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Tuple = AutoModelForCausalLM.from_pretrained(lowercase , from_tf=lowercase) a__ , a__ : Any = AutoModelForCausalLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : str = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : int = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowercase , from_pt=lowercase) a__ , a__ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Tuple = AutoModelForMaskedLM.from_pretrained(lowercase , from_tf=lowercase) a__ , a__ : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase , from_pt=lowercase) a__ , a__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowercase , from_tf=lowercase) a__ , a__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : int = TFAutoModelForSequenceClassification.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Any = AutoModelForSequenceClassification.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : List[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : str = AutoModelForQuestionAnswering.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410) a__ : Any = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410) a__ : int = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410)
99
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE_ ( __a , __a ): """simple docstring""" __lowercase : Optional[Any] = '''pixel_values''' __lowercase : Any = False __lowercase : Optional[Any] = TimmBackboneConfig def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , """timm""") super().__init__(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""") if config.backbone not in timm.list_models(): raise ValueError(f"backbone {config.backbone} is not supported by timm.") if hasattr(lowerCAmelCase__ , """out_features""") and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""") __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , """use_pretrained_backbone""" , lowerCAmelCase__) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""") # We just take the final layer by default. This matches the default for the transformers models. __SCREAMING_SNAKE_CASE = config.out_indices if getattr(lowerCAmelCase__ , """out_indices""" , lowerCAmelCase__) is not None else (-1,) __SCREAMING_SNAKE_CASE = timm.create_model( config.backbone , pretrained=lowerCAmelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase__ , **lowerCAmelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __SCREAMING_SNAKE_CASE = self._backbone.return_layers __SCREAMING_SNAKE_CASE = {layer["""module"""]: str(lowerCAmelCase__) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(lowerCAmelCase__) @classmethod def snake_case_ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(cls , ["""vision""", """timm"""]) from ...models.timm_backbone import TimmBackboneConfig __SCREAMING_SNAKE_CASE = kwargs.pop("""config""" , TimmBackboneConfig()) __SCREAMING_SNAKE_CASE = kwargs.pop("""use_timm_backbone""" , lowerCAmelCase__) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""") __SCREAMING_SNAKE_CASE = kwargs.pop("""num_channels""" , config.num_channels) __SCREAMING_SNAKE_CASE = kwargs.pop("""features_only""" , config.features_only) __SCREAMING_SNAKE_CASE = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone) __SCREAMING_SNAKE_CASE = kwargs.pop("""out_indices""" , config.out_indices) __SCREAMING_SNAKE_CASE = TimmBackboneConfig( backbone=lowerCAmelCase__ , num_channels=lowerCAmelCase__ , features_only=lowerCAmelCase__ , use_pretrained_backbone=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , ) return super()._from_config(lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): pass def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""") if output_hidden_states: # We modify the return layers to include all the stages of the backbone __SCREAMING_SNAKE_CASE = self._all_layers __SCREAMING_SNAKE_CASE = self._backbone(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self._return_layers __SCREAMING_SNAKE_CASE = tuple(hidden_states[i] for i in self.out_indices) else: __SCREAMING_SNAKE_CASE = self._backbone(lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) if hidden_states is not None else None if not return_dict: __SCREAMING_SNAKE_CASE = (feature_maps,) if output_hidden_states: __SCREAMING_SNAKE_CASE = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , attentions=lowerCAmelCase__)
100
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0