code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowercase__ :Optional[Any] = logging.get_logger(__name__) @dataclass class lowercase : lowercase_ : str =field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) lowercase_ : str =field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) lowercase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : bool =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A__ ( self): lowercase = self.task_name.lower() class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[Any] ='''train''' lowercase_ : List[str] ='''dev''' lowercase_ : Dict ='''test''' class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : GlueDataTrainingArguments lowercase_ : str lowercase_ : List[InputFeatures] def __init__( self ,A__ ,A__ ,A__ = None ,A__ = Split.train ,A__ = None ,): warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ,A__ ,) lowercase = args lowercase = glue_processors[args.task_name]() lowercase = glue_output_modes[args.task_name] if isinstance(A__ ,A__): try: lowercase = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''') # Load data features from cache or dataset file lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' ,) lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase = cached_features_file + '''.lock''' with FileLock(A__): if os.path.exists(A__) and not args.overwrite_cache: lowercase = time.time() lowercase = torch.load(A__) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' ,time.time() - start) else: logger.info(f'Creating features from dataset file at {args.data_dir}') if mode == Split.dev: lowercase = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: lowercase = self.processor.get_test_examples(args.data_dir) else: lowercase = self.processor.get_train_examples(args.data_dir) if limit_length is not None: lowercase = examples[:limit_length] lowercase = glue_convert_examples_to_features( A__ ,A__ ,max_length=args.max_seq_length ,label_list=A__ ,output_mode=self.output_mode ,) lowercase = time.time() torch.save(self.features ,A__) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]') def __len__( self): return len(self.features) def __getitem__( self ,A__): return self.features[i] def A__ ( self): return self.label_list
101
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE : Optional[Any] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
def UpperCamelCase( __UpperCamelCase : int ): if n == 1 or not isinstance(__UpperCamelCase ,__UpperCamelCase ): return 0 elif n == 2: return 1 else: lowerCAmelCase_ : List[str] = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase( __UpperCamelCase : int ): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Tuple = 2 while digits < n: index += 1 lowerCAmelCase_ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def UpperCamelCase( __UpperCamelCase : int = 1000 ): return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
103
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : VQModel ,lowercase__ : UNetaDModel ,lowercase__ : DDIMScheduler ): super().__init__() self.register_modules(vqvae=lowercase__ ,unet=lowercase__ ,scheduler=lowercase__ ) @torch.no_grad() def __call__( self : Tuple ,lowercase__ : int = 1 ,lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowercase__ : float = 0.0 ,lowercase__ : int = 5_0 ,lowercase__ : Optional[str] = "pil" ,lowercase__ : bool = True ,**lowercase__ : List[str] ,): __lowercase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=lowercase__ ,) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for t in self.progress_bar(self.scheduler.timesteps ): __lowercase = self.scheduler.scale_model_input(lowercase__ ,lowercase__ ) # predict the noise residual __lowercase = self.unet(lowercase__ ,lowercase__ ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample # decode the image latents with the VAE __lowercase = self.vqvae.decode(lowercase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
104
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a : List[str] = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ) ->int: '''simple docstring''' return (preds == labels).mean() @dataclass class __UpperCamelCase : lowerCamelCase : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __UpperCamelCase : lowerCamelCase : str =field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) lowerCamelCase : str =field(metadata={"""help""": """Should contain the data files for the task."""} ) lowerCamelCase : int =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCamelCase : bool =field( default=a__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _SCREAMING_SNAKE_CASE ( ) ->str: '''simple docstring''' a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a, a, a : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _lowercase ) # Set seed set_seed(training_args.seed ) try: a : Union[str, Any] = processors[data_args.task_name]() a : Any = processor.get_labels() a : Optional[Any] = len(_lowercase ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) a : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets a : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_lowercase : EvalPrediction ) -> Dict: a : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_lowercase , p.label_ids )} # Data collator a : List[Any] = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a : Dict = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a : str = trainer.evaluate() a : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(_lowercase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _lowercase , _lowercase ) writer.write("%s = %s\n" % (key, value) ) results.update(_lowercase ) return results def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->Any: '''simple docstring''' main() if __name__ == "__main__": main()
105
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : list[list[str]] = [[] for _ in range(A_ )] lowerCAmelCase__ : Union[str, Any] = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(A_ ) <= key: return input_string for position, character in enumerate(A_ ): lowerCAmelCase__ : Union[str, Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Optional[int] = min(A_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(A_ ) lowerCAmelCase__ : str = [''''''.join(A_ ) for row in temp_grid] lowerCAmelCase__ : int = ''''''.join(A_ ) return output_string def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : int = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string lowerCAmelCase__ : list[list[str]] = [[] for _ in range(A_ )] # generates template for position in range(len(A_ ) ): lowerCAmelCase__ : int = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Dict = min(A_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) lowerCAmelCase__ : Dict = 0 for row in temp_grid: # fills in the characters lowerCAmelCase__ : List[Any] = input_string[counter : counter + len(A_ )] grid.append(list(A_ ) ) counter += len(A_ ) lowerCAmelCase__ : Tuple = '''''' # reads as zigzag for position in range(len(A_ ) ): lowerCAmelCase__ : Tuple = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Optional[int] = min(A_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = {} for key_guess in range(1 , len(A_ ) ): # tries every key lowerCAmelCase__ : List[str] = decrypt(A_ , A_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
106
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = """M-CLIP""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any]=10_24 , __lowerCamelCase : Union[str, Any]=7_68 , **__lowerCamelCase : int ) -> Optional[Any]: a = transformerDimSize a = imageDimSize super().__init__(**__lowerCamelCase ) class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = MCLIPConfig def __init__( self : Tuple , __lowerCamelCase : Optional[Any] , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> Union[str, Any]: super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) a = XLMRobertaModel(__lowerCamelCase ) a = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Any ) -> Tuple: a = self.transformer(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase )[0] a = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__lowerCamelCase ), embs
107
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" import os from collections.abc import Iterator def a__ ( SCREAMING_SNAKE_CASE : str = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).lstrip("./" ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return f"""{i * " "}*""" if i else "\n##" def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" ) return new_path def a__ ( SCREAMING_SNAKE_CASE : str = "." ): '''simple docstring''' lowerCAmelCase : Optional[int] = "" for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE ) ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = os.path.split(SCREAMING_SNAKE_CASE ) if filepath != old_path: lowerCAmelCase : Dict = print_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase : Union[str, Any] = f"""{filepath}/{filename}""".replace(" " , "%20" ) lowerCAmelCase : Union[str, Any] = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"""{md_prefix(SCREAMING_SNAKE_CASE )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('''.''')
108
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
"""simple docstring""" def _snake_case ( UpperCamelCase : dict ): UpperCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _snake_case ( UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
109
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = """""" for i in table: res += inp[i - 1] return res def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return data[1:] + data[0] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = """""" for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = int('0b' + data[0] + data[-1] , 2 ) snake_case_ = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = message[:4] snake_case_ = message[4:] snake_case_ = apply_table(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = xor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = apply_sbox(SCREAMING_SNAKE_CASE__ , temp[:4] ) # noqa: E741 snake_case_ = apply_sbox(SCREAMING_SNAKE_CASE__ , temp[4:] ) snake_case_ = """0""" * (2 - len(SCREAMING_SNAKE_CASE__ )) + l # noqa: E741 snake_case_ = """0""" * (2 - len(SCREAMING_SNAKE_CASE__ )) + r snake_case_ = apply_table(l + r , SCREAMING_SNAKE_CASE__ ) snake_case_ = xor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return temp + right if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = input("""Enter 10 bit key: """) _UpperCAmelCase : Tuple = input("""Enter 8 bit message: """) _UpperCAmelCase : Optional[Any] = [6, 3, 7, 4, 8, 5, 10, 9] _UpperCAmelCase : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _UpperCAmelCase : Union[str, Any] = [2, 4, 3, 1] _UpperCAmelCase : str = [2, 6, 3, 1, 4, 8, 5, 7] _UpperCAmelCase : int = [4, 1, 3, 5, 7, 2, 8, 6] _UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] _UpperCAmelCase : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _UpperCAmelCase : List[str] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _UpperCAmelCase : Optional[Any] = apply_table(key, paa_table) _UpperCAmelCase : str = temp[:5] _UpperCAmelCase : Any = temp[5:] _UpperCAmelCase : Optional[Any] = left_shift(left) _UpperCAmelCase : Dict = left_shift(right) _UpperCAmelCase : str = apply_table(left + right, pa_table) _UpperCAmelCase : int = left_shift(left) _UpperCAmelCase : Optional[int] = left_shift(right) _UpperCAmelCase : List[Any] = left_shift(left) _UpperCAmelCase : Any = left_shift(right) _UpperCAmelCase : List[str] = apply_table(left + right, pa_table) # encryption _UpperCAmelCase : Any = apply_table(message, IP) _UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : str = temp[4:] + temp[:4] _UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : Dict = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption _UpperCAmelCase : str = apply_table(CT, IP) _UpperCAmelCase : List[str] = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : Tuple = temp[4:] + temp[:4] _UpperCAmelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : Optional[int] = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
285
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' from math import isqrt def _lowerCAmelCase ( __snake_case : int ) -> list[int]: __A : List[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __A : List[str] = False return [i for i in range(2 , SCREAMING_SNAKE_CASE__ ) if is_prime[i]] def _lowerCAmelCase ( __snake_case : int = 10**8 ) -> int: __A : int = calculate_prime_numbers(max_number // 2 ) __A : List[str] = 0 __A : List[Any] = 0 __A : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
190
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
def A_ ( a ): """simple docstring""" if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) ) return index def A_ ( a = 1_0_0_0 ): """simple docstring""" return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
253
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=SCREAMING_SNAKE_CASE__ , default="microsoft/unixcoder-base-nine") parser.add_argument("--num_epochs" , type=SCREAMING_SNAKE_CASE__ , default=5) parser.add_argument("--batch_size" , type=SCREAMING_SNAKE_CASE__ , default=6) parser.add_argument("--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE__ , default=1) parser.add_argument("--freeze" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE__ , default=5e-4) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE__ , default=0) parser.add_argument("--lr_scheduler_type" , type=SCREAMING_SNAKE_CASE__ , default="cosine") parser.add_argument("--num_warmup_steps" , type=SCREAMING_SNAKE_CASE__ , default=10) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE__ , default=0.0_1) parser.add_argument("--output_dir" , type=SCREAMING_SNAKE_CASE__ , default="./results") return parser.parse_args() lowercase : Dict = load('accuracy') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = eval_pred __UpperCamelCase : List[str] = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self :Tuple , a :str ) -> None: super().__init__() __UpperCamelCase : Any = trainer def _lowerCamelCase ( self :Dict , a :Union[str, Any] , a :int , a :List[Any] , **a :int ) -> Tuple: if control.should_evaluate: __UpperCamelCase : str = deepcopy(a ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCamelCase : str = get_args() set_seed(args.seed) __UpperCamelCase : int = load_dataset("codeparrot/codecomplex" , split="train") __UpperCamelCase : str = dataset.train_test_split(test_size=0.2) __UpperCamelCase : Dict = train_test["""test"""].train_test_split(test_size=0.5) __UpperCamelCase : Optional[Any] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], }) print("Loading tokenizer and model") __UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) __UpperCamelCase : List[Any] = tokenizer.eos_token __UpperCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7) __UpperCamelCase : Optional[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"]))) def tokenize(_lowerCamelCase : Dict): __UpperCamelCase : int = tokenizer(example["src"] , truncation=SCREAMING_SNAKE_CASE__ , max_length=1_024) __UpperCamelCase : Tuple = labels.straint(example["complexity"]) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __UpperCamelCase : str = train_test_validation.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=train_test_validation["train"].column_names , ) __UpperCamelCase : Union[str, Any] = DataCollatorWithPadding(tokenizer=SCREAMING_SNAKE_CASE__) __UpperCamelCase : Dict = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) __UpperCamelCase : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , ) print("Training...") trainer.add_callback(CustomCallback(SCREAMING_SNAKE_CASE__)) trainer.train() if __name__ == "__main__": main()
232
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ="▁" __lowerCAmelCase : Optional[Any] ={"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase : List[Any] ={ "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } __lowerCAmelCase : Optional[int] ={ "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off __lowerCAmelCase : int =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = ["""input_ids""", """attention_mask"""] __lowercase = [] __lowercase = [] def __init__( self :Any , lowercase_ :Dict , lowercase_ :Dict=None , lowercase_ :Optional[int]=None , lowercase_ :str="</s>" , lowercase_ :List[Any]="</s>" , lowercase_ :Any="<s>" , lowercase_ :Union[str, Any]="<unk>" , lowercase_ :Any="<pad>" , lowercase_ :Optional[int]="<mask>" , lowercase_ :Optional[Dict[str, Any]] = None , **lowercase_ :Optional[Any] , )-> None: A__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase_ , tgt_lang=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) A__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ = 1 A__ = len(self.sp_model ) A__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase_ ) } A__ = {v: k for k, v in self.lang_code_to_id.items()} A__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A__ = src_lang if src_lang is not None else """en_XX""" A__ = self.lang_code_to_id[self._src_lang] A__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase_ ( self :Optional[int] )-> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase_ ( self :List[Any] )-> str: return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str )-> None: A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self :List[Any] )-> Dict: A__ = self.__dict__.copy() A__ = None return state def __setstate__( self :Any , lowercase_ :Dict )-> None: A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self :int )-> Dict: A__ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :str )-> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self :int , lowercase_ :str )-> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase_ ( self :Dict , lowercase_ :int )-> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Any )-> List[str]: A__ = [] A__ = """""" A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token A__ = True A__ = [] else: current_sub_tokens.append(lowercase_ ) A__ = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self :int , lowercase_ :str , lowercase_ :Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def UpperCAmelCase_ ( self :Any , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self :int , lowercase_ :str , lowercase_ :str , lowercase_ :Optional[str] , lowercase_ :Optional[str] , **lowercase_ :Optional[Any] )-> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A__ = src_lang A__ = self(lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) A__ = self.convert_tokens_to_ids(lowercase_ ) A__ = tgt_lang_id return inputs def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :str = "en_XX" , lowercase_ :Optional[List[str]] = None , lowercase_ :str = "ro_RO" , **lowercase_ :Dict , )-> BatchEncoding: A__ = src_lang A__ = tgt_lang return super().prepare_seqaseq_batch(lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Dict )-> Any: return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self :int )-> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str )-> None: A__ = self.lang_code_to_id[src_lang] A__ = [self.cur_lang_code_id] A__ = [self.eos_token_id] def UpperCAmelCase_ ( self :Dict , lowercase_ :str )-> None: A__ = self.lang_code_to_id[tgt_lang] A__ = [self.cur_lang_code_id] A__ = [self.eos_token_id]
237
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a_ = logging.get_logger(__name__) class _lowercase ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , *snake_case : List[Any] , **snake_case : Dict ) -> None: """simple docstring""" warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
175
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : str = "▁" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[str, AddedToken] = "<unk>" , lowerCAmelCase__ : Union[str, AddedToken] = "</s>" , lowerCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) -> int: """simple docstring""" _UpperCAmelCase : int = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _UpperCAmelCase : Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _UpperCAmelCase : List[Any] = token_dict["""token"""] _UpperCAmelCase : int = Tokenizer(Unigram() ) _UpperCAmelCase : Union[str, Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) _UpperCAmelCase : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ), pre_tokenizers.Digits(individual_digits=lowerCAmelCase__ ), pre_tokenizers.Punctuation(), ] ) _UpperCAmelCase : Optional[int] = decoders.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) _UpperCAmelCase : Any = TemplateProcessing( single=F"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) _UpperCAmelCase : str = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = trainers.UnigramTrainer( vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = [files] self._tokenizer.train(lowerCAmelCase__ , trainer=lowerCAmelCase__ ) self.add_unk_id() def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = trainers.UnigramTrainer( vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , ) self._tokenizer.train_from_iterator(lowerCAmelCase__ , trainer=lowerCAmelCase__ ) self.add_unk_id() def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = json.loads(self._tokenizer.to_str() ) _UpperCAmelCase : Tuple = self.special_tokens["""unk"""]["""id"""] _UpperCAmelCase : Any = Tokenizer.from_str(json.dumps(lowerCAmelCase__ ) )
145
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a_ : Any = logging.get_logger(__name__) # General docstring a_ : List[Any] = 'RegNetConfig' # Base docstring a_ : Optional[int] = 'facebook/regnet-y-040' a_ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring a_ : Optional[int] = 'facebook/regnet-y-040' a_ : List[Any] = 'tabby, tabby cat' a_ : Tuple = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _snake_case ( nn.Module ): def __init__( self , a , a , a = 3 , a = 1 , a = 1 , a = "relu" , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( a , a , kernel_size=a , stride=a , padding=kernel_size // 2 , groups=a , bias=a , ) SCREAMING_SNAKE_CASE = nn.BatchNormad(a) SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: SCREAMING_SNAKE_CASE = self.convolution(a) SCREAMING_SNAKE_CASE = self.normalization(a) SCREAMING_SNAKE_CASE = self.activation(a) return hidden_state class _snake_case ( nn.Module ): def __init__( self , a) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) SCREAMING_SNAKE_CASE = config.num_channels def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') SCREAMING_SNAKE_CASE = self.embedder(a) return hidden_state class _snake_case ( nn.Module ): def __init__( self , a , a , a = 2) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(a , a , kernel_size=1 , stride=a , bias=a) SCREAMING_SNAKE_CASE = nn.BatchNormad(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> Tensor: SCREAMING_SNAKE_CASE = self.convolution(a) SCREAMING_SNAKE_CASE = self.normalization(a) return hidden_state class _snake_case ( nn.Module ): def __init__( self , a , a) -> Any: super().__init__() SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1)) SCREAMING_SNAKE_CASE = nn.Sequential( nn.Convad(a , a , kernel_size=1) , nn.ReLU() , nn.Convad(a , a , kernel_size=1) , nn.Sigmoid() , ) def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: SCREAMING_SNAKE_CASE = self.pooler(a) SCREAMING_SNAKE_CASE = self.attention(a) SCREAMING_SNAKE_CASE = hidden_state * attention return hidden_state class _snake_case ( nn.Module ): def __init__( self , a , a , a , a = 1) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width) SCREAMING_SNAKE_CASE = ( RegNetShortCut(a , a , stride=a) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(a , a , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(a , a , stride=a , groups=a , activation=config.hidden_act) , RegNetConvLayer(a , a , kernel_size=1 , activation=a) , ) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(a) SCREAMING_SNAKE_CASE = self.shortcut(a) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(a) return hidden_state class _snake_case ( nn.Module ): def __init__( self , a , a , a , a = 1) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 , out_channels // config.groups_width) SCREAMING_SNAKE_CASE = ( RegNetShortCut(a , a , stride=a) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(a , a , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(a , a , stride=a , groups=a , activation=config.hidden_act) , RegNetSELayer(a , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(a , a , kernel_size=1 , activation=a) , ) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(a) SCREAMING_SNAKE_CASE = self.shortcut(a) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(a) return hidden_state class _snake_case ( nn.Module ): def __init__( self , a , a , a , a = 2 , a = 2 , ) -> int: super().__init__() SCREAMING_SNAKE_CASE = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( a , a , a , stride=a , ) , *[layer(a , a , a) for _ in range(depth - 1)] , ) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: SCREAMING_SNAKE_CASE = self.layers(a) return hidden_state class _snake_case ( nn.Module ): def __init__( self , a) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) SCREAMING_SNAKE_CASE = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(a , config.depths[1:]): self.stages.append(RegNetStage(a , a , a , depth=a)) def SCREAMING_SNAKE_CASE__ ( self , a , a = False , a = True) -> BaseModelOutputWithNoAttention: SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE = stage_module(a) if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=a , hidden_states=a) class _snake_case ( SCREAMING_SNAKE_CASE_ ): _lowercase : Optional[Any] = RegNetConfig _lowercase : List[Any] = """regnet""" _lowercase : Any = """pixel_values""" _lowercase : Optional[Any] = True def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: if isinstance(a , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu') elif isinstance(a , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def SCREAMING_SNAKE_CASE__ ( self , a , a=False) -> Optional[int]: if isinstance(a , a): SCREAMING_SNAKE_CASE = value a_ : Optional[Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a_ : List[str] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , SCREAMING_SNAKE_CASE_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a) -> Dict: super().__init__(a) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = RegNetEmbeddings(a) SCREAMING_SNAKE_CASE = RegNetEncoder(a) SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None) -> BaseModelOutputWithPoolingAndNoAttention: SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.embedder(a) SCREAMING_SNAKE_CASE = self.encoder( a , output_hidden_states=a , return_dict=a) SCREAMING_SNAKE_CASE = encoder_outputs[0] SCREAMING_SNAKE_CASE = self.pooler(a) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a) -> Tuple: super().__init__(a) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = RegNetModel(a) # classification head SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self , a = None , a = None , a = None , a = None , ) -> ImageClassifierOutputWithNoAttention: SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet(a , output_hidden_states=a , return_dict=a) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier(a) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = """single_label_classification""" else: SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE = loss_fct(a , a) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(a , a) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a , logits=a , hidden_states=outputs.hidden_states)
137
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class lowerCamelCase (SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ : str = field(default='image-classification' ,metadata={'include_in_asdict_even_if_is_default': True} ) lowerCamelCase__ : ClassVar[Features] = Features({'image': Image()} ) lowerCamelCase__ : ClassVar[Features] = Features({'labels': ClassLabel} ) lowerCamelCase__ : str = "image" lowerCamelCase__ : str = "labels" def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Tuple ) -> Tuple: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
165
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowercase = (720, 1280) # Height, Width __lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowercase = 1 / 100 __lowercase = """""" __lowercase = """""" __lowercase = """""" __lowercase = 250 def lowercase ( )-> None: '''simple docstring''' a : Union[str, Any] = get_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for index in range(SCREAMING_SNAKE_CASE__ ): a : List[Any] = random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ) , 4 ) a : str = update_image_and_anno( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , filter_scale=SCREAMING_SNAKE_CASE__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a : Optional[int] = random_chars(32 ) a : Union[str, Any] = path.split(os.sep )[-1].rsplit("." , 1 )[0] a : List[Any] = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , SCREAMING_SNAKE_CASE__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) a : List[str] = [] for anno in new_annos: a : str = anno[3] - anno[1] a : str = anno[4] - anno[2] a : Any = anno[1] + width / 2 a : List[str] = anno[2] + height / 2 a : Tuple = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(SCREAMING_SNAKE_CASE__ ) with open(F'''{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase ( A_ , A_ )-> tuple[list, list]: '''simple docstring''' a : List[str] = [] a : List[str] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE__ , "*.txt" ) ): a : Optional[int] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(SCREAMING_SNAKE_CASE__ ) as in_file: a : Optional[Any] = in_file.readlines() a : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{label_name}.jpg''' ) a : List[str] = [] for obj_list in obj_lists: a : Optional[int] = obj_list.rstrip("\n" ).split(" " ) a : Dict = float(obj[1] ) - float(obj[3] ) / 2 a : List[str] = float(obj[2] ) - float(obj[4] ) / 2 a : Any = float(obj[1] ) + float(obj[3] ) / 2 a : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE__ ) labels.append(SCREAMING_SNAKE_CASE__ ) return img_paths, labels def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ = 0.0 , )-> tuple[list, list, str]: '''simple docstring''' a : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) a : Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a : Any = int(scale_x * output_size[1] ) a : List[Any] = int(scale_y * output_size[0] ) a : Tuple = [] a : Tuple = [] for i, index in enumerate(SCREAMING_SNAKE_CASE__ ): a : int = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE__ ) a : Dict = all_annos[index] a : Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE__ ) if i == 0: # top-left a : Any = cva.resize(SCREAMING_SNAKE_CASE__ , (divid_point_x, divid_point_y) ) a : Optional[Any] = img for bbox in img_annos: a : List[str] = bbox[1] * scale_x a : List[str] = bbox[2] * scale_y a : List[str] = bbox[3] * scale_x a : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right a : int = cva.resize(SCREAMING_SNAKE_CASE__ , (output_size[1] - divid_point_x, divid_point_y) ) a : str = img for bbox in img_annos: a : Optional[int] = scale_x + bbox[1] * (1 - scale_x) a : List[str] = bbox[2] * scale_y a : List[str] = scale_x + bbox[3] * (1 - scale_x) a : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left a : Optional[int] = cva.resize(SCREAMING_SNAKE_CASE__ , (divid_point_x, output_size[0] - divid_point_y) ) a : str = img for bbox in img_annos: a : Union[str, Any] = bbox[1] * scale_x a : List[Any] = scale_y + bbox[2] * (1 - scale_y) a : List[Any] = bbox[3] * scale_x a : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right a : str = cva.resize( SCREAMING_SNAKE_CASE__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) a : Any = img for bbox in img_annos: a : List[str] = scale_x + bbox[1] * (1 - scale_x) a : List[str] = scale_y + bbox[2] * (1 - scale_y) a : List[Any] = scale_x + bbox[3] * (1 - scale_x) a : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: a : int = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase ( A_ )-> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" a : int = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
40
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
import pytest __UpperCAmelCase = '''__dummy_dataset1__''' __UpperCAmelCase = ''' import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ) -> Optional[int]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ) -> Dict: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ) -> Optional[int]: UpperCamelCase : List[Any] = dataset_loading_script_name UpperCamelCase : List[str] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE__ ) UpperCamelCase : str = script_dir / F"""{script_name}.py""" with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ )
119
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
_UpperCAmelCase : List[str] = { """km/h""": 1.0, """m/s""": 3.6, """mph""": 1.609_344, """knot""": 1.852, } _UpperCAmelCase : Any = { """km/h""": 1.0, """m/s""": 0.277_777_778, """mph""": 0.621_371_192, """knot""": 0.539_956_803, } def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: snake_case_ = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {", ".join(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
285
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _lowerCAmelCase ( __snake_case : Features ) -> Optional[int]: __A : Union[str, Any] = np.inf def set_batch_size(__snake_case : FeatureType ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __A : str = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __A : int = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": __A : Tuple = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE_ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) __A : Tuple = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase) else {self.split: path_or_paths} __A : Optional[int] = _PACKAGED_DATASETS_MODULES["""parquet"""][1] __A : Union[str, Any] = Parquet( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , hash=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.streaming: __A : Any = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: __A : List[Any] = None __A : List[str] = None __A : Optional[int] = None __A : Optional[int] = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) __A : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory) return dataset class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = dataset __A : List[Any] = path_or_buf __A : List[Any] = batch_size or get_writer_batch_size(dataset.features) __A : List[str] = parquet_writer_kwargs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , 'wb+') as buffer: __A : int = self._write(file_obj=_UpperCAmelCase , batch_size=_UpperCAmelCase , **self.parquet_writer_kwargs) else: __A : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=_UpperCAmelCase , **self.parquet_writer_kwargs) return written def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : Tuple = 0 __A : Union[str, Any] = parquet_writer_kwargs.pop('path_or_buf' , _UpperCAmelCase) __A : Tuple = self.dataset.features.arrow_schema __A : Dict = pq.ParquetWriter(_UpperCAmelCase , schema=_UpperCAmelCase , **_UpperCAmelCase) for offset in logging.tqdm( range(0 , len(self.dataset) , _UpperCAmelCase) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __A : Union[str, Any] = query_table( table=self.dataset._data , key=slice(_UpperCAmelCase , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_UpperCAmelCase) written += batch.nbytes writer.close() return written
190
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
import requests def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = {"""Content-Type""": """application/json"""} SCREAMING_SNAKE_CASE_ : Tuple = requests.post(SCREAMING_SNAKE_CASE__ , json={'text': message_body} , headers=SCREAMING_SNAKE_CASE__ ) if response.status_code != 2_0_0: SCREAMING_SNAKE_CASE_ : Dict = ( """Request to slack returned an error """ f"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
253
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=False) -> Dict: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __UpperCamelCase : str = len(set_a.intersection(SCREAMING_SNAKE_CASE__)) if alternative_union: __UpperCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) else: __UpperCamelCase : List[Any] = len(set_a.union(SCREAMING_SNAKE_CASE__)) return intersection / union if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple)) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple)): __UpperCamelCase : Any = [element for element in set_a if element in set_b] if alternative_union: __UpperCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE__) + len(SCREAMING_SNAKE_CASE__) return len(SCREAMING_SNAKE_CASE__) / union else: __UpperCamelCase : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(SCREAMING_SNAKE_CASE__) / len(SCREAMING_SNAKE_CASE__) return len(SCREAMING_SNAKE_CASE__) / len(SCREAMING_SNAKE_CASE__) return None if __name__ == "__main__": lowercase : Union[str, Any] = {'a', 'b', 'c', 'd', 'e'} lowercase : Union[str, Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
232
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : List[Any] ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
237
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
def __lowercase ( lowerCamelCase : int = 600851475143 ): try: UpperCamelCase_ : int = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : List[Any] = 2 while i * i <= n: while n % i == 0: UpperCamelCase_ : Optional[int] = i n //= i i += 1 if n > 1: UpperCamelCase_ : Optional[int] = n return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F"""{solution() = }""")
175
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __a = False class A__ ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : str = pipe( image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" , ).images _UpperCAmelCase : Union[str, Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : int = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
145
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def lowerCamelCase__ (_UpperCAmelCase): if hor == 128: SCREAMING_SNAKE_CASE = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") SCREAMING_SNAKE_CASE = (32, 128, 256) SCREAMING_SNAKE_CASE = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: SCREAMING_SNAKE_CASE = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") SCREAMING_SNAKE_CASE = (32, 64, 128, 256) SCREAMING_SNAKE_CASE = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") SCREAMING_SNAKE_CASE = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''') SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } SCREAMING_SNAKE_CASE = UNetaDModel(**SCREAMING_SNAKE_CASE__) print(F'''length of state dict: {len(state_dict.keys())}''') print(F'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(SCREAMING_SNAKE_CASE__) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''') with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w') as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } SCREAMING_SNAKE_CASE = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch') SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = UNetaDModel(**SCREAMING_SNAKE_CASE__) print(F'''length of state dict: {len(state_dict.keys())}''') print(F'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(SCREAMING_SNAKE_CASE__) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin') with open('hub/hopper-medium-v2/value_function/config.json' , 'w') as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": unet(32) # unet(128) value_function()
137
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A_ : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , *__UpperCAmelCase : Dict , **__UpperCAmelCase : Union[str, Any] ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
165
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def lowercase ( A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : Tuple = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) a : str = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def lowercase ( A_ , A_ )-> List[Any]: '''simple docstring''' a : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) dataset_info.write_to_directory(SCREAMING_SNAKE_CASE__ ) a : str = DatasetInfo.from_directory(SCREAMING_SNAKE_CASE__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "dataset_info.json" ) ) def lowercase ( )-> Any: '''simple docstring''' a : Tuple = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) a : str = dataset_info._to_yaml_dict() assert sorted(SCREAMING_SNAKE_CASE__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) a : Optional[int] = yaml.safe_dump(SCREAMING_SNAKE_CASE__ ) a : Union[str, Any] = yaml.safe_load(SCREAMING_SNAKE_CASE__ ) assert dataset_info_yaml_dict == reloaded def lowercase ( )-> Optional[int]: '''simple docstring''' a : Union[str, Any] = DatasetInfo() a : str = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ] , ) def lowercase ( A_ , A_ )-> Dict: '''simple docstring''' a : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) dataset_infos_dict.write_to_directory(SCREAMING_SNAKE_CASE__ ) a : Union[str, Any] = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): a : Optional[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml a : Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "README.md" ) )
40
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE__ ) ) def UpperCamelCase ( snake_case__ : list[list[int]] , snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> bool: # Base Case if index == len(SCREAMING_SNAKE_CASE__ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE__ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Color current vertex UpperCamelCase : int = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ): return True # Backtrack UpperCamelCase : List[Any] = -1 return False def UpperCamelCase ( snake_case__ : list[list[int]] , snake_case__ : int ) -> list[int]: UpperCamelCase : Tuple = [-1] * len(SCREAMING_SNAKE_CASE__ ) if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 ): return colored_vertices return []
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _UpperCAmelCase : Optional[Any] = """src/transformers""" _UpperCAmelCase : int = """docs/source/en/tasks""" def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() # Find the start prompt. snake_case_ = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE__ ): start_index += 1 start_index += 1 snake_case_ = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : int = direct_transformers_import(TRANSFORMERS_PATH) _UpperCAmelCase : Any = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _UpperCAmelCase : Tuple = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = TASK_GUIDE_TO_MODELS[task_guide] snake_case_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(SCREAMING_SNAKE_CASE__ , set() ) snake_case_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) snake_case_ = get_model_list_for_task(SCREAMING_SNAKE_CASE__ ) if current_list != new_list: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : Tuple = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
285
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = text, pattern __A : Optional[Any] = len(_UpperCAmelCase), len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = [] for i in range(self.textLen - self.patLen + 1): __A : Optional[int] = self.mismatch_in_text(_UpperCAmelCase) if mismatch_index == -1: positions.append(_UpperCAmelCase) else: __A : Dict = self.match_in_pattern(self.text[mismatch_index]) __A : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase__ : List[str] = '''ABAABA''' lowercase__ : str = '''AB''' lowercase__ : Optional[int] = BoyerMooreSearch(text, pattern) lowercase__ : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
190
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
import math def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> list: '''simple docstring''' __UpperCamelCase : Optional[int] = [True] * n __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Union[str, Any] = True for i in range(3 , int(n**0.5 + 1) , 2): __UpperCamelCase : Tuple = i * 2 while index < n: __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[Any] = index + i __UpperCamelCase : Tuple = [2] for i in range(3 , SCREAMING_SNAKE_CASE__ , 2): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE__) return primes def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 999_966_663_333) -> int: '''simple docstring''' __UpperCamelCase : Any = math.floor(math.sqrt(SCREAMING_SNAKE_CASE__)) + 100 __UpperCamelCase : List[str] = prime_sieve(SCREAMING_SNAKE_CASE__) __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : str = primes[prime_index] while (last_prime**2) <= limit: __UpperCamelCase : List[str] = primes[prime_index + 1] __UpperCamelCase : str = last_prime**2 __UpperCamelCase : List[Any] = next_prime**2 # Get numbers divisible by lps(current) __UpperCamelCase : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __UpperCamelCase : Tuple = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __UpperCamelCase : Tuple = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __UpperCamelCase : Optional[int] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
232
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : int =OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) __lowerCAmelCase : str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCamelCase ( _lowerCamelCase : str ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: A__ = model_type_to_module_name(SCREAMING_SNAKE_CASE__ ) A__ = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE__ , "__name__" , SCREAMING_SNAKE_CASE__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A__ = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None def UpperCamelCase ( _lowerCamelCase : Union[str, os.PathLike] , _lowerCamelCase : Optional[Union[str, os.PathLike]] = None , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[Dict[str, str]] = None , _lowerCamelCase : Optional[Union[bool, str]] = None , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : bool = False , **_lowerCamelCase : Union[str, Any] , ): A__ = get_file_from_repo( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase : def __init__( self :Any )-> List[Any]: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(lowercase_ ) def UpperCAmelCase_ ( cls :Dict , lowercase_ :int , **lowercase_ :List[str] )-> List[Any]: A__ = kwargs.pop("config" , lowercase_ ) A__ = kwargs.pop("trust_remote_code" , lowercase_ ) A__ = True A__ = FeatureExtractionMixin.get_feature_extractor_dict(lowercase_ , **lowercase_ ) A__ = config_dict.get("feature_extractor_type" , lowercase_ ) A__ = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): A__ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowercase_ , lowercase_ ): A__ = AutoConfig.from_pretrained(lowercase_ , **lowercase_ ) # It could be in `config.feature_extractor_type`` A__ = getattr(lowercase_ , "feature_extractor_type" , lowercase_ ) if hasattr(lowercase_ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: A__ = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: A__ = feature_extractor_class_from_name(lowercase_ ) A__ = feature_extractor_auto_map is not None A__ = feature_extractor_class is not None or type(lowercase_ ) in FEATURE_EXTRACTOR_MAPPING A__ = resolve_trust_remote_code( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if has_remote_code and trust_remote_code: A__ = get_class_from_dynamic_module( lowercase_ , lowercase_ , **lowercase_ ) A__ = kwargs.pop("code_revision" , lowercase_ ) if os.path.isdir(lowercase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowercase_ , **lowercase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowercase_ , **lowercase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowercase_ ) in FEATURE_EXTRACTOR_MAPPING: A__ = FEATURE_EXTRACTOR_MAPPING[type(lowercase_ )] return feature_extractor_class.from_dict(lowercase_ , **lowercase_ ) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCAmelCase_ ( lowercase_ :Optional[Any] , lowercase_ :List[str] )-> Tuple: FEATURE_EXTRACTOR_MAPPING.register(lowercase_ , lowercase_ )
237
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp a_ = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } a_ = { 'RUCAIBox/mvp': 1_024, } class _lowercase ( SCREAMING_SNAKE_CASE_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = MvpTokenizer def __init__( self : Optional[int] , snake_case : List[Any]=None , snake_case : Optional[Any]=None , snake_case : Any=None , snake_case : Dict="replace" , snake_case : Dict="<s>" , snake_case : Dict="</s>" , snake_case : List[Any]="</s>" , snake_case : int="<s>" , snake_case : Dict="<unk>" , snake_case : Optional[int]="<pad>" , snake_case : Any="<mask>" , snake_case : int=False , snake_case : Dict=True , **snake_case : List[Any] , ) -> Tuple: """simple docstring""" super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) UpperCamelCase_ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case ) != add_prefix_space: UpperCamelCase_ : List[Any] = getattr(snake_case , pre_tok_state.pop('type' ) ) UpperCamelCase_ : Dict = add_prefix_space UpperCamelCase_ : int = pre_tok_class(**snake_case ) UpperCamelCase_ : Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase_ : Tuple = """post_processor""" UpperCamelCase_ : Any = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: UpperCamelCase_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase_ : Any = tuple(state['sep'] ) if "cls" in state: UpperCamelCase_ : int = tuple(state['cls'] ) UpperCamelCase_ : Union[str, Any] = False if state.get('add_prefix_space' , snake_case ) != add_prefix_space: UpperCamelCase_ : Optional[int] = add_prefix_space UpperCamelCase_ : List[Any] = True if state.get('trim_offsets' , snake_case ) != trim_offsets: UpperCamelCase_ : int = trim_offsets UpperCamelCase_ : Union[str, Any] = True if changes_to_apply: UpperCamelCase_ : Dict = getattr(snake_case , state.pop('type' ) ) UpperCamelCase_ : Union[str, Any] = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value UpperCamelCase_ : Any = value def SCREAMING_SNAKE_CASE__ ( self : int , *snake_case : Dict , **snake_case : Optional[int] ) -> BatchEncoding: """simple docstring""" UpperCamelCase_ : List[str] = kwargs.get('is_split_into_words' , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *snake_case : List[str] , **snake_case : Tuple ) -> BatchEncoding: """simple docstring""" UpperCamelCase_ : Optional[int] = kwargs.get('is_split_into_words' , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase_ : int = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : int , snake_case : str=None ) -> int: """simple docstring""" UpperCamelCase_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : str = [self.sep_token_id] UpperCamelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
175
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class A__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCamelCase_ : Dict = """funnel""" UpperCamelCase_ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , lowerCAmelCase__ : int=3_0_5_2_2 , lowerCAmelCase__ : List[str]=[4, 4, 4] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Optional[int]=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : str=6_4 , lowerCAmelCase__ : int=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu_new" , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=1e-9 , lowerCAmelCase__ : List[Any]="mean" , lowerCAmelCase__ : Dict="relative_shift" , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : Tuple , ) -> int: """simple docstring""" _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[Any] = block_sizes _UpperCAmelCase : Optional[Any] = [1] * len(lowerCAmelCase__ ) if block_repeats is None else block_repeats assert len(lowerCAmelCase__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _UpperCAmelCase : Any = num_decoder_layers _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = n_head _UpperCAmelCase : Optional[Any] = d_head _UpperCAmelCase : Union[str, Any] = d_inner _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Optional[Any] = initializer_std _UpperCAmelCase : List[str] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.""" _UpperCAmelCase : Tuple = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.""" _UpperCAmelCase : Dict = attention_type _UpperCAmelCase : Tuple = separate_cls _UpperCAmelCase : Dict = truncate_seq _UpperCAmelCase : List[str] = pool_q_only super().__init__(**lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
145
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Any = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _snake_case ( SCREAMING_SNAKE_CASE_ ): _lowercase : int = """transfo-xl""" _lowercase : str = ["""mems"""] _lowercase : Union[str, Any] = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , a=26_7735 , a=[2_0000, 4_0000, 20_0000] , a=1024 , a=1024 , a=16 , a=64 , a=4096 , a=4 , a=False , a=18 , a=1600 , a=1000 , a=True , a=True , a=0 , a=-1 , a=True , a=0.1 , a=0.0 , a=True , a="normal" , a=0.01 , a=0.01 , a=0.02 , a=1E-5 , a=0 , **a , ) -> Any: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = [] self.cutoffs.extend(a) if proj_share_all_but_first: SCREAMING_SNAKE_CASE = [False] + [True] * len(self.cutoffs) else: SCREAMING_SNAKE_CASE = [False] + [False] * len(self.cutoffs) SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = d_embed SCREAMING_SNAKE_CASE = d_head SCREAMING_SNAKE_CASE = d_inner SCREAMING_SNAKE_CASE = div_val SCREAMING_SNAKE_CASE = pre_lnorm SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = mem_len SCREAMING_SNAKE_CASE = same_length SCREAMING_SNAKE_CASE = attn_type SCREAMING_SNAKE_CASE = clamp_len SCREAMING_SNAKE_CASE = sample_softmax SCREAMING_SNAKE_CASE = adaptive SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = dropatt SCREAMING_SNAKE_CASE = untie_r SCREAMING_SNAKE_CASE = init SCREAMING_SNAKE_CASE = init_range SCREAMING_SNAKE_CASE = proj_init_std SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = layer_norm_epsilon super().__init__(eos_token_id=a , **a) @property def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''') return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''')
137
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) A_ : Optional[int] = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE__ = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
165
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __lowercase = logging.getLogger(__name__) @dataclass class _A : """simple docstring""" UpperCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) UpperCAmelCase : bool = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Whether tp freeze the encoder."""} ) UpperCAmelCase : bool = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class _A : """simple docstring""" UpperCAmelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) UpperCAmelCase : Optional[str] = field( default="""summarization""" ,metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} ,) UpperCAmelCase : Optional[int] = field( default=1_0_2_4 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) UpperCAmelCase : Optional[int] = field( default=1_2_8 ,metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) UpperCAmelCase : Optional[int] = field( default=1_4_2 ,metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } ,) UpperCAmelCase : Optional[int] = field( default=1_4_2 ,metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) UpperCAmelCase : Optional[int] = field(default=-1 ,metadata={"""help""": """# training examples. -1 means use all."""} ) UpperCAmelCase : Optional[int] = field(default=-1 ,metadata={"""help""": """# validation examples. -1 means use all."""} ) UpperCAmelCase : Optional[int] = field(default=-1 ,metadata={"""help""": """# test examples. -1 means use all."""} ) UpperCAmelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Source language id for translation."""} ) UpperCAmelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Target language id for translation."""} ) UpperCAmelCase : Optional[int] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """# num_beams to use for evaluation."""} ) UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} ,) def lowercase ( A_ , A_ , A_ )-> Any: '''simple docstring''' logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''{split}_results.json''' ) ) def lowercase ( )-> List[str]: '''simple docstring''' a : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a : Optional[int] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a : str = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: a : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a : Optional[int] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: a : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) a : Dict = SeqaSeqDataset # Get datasets a : int = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) a : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) a : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer a : List[Any] = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None ) a : List[Any] = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , data_args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) a : Optional[int] = {} # Training if training_args.do_train: logger.info("*** Train ***" ) a : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) a : int = train_result.metrics a : int = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) a : List[str] = trainer.evaluate(metric_key_prefix="val" ) a : int = data_args.n_val a : Union[str, Any] = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info("*** Predict ***" ) a : Optional[int] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ , metric_key_prefix="test" ) a : str = test_output.metrics a : Union[str, Any] = data_args.n_test if trainer.is_world_process_zero(): a : int = round(metrics["test_loss"] , 4 ) handle_metrics("test" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate: a : int = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) a : Dict = lmap(str.strip , SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowercase ( A_ )-> Any: '''simple docstring''' main() if __name__ == "__main__": main()
40
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
import os import sys __UpperCAmelCase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCAmelCase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *snake_case__ : Any , **snake_case__ : int ) -> int: return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *snake_case__ : List[Any] , **snake_case__ : Any ) -> Optional[Any]: return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *snake_case__ : Any , **snake_case__ : Optional[Any] ) -> Optional[int]: return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *snake_case__ : int , **snake_case__ : Any ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *snake_case__ : Union[str, Any] , **snake_case__ : str ) -> Optional[Any]: return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : List[str] ) -> str: return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *snake_case__ : int , **snake_case__ : Any ) -> Tuple: return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
119
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[Any] = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
285
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Optional[int] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
190
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : str = 16 lowerCAmelCase : Tuple = 32 def A_ ( a , a = 1_6 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(a ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : List[str] = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : List[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : Any = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : str = 8 else: SCREAMING_SNAKE_CASE_ : List[Any] = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : int = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def A_ ( a , a ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": SCREAMING_SNAKE_CASE_ : int = 2 # New Code # SCREAMING_SNAKE_CASE_ : Tuple = int(args.gradient_accumulation_steps ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(args.local_sgd_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE_ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : Union[str, Any] = config["""lr"""] SCREAMING_SNAKE_CASE_ : Optional[int] = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE_ : Any = int(config['seed'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(config['batch_size'] ) SCREAMING_SNAKE_CASE_ : Any = evaluate.load('glue' , 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : List[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : Optional[int] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_0_0 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , local_sgd_steps=SCREAMING_SNAKE_CASE__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Tuple = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , SCREAMING_SNAKE_CASE__ ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=SCREAMING_SNAKE_CASE__ , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() SCREAMING_SNAKE_CASE_ : str = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
253
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
import os lowercase : List[Any] = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> int: '''simple docstring''' __UpperCamelCase : List[Any] = 0 __UpperCamelCase : List[str] = 0 while index < len(SCREAMING_SNAKE_CASE__) - 1: __UpperCamelCase : List[str] = SYMBOLS[numerals[index]] __UpperCamelCase : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> str: '''simple docstring''' __UpperCamelCase : Tuple = """""" __UpperCamelCase : Optional[int] = num // 1_000 numerals += m_count * "M" num %= 1_000 __UpperCamelCase : Optional[Any] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __UpperCamelCase : Optional[int] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "/p089_roman.txt") -> int: '''simple docstring''' __UpperCamelCase : int = 0 with open(os.path.dirname(SCREAMING_SNAKE_CASE__) + roman_numerals_filename) as filea: __UpperCamelCase : Dict = filea.readlines() for line in lines: __UpperCamelCase : Union[str, Any] = line.strip() __UpperCamelCase : Optional[Any] = parse_roman_numerals(SCREAMING_SNAKE_CASE__) __UpperCamelCase : int = generate_roman_numerals(SCREAMING_SNAKE_CASE__) savings += len(SCREAMING_SNAKE_CASE__) - len(SCREAMING_SNAKE_CASE__) return savings if __name__ == "__main__": print(f"{solution() = }")
232
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : int ="src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : Dict =direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : Optional[Any] =re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : Dict =re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : str =re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Dict =[ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def UpperCamelCase ( _lowerCamelCase : Tuple ): A__ = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , SCREAMING_SNAKE_CASE__ ) return [m.group(0 ) for m in matches] def UpperCamelCase ( ): A__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A__ = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. A__ = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) A__ = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) A__ = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(SCREAMING_SNAKE_CASE__ ): A__ = None if _re_tf_models.match(SCREAMING_SNAKE_CASE__ ) is not None: A__ = tf_models A__ = _re_tf_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE__ ) is not None: A__ = flax_models A__ = _re_flax_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE__ ) is not None: A__ = pt_models A__ = _re_pt_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE__ ) > 0: if attr_name in model_prefix_to_model_type: A__ = True break # Try again after removing the last word in the name A__ = """""".join(camel_case_split(SCREAMING_SNAKE_CASE__ )[:-1] ) A__ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) A__ = list(SCREAMING_SNAKE_CASE__ ) all_models.sort() A__ = {"""model_type""": all_models} A__ = [pt_models[t] for t in all_models] A__ = [tf_models[t] for t in all_models] A__ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure A__ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: A__ = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: A__ = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: A__ = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. A__ = """AutoTokenizer""" A__ = [processors[t] for t in all_models] return pd.DataFrame(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase ( _lowerCamelCase : str ): A__ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: A__ = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] A__ = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # The type of pipeline may not exist in this framework if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): continue # First extract all model_names A__ = [] for name in getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).values(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model_names.append(SCREAMING_SNAKE_CASE__ ) else: model_names.extend(list(SCREAMING_SNAKE_CASE__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): A__ = get_frameworks_table() A__ = Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) A__ = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=SCREAMING_SNAKE_CASE__ ) A__ = Dataset.from_json(SCREAMING_SNAKE_CASE__ ) A__ = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(SCREAMING_SNAKE_CASE__ ) ) } A__ = update_pipeline_and_auto_class_table(SCREAMING_SNAKE_CASE__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. A__ = sorted(table.keys() ) A__ = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) A__ = Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ , "pipeline_tags.json" ) ) if commit_sha is not None: A__ = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: A__ = """Update""" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , token=SCREAMING_SNAKE_CASE__ , commit_message=SCREAMING_SNAKE_CASE__ , ) def UpperCamelCase ( ): A__ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} A__ = transformers_module.pipelines.SUPPORTED_TASKS A__ = [] for key in pipeline_tasks: if key not in in_table: A__ = pipeline_tasks[key]["""pt"""] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): A__ = model[0] A__ = model.__name__ if model not in in_table.values(): missing.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: A__ = """, """.join(SCREAMING_SNAKE_CASE__ ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Any =parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
237
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( SCREAMING_SNAKE_CASE_ ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """CLIPImageProcessor""" lowercase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Tuple , snake_case : List[Any]=None , snake_case : Any=None , **snake_case : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) UpperCamelCase_ : str = kwargs.pop('feature_extractor' ) UpperCamelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) def __call__( self : Optional[int] , snake_case : Dict=None , snake_case : Optional[int]=None , snake_case : List[Any]=None , **snake_case : str ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: UpperCamelCase_ : Optional[int] = self.tokenizer(snake_case , return_tensors=snake_case , **snake_case ) if images is not None: UpperCamelCase_ : int = self.image_processor(snake_case , return_tensors=snake_case , **snake_case ) if text is not None and images is not None: UpperCamelCase_ : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case ) , tensor_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , *snake_case : Any , **snake_case : Tuple ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any , *snake_case : Optional[Any] , **snake_case : int ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.tokenizer.model_input_names UpperCamelCase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
175
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __a = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __UpperCAmelCase ( a_: Optional[int], a_: Any, a_: List[Any]=None, a_: Union[str, Any]=None, a_: Union[str, Any]=None, a_: Union[str, Any]=None, a_: str=None, a_: Any=None, ): if attention_mask is None: _UpperCAmelCase : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: _UpperCAmelCase : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: _UpperCAmelCase : Optional[int] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : List[str]=7 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : int=9_9 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : int=0.02 , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Optional[Any] = eos_token_id _UpperCAmelCase : Optional[int] = pad_token_id _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : int = initializer_range def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _UpperCAmelCase : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _UpperCAmelCase : int = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) _UpperCAmelCase : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = 2_0 _UpperCAmelCase : Union[str, Any] = model_class_name(lowerCAmelCase__ ) _UpperCAmelCase : int = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _UpperCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : str = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) _UpperCAmelCase : int = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = 2_0 _UpperCAmelCase : str = model_class_name(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCAmelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCAmelCase : Optional[Any] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = 99 def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _UpperCAmelCase : str = input_ids.shape[0] _UpperCAmelCase : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : int = self._get_config_and_data() _UpperCAmelCase : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase__ ) _UpperCAmelCase : Dict = lm_model(input_ids=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _UpperCAmelCase : Tuple = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _UpperCAmelCase : Union[str, Any] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _UpperCAmelCase : Any = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _UpperCAmelCase : List[str] = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) _UpperCAmelCase : Tuple = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() _UpperCAmelCase : List[str] = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase , SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCamelCase_ : Tuple = True UpperCamelCase_ : Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase_ : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = FlaxBlenderbotSmallModelTester(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : str ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Union[str, Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : Optional[int] = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Any = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _UpperCAmelCase : Tuple = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Tuple = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : int = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _UpperCAmelCase : List[Any] = np.ones((1, 1) ) * model.config.eos_token_id _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
145
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
def lowerCamelCase__ (_UpperCAmelCase = 100_0000): SCREAMING_SNAKE_CASE = set(range(3 , SCREAMING_SNAKE_CASE__ , 2)) primes.add(2) for p in range(3 , SCREAMING_SNAKE_CASE__ , 2): if p not in primes: continue primes.difference_update(set(range(p * p , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__))) SCREAMING_SNAKE_CASE = [float(SCREAMING_SNAKE_CASE__) for n in range(limit + 1)] for p in primes: for n in range(SCREAMING_SNAKE_CASE__ , limit + 1 , SCREAMING_SNAKE_CASE__): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(f"""{solution() = }""")
137
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[str] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" from __future__ import annotations def lowercase ( A_ = 4 )-> list[list[int]]: '''simple docstring''' a : Any = abs(SCREAMING_SNAKE_CASE__ ) or 4 return [[1 + x + y * row_size for x in range(SCREAMING_SNAKE_CASE__ )] for y in range(SCREAMING_SNAKE_CASE__ )] def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' return reverse_row(transpose(SCREAMING_SNAKE_CASE__ ) ) # OR.. transpose(reverse_column(matrix)) def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(SCREAMING_SNAKE_CASE__ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' return reverse_column(transpose(SCREAMING_SNAKE_CASE__ ) ) # OR.. transpose(reverse_row(matrix)) def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' a : str = [list(SCREAMING_SNAKE_CASE__ ) for x in zip(*SCREAMING_SNAKE_CASE__ )] return matrix def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' a : Dict = matrix[::-1] return matrix def lowercase ( A_ )-> list[list[int]]: '''simple docstring''' a : int = [x[::-1] for x in matrix] return matrix def lowercase ( A_ )-> None: '''simple docstring''' for i in matrix: print(*SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __lowercase = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) __lowercase = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) __lowercase = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
40
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
from functools import reduce __UpperCAmelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCamelCase ( snake_case__ : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case__ , snake_case__ : str(int(SCREAMING_SNAKE_CASE__ ) * int(SCREAMING_SNAKE_CASE__ ) ) , n[i : i + 13] ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase : List[Any] = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
285
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' import random from typing import Any def _lowerCAmelCase ( __snake_case : list ) -> list[Any]: for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): __A : int = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) __A : List[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) __A : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": lowercase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5, 6, 7] lowercase__ : int = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
190
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase : Tuple = open # noqa: we just need to have a builtin inside this module to test it properly
253
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : Union[str, Any] = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' import math import qiskit def UpperCamelCase ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1 ): if ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(SCREAMING_SNAKE_CASE__ ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE__ ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers A__ = qiskit.QuantumRegister(4 , "qr" ) A__ = qiskit.ClassicalRegister(2 , "cr" ) # list the entries A__ = [input_a, input_a, carry_in] A__ = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE__ ) # measure the last two qbits A__ = qiskit.Aer.get_backend("aer_simulator" ) A__ = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
237
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
from math import sqrt def __lowercase ( lowerCamelCase : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase_ : Tuple = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase_ : Union[str, Any] = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase_ : Optional[Any] = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def __lowercase ( lowerCamelCase : Any ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase_ : Dict = list(range(2 , n + 1 ) ) UpperCamelCase_ : Union[str, Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase_ : Any = 0 # filters actual prime numbers. UpperCamelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def __lowercase ( lowerCamelCase : Union[str, Any] ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase_ : Optional[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def __lowercase ( lowerCamelCase : Any ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase_ : Dict = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase_ : Tuple = 2 UpperCamelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def __lowercase ( lowerCamelCase : Optional[Any] ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : str = 0 # prime factorization of 'number' UpperCamelCase_ : Dict = prime_factorization(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : Optional[int] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def __lowercase ( lowerCamelCase : Optional[Any] ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Optional[Any] = 0 # prime factorization of 'number' UpperCamelCase_ : List[str] = prime_factorization(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : Tuple = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def __lowercase ( lowerCamelCase : Tuple ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def __lowercase ( lowerCamelCase : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def __lowercase ( lowerCamelCase : Dict ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" UpperCamelCase_ : Optional[int] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase_ : Optional[Any] = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. UpperCamelCase_ : Optional[Any] = 0 UpperCamelCase_ : Union[str, Any] = None # exit variable. for break up the loops UpperCamelCase_ : Any = True while i < len_pn and loop: UpperCamelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase_ : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __lowercase ( lowerCamelCase : Any , lowerCamelCase : str ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : Optional[Any] = 0 while numbera != 0: UpperCamelCase_ : List[str] = numbera % numbera UpperCamelCase_ : List[Any] = numbera UpperCamelCase_ : Union[str, Any] = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __lowercase ( lowerCamelCase : int , lowerCamelCase : Optional[Any] ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : Tuple = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase_ : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : int = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: UpperCamelCase_ : str = [] UpperCamelCase_ : int = [] UpperCamelCase_ : str = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : str = 0 UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : str = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase_ : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ : List[str] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: UpperCamelCase_ : Union[str, Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase_ : str = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __lowercase ( lowerCamelCase : List[Any] ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" UpperCamelCase_ : int = 0 UpperCamelCase_ : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] ): assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase_ : List[str] = p_number_a + 1 # jump to the next number UpperCamelCase_ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __lowercase ( lowerCamelCase : Optional[Any] ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase_ : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def __lowercase ( lowerCamelCase : Any ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase_ : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase_ : Dict = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __lowercase ( lowerCamelCase : str ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase_ : int = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __lowercase ( lowerCamelCase : str ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : int = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase_ : Union[str, Any] = ans ans += fiba UpperCamelCase_ : Optional[int] = tmp return ans
175
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCamelCase_ : Tuple = """bert-generation""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int]=5_0_3_5_8 , lowerCAmelCase__ : Any=1_0_2_4 , lowerCAmelCase__ : str=2_4 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Optional[Any]=4_0_9_6 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Union[str, Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=1e-12 , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Optional[int]="absolute" , lowerCAmelCase__ : Union[str, Any]=True , **lowerCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : Union[str, Any] = use_cache
145
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split('_') SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4]) SCREAMING_SNAKE_CASE = int(name_split[3][-1]) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 192 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_1841 else: SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset') , 'r')) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE__): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def lowerCamelCase__ (_UpperCAmelCase): if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection') if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.norm' , 'embeddings.norm') if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense') if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'attention.self') if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before') if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after') if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense') if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace('head' , 'classifier') else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE__) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.') SCREAMING_SNAKE_CASE = int(key_split[1]) SCREAMING_SNAKE_CASE = int(key_split[3]) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(SCREAMING_SNAKE_CASE__) SCREAMING_SNAKE_CASE = SwinForImageClassification(SCREAMING_SNAKE_CASE__) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__) model.load_state_dict(SCREAMING_SNAKE_CASE__) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-'))) SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__).raw) SCREAMING_SNAKE_CASE = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt') SCREAMING_SNAKE_CASE = timm_model(inputs['pixel_values']) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE__).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''') model.save_pretrained(SCREAMING_SNAKE_CASE__) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a_ : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
137
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() A_ : Any = logging.get_logger(__name__) A_ : str = ["model.decoder.embed_positions.weights"] def A ( snake_case__ ): '''simple docstring''' if "emb" in name: SCREAMING_SNAKE_CASE__ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: SCREAMING_SNAKE_CASE__ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: SCREAMING_SNAKE_CASE__ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: SCREAMING_SNAKE_CASE__ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(state_dict.keys() ) SCREAMING_SNAKE_CASE__ = {} for key in keys: SCREAMING_SNAKE_CASE__ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = rename_keys(SCREAMING_SNAKE_CASE__ ) if "in_proj_weight" in key: # split fused qkv proj SCREAMING_SNAKE_CASE__ = val[:hidden_size, :] SCREAMING_SNAKE_CASE__ = val[hidden_size : 2 * hidden_size, :] SCREAMING_SNAKE_CASE__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: SCREAMING_SNAKE_CASE__ = val else: SCREAMING_SNAKE_CASE__ = val return state_dict, enc_dec_proj_state_dict def A ( snake_case__ ): '''simple docstring''' if checkpoint == "small": # default config values SCREAMING_SNAKE_CASE__ = 10_24 SCREAMING_SNAKE_CASE__ = 24 SCREAMING_SNAKE_CASE__ = 16 elif checkpoint == "medium": SCREAMING_SNAKE_CASE__ = 15_36 SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 24 elif checkpoint == "large": SCREAMING_SNAKE_CASE__ = 20_48 SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 32 else: raise ValueError(f"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" ) SCREAMING_SNAKE_CASE__ = MusicgenDecoderConfig( hidden_size=SCREAMING_SNAKE_CASE__ , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE__ , num_attention_heads=SCREAMING_SNAKE_CASE__ , ) return config @torch.no_grad() def A ( snake_case__ , snake_case__=None , snake_case__=None , snake_case__="cpu" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = fairseq_model.lm.state_dict() SCREAMING_SNAKE_CASE__ = rename_state_dict( SCREAMING_SNAKE_CASE__ , hidden_size=decoder_config.hidden_size ) SCREAMING_SNAKE_CASE__ = TaEncoderModel.from_pretrained("""t5-base""" ) SCREAMING_SNAKE_CASE__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) SCREAMING_SNAKE_CASE__ = MusicgenForCausalLM(SCREAMING_SNAKE_CASE__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection SCREAMING_SNAKE_CASE__ = decoder.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model SCREAMING_SNAKE_CASE__ = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE__ , audio_encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE__ ) # check we can do a forward pass SCREAMING_SNAKE_CASE__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) SCREAMING_SNAKE_CASE__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits if logits.shape != (8, 1, 20_48): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""t5-base""" ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE__ = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # set the appropriate bos/pad token ids SCREAMING_SNAKE_CASE__ = 20_48 SCREAMING_SNAKE_CASE__ = 20_48 # set other default generation config params SCREAMING_SNAKE_CASE__ = int(30 * audio_encoder.config.frame_rate ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 3.0 if pytorch_dump_folder is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) A_ : str = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
165
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _A ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Tuple=99 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : int=5 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : int=64 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Dict=1 , ): a : Any = parent a : Union[str, Any] = batch_size a : Optional[Any] = seq_length a : Optional[int] = is_training a : Tuple = use_input_mask a : Dict = use_token_type_ids a : Union[str, Any] = use_labels a : Optional[int] = vocab_size a : str = hidden_size a : int = num_hidden_layers a : List[Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : List[Any] = hidden_dropout_prob a : List[Any] = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : str = type_vocab_size a : Optional[Any] = type_sequence_label_size a : Dict = initializer_range a : Optional[int] = num_labels a : Union[str, Any] = num_choices a : List[str] = scope a : List[Any] = q_groups a : str = k_groups a : Union[str, Any] = v_groups a : List[Any] = post_attention_groups a : Optional[Any] = intermediate_groups a : Union[str, Any] = output_groups def __snake_case ( self : Optional[Any]): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : str = None if self.use_input_mask: a : Tuple = random_attention_mask([self.batch_size, self.seq_length]) a : List[Any] = None a : Optional[Any] = None a : Dict = None if self.use_labels: a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : int = ids_tensor([self.batch_size] , self.num_choices) a : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : str): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __snake_case ( self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str]): a : Optional[int] = SqueezeBertModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Optional[Any] = model(__UpperCAmelCase , __UpperCAmelCase) a : Dict = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]): a : Optional[Any] = SqueezeBertForMaskedLM(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple): a : List[Any] = SqueezeBertForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Any = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __snake_case ( self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str]): a : Dict = self.num_labels a : List[str] = SqueezeBertForSequenceClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : int): a : Optional[int] = self.num_labels a : Optional[int] = SqueezeBertForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __snake_case ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict): a : Optional[int] = self.num_choices a : int = SqueezeBertForMultipleChoice(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __snake_case ( self : Any): a : Union[str, Any] = self.prepare_config_and_inputs() (a) : str = config_and_inputs a : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase : str = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : List[Any] = True UpperCAmelCase : Dict = False def __snake_case ( self : int): a : str = SqueezeBertModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , dim=37) def __snake_case ( self : str): self.config_tester.run_common_tests() def __snake_case ( self : Optional[int]): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__UpperCAmelCase) def __snake_case ( self : int): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__UpperCAmelCase) def __snake_case ( self : Any): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__UpperCAmelCase) def __snake_case ( self : Any): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__UpperCAmelCase) def __snake_case ( self : Dict): a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__UpperCAmelCase) @slow def __snake_case ( self : Optional[Any]): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Any = SqueezeBertModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_sentencepiece @require_tokenizers @require_torch class _A ( unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self : Optional[Any]): a : List[str] = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") a : int = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]]) a : List[Any] = model(__UpperCAmelCase)[0] a : Dict = torch.Size((1, 3)) self.assertEqual(output.shape , __UpperCAmelCase) a : Dict = torch.tensor([[0.6_401, -0.0_349, -0.6_041]]) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-4))
40
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : str ) -> List[str]: UpperCamelCase : Any = [0 for i in range(r + 1 )] # nc0 = 1 UpperCamelCase : Any = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCamelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
119
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
def __lowerCamelCase ( UpperCamelCase__ = 1000000 ): '''simple docstring''' snake_case_ = limit + 1 snake_case_ = [0] * limit for first_term in range(1 , SCREAMING_SNAKE_CASE__ ): for n in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a snake_case_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
285
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list ) -> list: for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , 0 , -1 ): __A : List[Any] = False for j in range(SCREAMING_SNAKE_CASE__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __A : Union[str, Any] = unsorted[j - 1], unsorted[j] __A : List[Any] = True for j in range(SCREAMING_SNAKE_CASE__ ): if unsorted[j] > unsorted[j + 1]: __A : List[str] = unsorted[j + 1], unsorted[j] __A : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() lowercase__ : List[Any] = [int(item) for item in user_input.split(''',''')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
190
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n' def A_ ( a , a , a=8 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def A_ ( a , a=5_1_2 , a=5_1_2 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array(pil_image.convert('RGB' ) ) SCREAMING_SNAKE_CASE_ : List[str] = arr.astype(np.floataa ) / 1_2_7.5 - 1 SCREAMING_SNAKE_CASE_ : str = np.transpose(SCREAMING_SNAKE_CASE__ , [2, 0, 1] ) SCREAMING_SNAKE_CASE_ : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) return image class _A ( SCREAMING_SNAKE_CASE_): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE_ : Any = image else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_SCREAMING_SNAKE_CASE ) ] SCREAMING_SNAKE_CASE_ : Tuple = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) else: SCREAMING_SNAKE_CASE_ : Dict = self.movq.encode(_SCREAMING_SNAKE_CASE ).latent_dist.sample(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE_ : str = init_latents.shape SCREAMING_SNAKE_CASE_ : List[str] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents SCREAMING_SNAKE_CASE_ : int = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = init_latents return latents def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE_ : int = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE_ : Dict = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 0.3 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self._execution_device SCREAMING_SNAKE_CASE_ : List[Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : str = image_embeds.shape[0] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Dict = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = [image] if not all(isinstance(_SCREAMING_SNAKE_CASE , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(_SCREAMING_SNAKE_CASE ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([prepare_image(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.movq.encode(_SCREAMING_SNAKE_CASE )["""latents"""] SCREAMING_SNAKE_CASE_ : Optional[Any] = latents.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE_ : List[Any] = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_latents( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ : Tuple = {"""image_embeds""": image_embeds} SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE_ : Dict = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : Tuple = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : Dict = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing SCREAMING_SNAKE_CASE_ : Dict = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ : Dict = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : List[str] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : int = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
253
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 10**9) -> int: '''simple docstring''' __UpperCamelCase : Tuple = 1 __UpperCamelCase : List[Any] = 2 __UpperCamelCase : List[str] = 0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : Optional[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCamelCase : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
232
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int = 60_08_51_47_51_43 ): try: A__ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""{solution() = }""")
237
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Optional[int] , snake_case : int , snake_case : Tuple=False ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): UpperCamelCase_ : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowercase ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , snake_case : Tuple , snake_case : Dict=1_3 , snake_case : Optional[int]=7 , snake_case : str=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : int=True , snake_case : List[str]=9_9 , snake_case : List[str]=3_2 , snake_case : str=3_2 , snake_case : List[Any]=2 , snake_case : int=4 , snake_case : Any=3_7 , snake_case : List[str]="gelu" , snake_case : List[str]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : Optional[int]=5_1_2 , snake_case : List[str]=1_6 , snake_case : Any=2 , snake_case : Optional[int]=0.02 , snake_case : Tuple=3 , snake_case : int=4 , snake_case : Tuple=None , ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = parent UpperCamelCase_ : str = batch_size UpperCamelCase_ : int = seq_length UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Tuple = use_input_mask UpperCamelCase_ : Union[str, Any] = use_token_type_ids UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : List[Any] = vocab_size UpperCamelCase_ : Tuple = hidden_size UpperCamelCase_ : Optional[Any] = num_hidden_layers UpperCamelCase_ : List[str] = num_attention_heads UpperCamelCase_ : Dict = intermediate_size UpperCamelCase_ : Union[str, Any] = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : Optional[Any] = max_position_embeddings UpperCamelCase_ : Optional[int] = type_vocab_size UpperCamelCase_ : Dict = type_sequence_label_size UpperCamelCase_ : Union[str, Any] = initializer_range UpperCamelCase_ : int = num_labels UpperCamelCase_ : Union[str, Any] = num_choices UpperCamelCase_ : Optional[int] = scope UpperCamelCase_ : List[str] = embedding_size def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCamelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : int = None if self.use_token_type_ids: UpperCamelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Any = None UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Any = None if self.use_labels: UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Optional[int] , snake_case : int ) -> List[Any]: """simple docstring""" UpperCamelCase_ : int = TFMobileBertModel(config=snake_case ) UpperCamelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : int = model(snake_case ) UpperCamelCase_ : Optional[int] = [input_ids, input_mask] UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : List[str] = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : int , snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = TFMobileBertForMaskedLM(config=snake_case ) UpperCamelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[Any] , snake_case : List[Any] , snake_case : List[str] , snake_case : Tuple ) -> int: """simple docstring""" UpperCamelCase_ : str = TFMobileBertForNextSentencePrediction(config=snake_case ) UpperCamelCase_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Any = TFMobileBertForPreTraining(config=snake_case ) UpperCamelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Union[str, Any] = model(snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Tuple , snake_case : List[Any] , snake_case : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.num_labels UpperCamelCase_ : Dict = TFMobileBertForSequenceClassification(config=snake_case ) UpperCamelCase_ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Any = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : List[str] ) -> Any: """simple docstring""" UpperCamelCase_ : List[str] = self.num_choices UpperCamelCase_ : List[Any] = TFMobileBertForMultipleChoice(config=snake_case ) UpperCamelCase_ : Dict = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : Optional[Any] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : List[str] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase_ : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : Optional[Any] , snake_case : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ : List[Any] = self.num_labels UpperCamelCase_ : str = TFMobileBertForTokenClassification(config=snake_case ) UpperCamelCase_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple , snake_case : int , snake_case : Optional[int] , snake_case : List[str] , snake_case : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Any = TFMobileBertForQuestionAnswering(config=snake_case ) UpperCamelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase_ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.prepare_config_and_inputs() ( UpperCamelCase_ ) : Union[str, Any] = config_and_inputs UpperCamelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Any = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCamelCase_ : Optional[int] = ConfigTester(self , config_class=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: UpperCamelCase_ : List[Any] = TFMobileBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class _lowercase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: """simple docstring""" UpperCamelCase_ : Any = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) UpperCamelCase_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase_ : Union[str, Any] = model(snake_case )[0] UpperCamelCase_ : List[str] = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , snake_case ) UpperCamelCase_ : Optional[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
175
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class A__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @require_torch def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _UpperCAmelCase : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _UpperCAmelCase : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _UpperCAmelCase : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase__ ) BertModel.from_pretrained(lowerCAmelCase__ ) BertTokenizer.from_pretrained(lowerCAmelCase__ ) pipeline(task="fill-mask" , model=lowerCAmelCase__ ) # baseline - just load from_pretrained with normal network _UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _UpperCAmelCase : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _UpperCAmelCase : Union[str, Any] = """1""" _UpperCAmelCase : Tuple = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _UpperCAmelCase : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _UpperCAmelCase : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _UpperCAmelCase : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase__ ) BertModel.from_pretrained(lowerCAmelCase__ ) BertTokenizer.from_pretrained(lowerCAmelCase__ ) pipeline(task="fill-mask" , model=lowerCAmelCase__ ) # baseline - just load from_pretrained with normal network _UpperCAmelCase : str = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _UpperCAmelCase : int = self.get_env() _UpperCAmelCase : List[str] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _UpperCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _UpperCAmelCase : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _UpperCAmelCase : Any = self.get_env() _UpperCAmelCase : Dict = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network _UpperCAmelCase : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _UpperCAmelCase : int = """1""" _UpperCAmelCase : Any = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = """ from transformers import pipeline """ _UpperCAmelCase : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _UpperCAmelCase : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _UpperCAmelCase : Tuple = self.get_env() _UpperCAmelCase : Union[str, Any] = """1""" _UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _UpperCAmelCase : Any = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = """ from transformers import AutoModel """ _UpperCAmelCase : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _UpperCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _UpperCAmelCase : Union[str, Any] = self.get_env() _UpperCAmelCase : Tuple = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _UpperCAmelCase : Union[str, Any] = """1""" _UpperCAmelCase : List[Any] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
145
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
import tensorflow as tf from ...tf_utils import shape_list class _snake_case ( tf.keras.layers.Layer ): def __init__( self , a , a , a , a , a=1 , a=False , **a) -> Dict: super().__init__(**a) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_embed SCREAMING_SNAKE_CASE = d_proj SCREAMING_SNAKE_CASE = cutoffs + [vocab_size] SCREAMING_SNAKE_CASE = [0] + self.cutoffs SCREAMING_SNAKE_CASE = div_val SCREAMING_SNAKE_CASE = self.cutoffs[0] SCREAMING_SNAKE_CASE = len(self.cutoffs) - 1 SCREAMING_SNAKE_CASE = self.shortlist_size + self.n_clusters SCREAMING_SNAKE_CASE = keep_order SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] def SCREAMING_SNAKE_CASE__ ( self , a) -> str: if self.n_clusters > 0: SCREAMING_SNAKE_CASE = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=a , name='cluster_weight') SCREAMING_SNAKE_CASE = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=a , name='cluster_bias') if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: SCREAMING_SNAKE_CASE = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=a , name=f'''out_projs_._{i}''' , ) self.out_projs.append(a) else: self.out_projs.append(a) SCREAMING_SNAKE_CASE = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=a , name=f'''out_layers_._{i}_._weight''' , ) SCREAMING_SNAKE_CASE = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=a , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE = self.d_embed // (self.div_val**i) SCREAMING_SNAKE_CASE = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=a , name=f'''out_projs_._{i}''') self.out_projs.append(a) SCREAMING_SNAKE_CASE = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=a , name=f'''out_layers_._{i}_._weight''' , ) SCREAMING_SNAKE_CASE = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=a , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) super().build(a) @staticmethod def SCREAMING_SNAKE_CASE__ ( a , a , a , a=None) -> List[Any]: SCREAMING_SNAKE_CASE = x if proj is not None: SCREAMING_SNAKE_CASE = tf.einsum('ibd,ed->ibe' , a , a) return tf.einsum('ibd,nd->ibn' , a , a) + b @staticmethod def SCREAMING_SNAKE_CASE__ ( a , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = shape_list(a) SCREAMING_SNAKE_CASE = tf.range(lp_size[0] , dtype=target.dtype) SCREAMING_SNAKE_CASE = tf.stack([r, target] , 1) return tf.gather_nd(a , a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=True , a=False) -> Tuple: SCREAMING_SNAKE_CASE = 0 if self.n_clusters == 0: SCREAMING_SNAKE_CASE = self._logit(a , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0]) if target is not None: SCREAMING_SNAKE_CASE = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=a , logits=a) SCREAMING_SNAKE_CASE = tf.nn.log_softmax(a , axis=-1) else: SCREAMING_SNAKE_CASE = shape_list(a) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: SCREAMING_SNAKE_CASE = (target >= l_idx) & (target < r_idx) SCREAMING_SNAKE_CASE = tf.where(a) SCREAMING_SNAKE_CASE = tf.boolean_mask(a , a) - l_idx if self.div_val == 1: SCREAMING_SNAKE_CASE = self.out_layers[0][0][l_idx:r_idx] SCREAMING_SNAKE_CASE = self.out_layers[0][1][l_idx:r_idx] else: SCREAMING_SNAKE_CASE = self.out_layers[i][0] SCREAMING_SNAKE_CASE = self.out_layers[i][1] if i == 0: SCREAMING_SNAKE_CASE = tf.concat([cur_W, self.cluster_weight] , 0) SCREAMING_SNAKE_CASE = tf.concat([cur_b, self.cluster_bias] , 0) SCREAMING_SNAKE_CASE = self._logit(a , a , a , self.out_projs[0]) SCREAMING_SNAKE_CASE = tf.nn.log_softmax(a) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: SCREAMING_SNAKE_CASE = tf.boolean_mask(a , a) SCREAMING_SNAKE_CASE = self._gather_logprob(a , a) else: SCREAMING_SNAKE_CASE = self._logit(a , a , a , self.out_projs[i]) SCREAMING_SNAKE_CASE = tf.nn.log_softmax(a) SCREAMING_SNAKE_CASE = self.cutoffs[0] + i - 1 # No probability for the head cluster SCREAMING_SNAKE_CASE = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(a) if target is not None: SCREAMING_SNAKE_CASE = tf.boolean_mask(a , a) SCREAMING_SNAKE_CASE = tf.boolean_mask(a , a) SCREAMING_SNAKE_CASE = self._gather_logprob(a , a) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(a , -cur_logprob , shape_list(a)) SCREAMING_SNAKE_CASE = tf.concat(a , axis=-1) if target is not None: if return_mean: SCREAMING_SNAKE_CASE = tf.reduce_mean(a) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(a) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(a , name=self.name , aggregation='mean' if return_mean else '') return out
137
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model.generate(__UpperCAmelCase , max_new_tokens=1_0 , do_sample=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE__ = TextStreamer(__UpperCAmelCase ) model.generate(__UpperCAmelCase , max_new_tokens=1_0 , do_sample=__UpperCAmelCase , streamer=__UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE__ = cs.out[:-1] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model.generate(__UpperCAmelCase , max_new_tokens=1_0 , do_sample=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE__ = TextIteratorStreamer(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE__ = Thread(target=model.generate , kwargs=__UpperCAmelCase ) thread.start() SCREAMING_SNAKE_CASE__ = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model.generate(__UpperCAmelCase , max_new_tokens=1_0 , do_sample=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE__ = TextStreamer(__UpperCAmelCase , skip_prompt=__UpperCAmelCase ) model.generate(__UpperCAmelCase , max_new_tokens=1_0 , do_sample=__UpperCAmelCase , streamer=__UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE__ = cs.out[:-1] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""distilgpt2""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = torch.ones((1, 5) , device=__UpperCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE__ = TextStreamer(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) model.generate(__UpperCAmelCase , max_new_tokens=1 , do_sample=__UpperCAmelCase , streamer=__UpperCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE__ = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE__ = tokenizer(__UpperCAmelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = TextIteratorStreamer(__UpperCAmelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE__ = Thread(target=model.generate , kwargs=__UpperCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = """""" for new_text in streamer: streamer_text += new_text
165
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : NestedDataStructureLike[PathLike] , __UpperCAmelCase : Optional[NamedSplit] = None , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Optional[Any] , ): super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) a : Tuple = field a : str = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase) else {self.split: path_or_paths} a : int = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def __snake_case ( self : Any): if self.streaming: a : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: a : Dict = None a : Optional[int] = None a : Optional[Any] = None a : str = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) a : List[str] = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory) return dataset class _A : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : Dataset , __UpperCAmelCase : Union[PathLike, BinaryIO] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Any , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''') a : Optional[Any] = dataset a : str = path_or_buf a : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a : Tuple = num_proc a : Dict = """utf-8""" a : str = to_json_kwargs def __snake_case ( self : Optional[Any]): a : Optional[Any] = self.to_json_kwargs.pop("path_or_buf" , __UpperCAmelCase) a : Any = self.to_json_kwargs.pop("orient" , "records") a : List[str] = self.to_json_kwargs.pop("lines" , True if orient == "records" else False) a : List[Any] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True) a : Union[str, Any] = self.to_json_kwargs.pop("compression" , __UpperCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , "wb" , compression=__UpperCAmelCase) as buffer: a : List[str] = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' " was passed. Please provide a local path instead.") a : Tuple = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs) return written def __snake_case ( self : Tuple , __UpperCAmelCase : Optional[int]): a : int = args a : int = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) a : Optional[Any] = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : BinaryIO , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any] , ): a : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): a : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(__UpperCAmelCase) else: a : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(__UpperCAmelCase) return written
40
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ : Optional[Any] = """efficientnet""" def __init__( self, SCREAMING_SNAKE_CASE_ = 3, SCREAMING_SNAKE_CASE_ = 600, SCREAMING_SNAKE_CASE_ = 2.0, SCREAMING_SNAKE_CASE_ = 3.1, SCREAMING_SNAKE_CASE_ = 8, SCREAMING_SNAKE_CASE_ = [3, 3, 5, 3, 5, 5, 3], SCREAMING_SNAKE_CASE_ = [32, 16, 24, 40, 80, 112, 192], SCREAMING_SNAKE_CASE_ = [16, 24, 40, 80, 112, 192, 320], SCREAMING_SNAKE_CASE_ = [], SCREAMING_SNAKE_CASE_ = [1, 2, 2, 2, 1, 2, 1], SCREAMING_SNAKE_CASE_ = [1, 2, 2, 3, 3, 4, 1], SCREAMING_SNAKE_CASE_ = [1, 6, 6, 6, 6, 6, 6], SCREAMING_SNAKE_CASE_ = 0.25, SCREAMING_SNAKE_CASE_ = "swish", SCREAMING_SNAKE_CASE_ = 2560, SCREAMING_SNAKE_CASE_ = "mean", SCREAMING_SNAKE_CASE_ = 0.02, SCREAMING_SNAKE_CASE_ = 0.0_01, SCREAMING_SNAKE_CASE_ = 0.99, SCREAMING_SNAKE_CASE_ = 0.5, SCREAMING_SNAKE_CASE_ = 0.2, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = num_channels UpperCamelCase : str = image_size UpperCamelCase : Tuple = width_coefficient UpperCamelCase : List[str] = depth_coefficient UpperCamelCase : List[Any] = depth_divisor UpperCamelCase : str = kernel_sizes UpperCamelCase : Any = in_channels UpperCamelCase : Optional[Any] = out_channels UpperCamelCase : str = depthwise_padding UpperCamelCase : Tuple = strides UpperCamelCase : Dict = num_block_repeats UpperCamelCase : int = expand_ratios UpperCamelCase : Tuple = squeeze_expansion_ratio UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Optional[int] = hidden_dim UpperCamelCase : Tuple = pooling_type UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = batch_norm_eps UpperCamelCase : Optional[Any] = batch_norm_momentum UpperCamelCase : str = dropout_rate UpperCamelCase : Union[str, Any] = drop_connect_rate UpperCamelCase : Optional[int] = sum(SCREAMING_SNAKE_CASE_ ) * 4 class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ : Tuple = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ) -> float: return 1e-5
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _UpperCAmelCase : str = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def __lowerCamelCase ( UpperCamelCase__=None ): '''simple docstring''' if subparsers is not None: snake_case_ = subparsers.add_parser('tpu-config' , description=_description ) else: snake_case_ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments snake_case_ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE__ , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE__ , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) snake_case_ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE__ , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE__ ): snake_case_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case_ = defaults.command_file if not args.command and defaults.commands is not None: snake_case_ = defaults.commands if not args.tpu_name: snake_case_ = defaults.tpu_name if not args.tpu_zone: snake_case_ = defaults.tpu_zone if args.accelerate_version == "dev": snake_case_ = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": snake_case_ = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: snake_case_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE__ ): snake_case_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case_ = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command snake_case_ = """; """.join(SCREAMING_SNAKE_CASE__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case_ = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {" ".join(SCREAMING_SNAKE_CASE__ )}''' ) return subprocess.run(SCREAMING_SNAKE_CASE__ ) print('Successfully setup pod.' ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = tpu_command_parser() snake_case_ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE__ )
285
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> str: if not (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __A : List[str] = len(SCREAMING_SNAKE_CASE__ ) __A : Tuple = len(SCREAMING_SNAKE_CASE__ ) __A : List[str] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __A : List[str] = 0 __A : str = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __A : int = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __A : int = i __A : Dict = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
190
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _A ( unittest.TestCase): SCREAMING_SNAKE_CASE : Tuple = StableDiffusionLDMaDPipeline SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTextModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : int = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Any = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) SCREAMING_SNAKE_CASE_ : Tuple = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = 3 * [inputs["""prompt"""]] # forward SCREAMING_SNAKE_CASE_ : Optional[Any] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Tuple = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[str] = depth_slice_a[0, -3:, -1] SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE_ : Dict = ldmad_pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : List[Any] = text_inputs["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ldmad_pipe.text_encoder(_SCREAMING_SNAKE_CASE )[0] SCREAMING_SNAKE_CASE_ : str = prompt_embeds # forward SCREAMING_SNAKE_CASE_ : List[str] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : int = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[Any] = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionLDMaDPipeline(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = """french fries""" SCREAMING_SNAKE_CASE_ : Tuple = ldmad_pipe(**_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Dict = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) SCREAMING_SNAKE_CASE_ : Any = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE_ : Dict = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) SCREAMING_SNAKE_CASE_ : Dict = ldmad_pipe.to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Dict = rgb[0, -3:, -3:, -1].flatten() SCREAMING_SNAKE_CASE_ : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) SCREAMING_SNAKE_CASE_ : str = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) SCREAMING_SNAKE_CASE_ : Dict = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" , _SCREAMING_SNAKE_CASE=torch.floataa , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE_ : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.get_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Dict = 0.495586 SCREAMING_SNAKE_CASE_ : Any = 0.33795515 SCREAMING_SNAKE_CASE_ : List[str] = 112.48518 SCREAMING_SNAKE_CASE_ : List[Any] = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(_SCREAMING_SNAKE_CASE ) ldmad_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = ldmad_pipe(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.4194127 SCREAMING_SNAKE_CASE_ : int = 0.35375586 SCREAMING_SNAKE_CASE_ : Optional[int] = 0.5638502 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
253
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase : int = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowercase : Optional[int] = [] lowercase : int = [] lowercase : Any = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowercase : List[str] = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", 'emoji': True, }, } ] lowercase : Union[str, Any] = 0 for log in Path().glob('*.log'): lowercase : Optional[int] = 0 with open(log, 'r') as f: for line in f: lowercase : Dict = json.loads(line) if line.get('nodeid', '') != "": lowercase : List[str] = line['nodeid'] if line.get('duration', None) is not None: lowercase : List[str] = f"{line['duration']:.4f}" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase : Union[str, Any] = [] log.unlink() lowercase : Optional[Any] = '' lowercase : Any = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowercase : List[str] = [] lowercase : Optional[int] = {} for test in failed_tests: lowercase : Any = test[0].split('::') lowercase : List[str] = data[0].split('/')[-1] if data[0] not in filesafailed: lowercase : Optional[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase : Tuple = [test[0] for test in failed_table] lowercase : Any = list(set(files)) # Count number of instances in failed_tests lowercase : Union[str, Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase : List[str] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase : Optional[Any] = 'Too many failed tests, please see the full report in the Action results.' lowercase : List[str] = len(err) + 10 lowercase : Dict = message[: 3000 - offset] + f"\n...\n```\n{err}" print(f"### {message}") else: lowercase : Union[str, Any] = 'No failed tests! 🤗' print(f"## {message}") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowercase : Union[str, Any] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowercase : Any = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowercase : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase : Union[str, Any] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase : int = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowercase : Dict = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase : Tuple = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowercase : Dict = row[0] else: lowercase : Dict = '' lowercase : Dict = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
232
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase : __lowercase = 42 __lowercase = None # Automatically constructed __lowercase = "dict" __lowercase = None __lowercase = field(default="""Translation""" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self :Tuple )-> List[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase_ ( self :int )-> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase : __lowercase = None __lowercase = None __lowercase = None # Automatically constructed __lowercase = "dict" __lowercase = None __lowercase = field(default="""TranslationVariableLanguages""" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self :Optional[int] )-> List[str]: A__ = sorted(set(self.languages ) ) if self.languages else None A__ = len(self.languages ) if self.languages else None def __call__( self :Dict )-> Union[str, Any]: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] )-> Tuple: A__ = set(self.languages ) if self.languages and set(lowercase_ ) - lang_set: raise ValueError( F"Some languages in example ({', '.join(sorted(set(lowercase_ ) - lang_set ) )}) are not in valid set ({', '.join(lowercase_ )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. A__ = [] for lang, text in translation_dict.items(): if isinstance(lowercase_ , lowercase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. A__ = zip(*sorted(lowercase_ ) ) return {"language": languages, "translation": translations} def UpperCAmelCase_ ( self :List[str] )-> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
237
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowercase : @staticmethod def SCREAMING_SNAKE_CASE__ ( *snake_case : Dict , **snake_case : Optional[int] ) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class _lowercase ( unittest.TestCase ): lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Any , snake_case : Tuple , snake_case : List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Dict = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) UpperCamelCase_ : Optional[Any] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Union[str, Any] , snake_case : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Any = object_detector(examples[0] , threshold=0.0 ) UpperCamelCase_ : Optional[int] = len(snake_case ) self.assertGreater(snake_case , 0 ) self.assertEqual( snake_case , [ { 'score': ANY(snake_case ), 'label': ANY(snake_case ), 'box': {'xmin': ANY(snake_case ), 'ymin': ANY(snake_case ), 'xmax': ANY(snake_case ), 'ymax': ANY(snake_case )}, } for i in range(snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" pass @require_torch def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) UpperCamelCase_ : Optional[int] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] , ) UpperCamelCase_ : List[str] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = pipeline('zero-shot-object-detection' ) UpperCamelCase_ : Optional[Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ] , ) UpperCamelCase_ : Optional[Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[Any] = 0.2 UpperCamelCase_ : Union[str, Any] = pipeline('zero-shot-object-detection' ) UpperCamelCase_ : Dict = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : str = 2 UpperCamelCase_ : str = pipeline('zero-shot-object-detection' ) UpperCamelCase_ : List[Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, ] , )
175
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=1_8 , lowerCAmelCase__ : Dict=3_0 , lowerCAmelCase__ : Optional[int]=4_0_0 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=None , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_0} _UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : int = num_channels _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : List[Any] = max_resolution _UpperCAmelCase : List[Any] = do_resize _UpperCAmelCase : Any = size _UpperCAmelCase : str = do_center_crop _UpperCAmelCase : Union[str, Any] = crop_size def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class A__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = MobileNetVaImageProcessingTester(self ) @property def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size" ) ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) _UpperCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Dict = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : str = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : int = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
145
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a_ : int = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE = np.where(input_ids != config.pad_token_id , 1 , 0) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = np.where(decoder_input_ids != config.pad_token_id , 1 , 0) if head_mask is None: SCREAMING_SNAKE_CASE = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _snake_case : def __init__( self , a , a=13 , a=7 , a=True , a=False , a=99 , a=16 , a=2 , a=4 , a=4 , a="gelu" , a=0.1 , a=0.1 , a=32 , a=2 , a=1 , a=0 , a=0.02 , ) -> Dict: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = initializer_range def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) SCREAMING_SNAKE_CASE = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) SCREAMING_SNAKE_CASE = shift_tokens_right(a , 1 , 2) SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a , ) SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(a , a , a) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[Any]: SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(a) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids']) SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , a , a) SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4') SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , a , decoder_attention_mask=a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a , ) SCREAMING_SNAKE_CASE = model.decode(a , a) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''') def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Optional[int]: SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(a) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids']) SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , a , a) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a , decoder_position_ids=a , ) SCREAMING_SNAKE_CASE = model.decode(a , a , decoder_attention_mask=a) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''') @require_flax class _snake_case ( unittest.TestCase ): _lowercase : int = 99 def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE = input_ids.shape[0] SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self._get_config_and_data() SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(a) SCREAMING_SNAKE_CASE = lm_model(input_ids=a) SCREAMING_SNAKE_CASE = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , a) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(a) SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE = lm_model(input_ids=a , decoder_input_ids=a) SCREAMING_SNAKE_CASE = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) SCREAMING_SNAKE_CASE = shift_tokens_right(a , 1 , 2) SCREAMING_SNAKE_CASE = np.equal(a , 1).astype(np.floataa).sum() SCREAMING_SNAKE_CASE = np.equal(a , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(a , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase , SCREAMING_SNAKE_CASE_ ): _lowercase : List[str] = True _lowercase : int = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowercase : Dict = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a , a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a , a , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE = self._prepare_for_class(a , a) SCREAMING_SNAKE_CASE = model_class(a) @jax.jit def encode_jitted(a , a=None , **a): return model.encode(input_ids=a , attention_mask=a) with self.subTest('JIT Enabled'): SCREAMING_SNAKE_CASE = encode_jitted(**a).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): SCREAMING_SNAKE_CASE = encode_jitted(**a).to_tuple() self.assertEqual(len(a) , len(a)) for jitted_output, output in zip(a , a): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE = model_class(a) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask']) SCREAMING_SNAKE_CASE = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(a , a , a): return model.decode( decoder_input_ids=a , decoder_attention_mask=a , encoder_outputs=a , ) with self.subTest('JIT Enabled'): SCREAMING_SNAKE_CASE = decode_jitted(**a).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): SCREAMING_SNAKE_CASE = decode_jitted(**a).to_tuple() self.assertEqual(len(a) , len(a)) for jitted_output, output in zip(a , a): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('facebook/blenderbot-400M-distill') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE = np.ones((1, 1)) * model.config.eos_token_id SCREAMING_SNAKE_CASE = model(a) self.assertIsNotNone(a) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.') @slow def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} SCREAMING_SNAKE_CASE = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=a) SCREAMING_SNAKE_CASE = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B') SCREAMING_SNAKE_CASE = ["""Sam"""] SCREAMING_SNAKE_CASE = tokenizer(a , return_tensors='jax') SCREAMING_SNAKE_CASE = model.generate(**a , **a) SCREAMING_SNAKE_CASE = """Sam is a great name. It means \"sun\" in Gaelic.""" SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a , **a) assert generated_txt[0].strip() == tgt_text
137
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = """weight_v""" elif "weight" in name: SCREAMING_SNAKE_CASE__ = """weight""" elif "bias" in name: SCREAMING_SNAKE_CASE__ = """bias""" else: SCREAMING_SNAKE_CASE__ = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE__ = name.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def A ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True ): '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ = HubertConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ = target_dict.pad_index SCREAMING_SNAKE_CASE__ = target_dict.bos_index SCREAMING_SNAKE_CASE__ = target_dict.eos_index SCREAMING_SNAKE_CASE__ = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ = True if config.feat_extract_norm == """layer""" else False SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ = HubertForCTC(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ = HubertModel(SCREAMING_SNAKE_CASE__ ) if is_finetuned: SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A_ : Optional[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
165
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
"""simple docstring""" def lowercase ( A_ )-> Any: '''simple docstring''' a : Union[str, Any] = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: a : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": __lowercase = input("""Enter numbers separated by a comma:\n""").strip() __lowercase = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
40
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCAmelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCAmelCase = json.load(f) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return FSMTTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : str = FSMTForConditionalGeneration.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : Any = F"""facebook/wmt19-{pair}""" UpperCamelCase : List[str] = self.get_tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.get_model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = bleu_data[pair]["""src"""] UpperCamelCase : Optional[int] = bleu_data[pair]["""tgt"""] UpperCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='pt', truncation=SCREAMING_SNAKE_CASE_, padding='longest' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = model.generate( input_ids=batch.input_ids, num_beams=8, ) UpperCamelCase : Any = tokenizer.batch_decode( SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = calculate_bleu(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(scores['bleu'], SCREAMING_SNAKE_CASE_ )
119
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) snake_case_ = AutoTokenizer.from_pretrained('google/mt5-small' ) snake_case_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids snake_case_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids snake_case_ = model(snake_case , labels=snake_case ).loss snake_case_ = -tf.math.reduce_mean(snake_case ).numpy() snake_case_ = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
285
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowercase__ : int = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : bool , __snake_case : bool ) -> List[Any]: def run_func(__snake_case : Optional[int] ): @wraps(SCREAMING_SNAKE_CASE__ ) def run_in_eager_mode(*__snake_case : int , **__snake_case : List[Any] ): return func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @wraps(SCREAMING_SNAKE_CASE__ ) @tf.function(experimental_compile=SCREAMING_SNAKE_CASE__ ) def run_in_graph_mode(*__snake_case : str , **__snake_case : List[Any] ): return func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> ["tf.Tensor"]: __A : Union[str, Any] = random.Random() __A : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(SCREAMING_SNAKE_CASE__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = "TensorFlow" @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return tf.__version__ def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __A : int = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return self._measure_speed(_inference) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __A : Any = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return self._measure_speed(_train) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase) __A : Dict = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __A : Optional[int] = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return self._measure_memory(_inference) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase) __A : int = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __A : str = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return self._measure_memory(_train) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.') __A : Union[str, Any] = ( hasattr(_UpperCAmelCase , 'architectures') and isinstance(config.architectures , _UpperCAmelCase) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __A : List[str] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __A : Optional[int] = __import__('transformers' , fromlist=[model_class]) __A : List[str] = getattr(_UpperCAmelCase , _UpperCAmelCase) __A : Any = model_cls(_UpperCAmelCase) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.') else: __A : int = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase) # encoder-decoder has vocab size saved differently __A : Union[str, Any] = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size') else config.encoder.vocab_size __A : Tuple = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_forward(): return model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , training=_UpperCAmelCase) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_forward(): return model(_UpperCAmelCase , training=_UpperCAmelCase) __A : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.') if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.') __A : List[Any] = ( hasattr(_UpperCAmelCase , 'architectures') and isinstance(config.architectures , _UpperCAmelCase) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __A : Union[str, Any] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __A : Optional[int] = __import__('transformers' , fromlist=[model_class]) __A : Any = getattr(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_cls(_UpperCAmelCase) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.') else: __A : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase) # encoder-decoder has vocab size saved differently __A : Union[str, Any] = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size') else config.encoder.vocab_size __A : Dict = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_train(): __A : Dict = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase)[0] __A : int = tf.gradients(_UpperCAmelCase , model.trainable_variables) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_train(): __A : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase)[0] __A : Dict = tf.gradients(_UpperCAmelCase , model.trainable_variables) return gradients __A : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation') timeit.repeat(_UpperCAmelCase , repeat=1 , number=5) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __A : Any = timeit.repeat( _UpperCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_UpperCAmelCase) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.') with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.') __A : Union[str, Any] = start_memory_tracing('transformers') if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`') elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.') __A : Any = """N/A""" else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.') # init nvml nvml.nvmlInit() func() __A : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) __A : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase) __A : Tuple = meminfo.used __A : str = Memory(_UpperCAmelCase) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.') __A : Tuple = None else: __A : Optional[int] = measure_peak_memory_cpu(_UpperCAmelCase) __A : str = Memory(_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else memory_bytes if self.args.trace_memory_line_by_line: __A : Union[str, Any] = stop_memory_tracing(_UpperCAmelCase) if memory is None: __A : List[str] = summary.total else: __A : List[Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}') return "N/A", None
190
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : int = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } lowerCAmelCase : Tuple = { 'camembert-base': 5_12, } lowerCAmelCase : List[Any] = '▁' class _A ( SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE : Union[str, Any] = CamembertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Any = vocab_file SCREAMING_SNAKE_CASE_ : Optional[int] = False if not self.vocab_file else True def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
0
import numpy as np import qiskit def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 8 , _lowerCamelCase : int | None = None) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = np.random.default_rng(seed=SCREAMING_SNAKE_CASE__) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __UpperCamelCase : Any = 6 * key_len # Measurement basis for Alice's qubits. __UpperCamelCase : List[str] = rng.integers(2 , size=SCREAMING_SNAKE_CASE__) # The set of states Alice will prepare. __UpperCamelCase : List[str] = rng.integers(2 , size=SCREAMING_SNAKE_CASE__) # Measurement basis for Bob's qubits. __UpperCamelCase : Any = rng.integers(2 , size=SCREAMING_SNAKE_CASE__) # Quantum Circuit to simulate BB84 __UpperCamelCase : str = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , name="BB84") # Alice prepares her qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE__): if alice_state[index] == 1: bbaa_circ.x(SCREAMING_SNAKE_CASE__) if alice_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE__) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE__): if bob_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE__) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __UpperCamelCase : Dict = qiskit.Aer.get_backend("aer_simulator") # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __UpperCamelCase : Optional[int] = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1 , seed_simulator=SCREAMING_SNAKE_CASE__) # Returns the result of measurement. __UpperCamelCase : str = job.result().get_counts(SCREAMING_SNAKE_CASE__).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __UpperCamelCase : Tuple = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if alice_basis_bit == bob_basis_bit ]) # Get final key. Pad with 0 if too short, otherwise truncate. __UpperCamelCase : str = gen_key[:key_len] if len(SCREAMING_SNAKE_CASE__) >= key_len else gen_key.ljust(SCREAMING_SNAKE_CASE__ , "0") return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
232
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( _lowerCamelCase : list[float] ): A__ = 0.0_0 A__ = 0 for resistor in resistors: if resistor <= 0: A__ = F"Resistor at index {index} has a negative or zero value!" raise ValueError(SCREAMING_SNAKE_CASE__ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE__ ) index += 1 return 1 / first_sum def UpperCamelCase ( _lowerCamelCase : list[float] ): A__ = 0.0_0 A__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: A__ = F"Resistor at index {index} has a negative value!" raise ValueError(SCREAMING_SNAKE_CASE__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
237
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=snake_case , ) assert hasattr(self , 'env' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Any ) -> str: """simple docstring""" UpperCamelCase_ : str = f"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings UpperCamelCase_ : Dict = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=snake_case , instance_count=snake_case , instance_type=self.instance_type , debugger_hook_config=snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=snake_case , py_version='py36' , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Any ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(snake_case ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(2,)] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[str] ) -> str: """simple docstring""" UpperCamelCase_ : Dict = self.create_estimator(snake_case ) # run training estimator.fit() # result dataframe UpperCamelCase_ : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCamelCase_ : List[str] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , snake_case )
175
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class A__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" UpperCamelCase_ : str UpperCamelCase_ : int def __UpperCAmelCase ( a_: str ): if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def __UpperCAmelCase ( a_: str ): if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _UpperCAmelCase : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def __UpperCAmelCase ( a_: str, a_: int ): if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _UpperCAmelCase : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _UpperCAmelCase : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _UpperCAmelCase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __a = 'Provide a string that I will generate its BWT transform: ' __a = input(entry_msg).strip() __a = bwt_transform(s) print( f'Burrows Wheeler transform for string \'{s}\' results ' f'in \'{result["bwt_string"]}\'' ) __a = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' f'we get original string \'{original_string}\'' )
145
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ (_UpperCAmelCase): return getitem, k def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return setitem, k, v def lowerCamelCase__ (_UpperCAmelCase): return delitem, k def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase): try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__), None except Exception as e: return None, e a_ : List[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ : str = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ : Optional[Any] = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ : Tuple = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items'), pytest.param(_overwrite_items , id='overwrite items'), pytest.param(_delete_items , id='delete items'), pytest.param(_access_absent_items , id='access absent items'), pytest.param(_add_with_resize_up , id='add with resize up'), pytest.param(_add_with_resize_down , id='add with resize down'), ) , ) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__): SCREAMING_SNAKE_CASE = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__) SCREAMING_SNAKE_CASE = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__) == str(SCREAMING_SNAKE_CASE__) assert set(SCREAMING_SNAKE_CASE__) == set(SCREAMING_SNAKE_CASE__) assert len(SCREAMING_SNAKE_CASE__) == len(SCREAMING_SNAKE_CASE__) assert set(my.items()) == set(py.items()) def lowerCamelCase__ (): def is_public(_UpperCAmelCase) -> bool: return not name.startswith('_') SCREAMING_SNAKE_CASE = {name for name in dir({}) if is_public(SCREAMING_SNAKE_CASE__)} SCREAMING_SNAKE_CASE = {name for name in dir(HashMap()) if is_public(SCREAMING_SNAKE_CASE__)} assert dict_public_names > hash_public_names
137
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ : torch.FloatTensor lowerCamelCase__ : torch.FloatTensor class lowerCamelCase (SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ : Any = 1 @register_to_config def __init__( self : Dict , __UpperCAmelCase : int = 2_0_0_0 , __UpperCAmelCase : float = 0.15 , __UpperCAmelCase : float = 0.01 , __UpperCAmelCase : float = 1_3_4_8.0 , __UpperCAmelCase : float = 1e-5 , __UpperCAmelCase : int = 1 , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = sigma_max # setable values SCREAMING_SNAKE_CASE__ = None self.set_sigmas(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : float = None , __UpperCAmelCase : Union[str, torch.device] = None ) -> int: SCREAMING_SNAKE_CASE__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps SCREAMING_SNAKE_CASE__ = torch.linspace(1 , __UpperCAmelCase , __UpperCAmelCase , device=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : float = None , __UpperCAmelCase : float = None , __UpperCAmelCase : float = None ) -> str: SCREAMING_SNAKE_CASE__ = sigma_min if sigma_min is not None else self.config.sigma_min SCREAMING_SNAKE_CASE__ = sigma_max if sigma_max is not None else self.config.sigma_max SCREAMING_SNAKE_CASE__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) SCREAMING_SNAKE_CASE__ = torch.exp(torch.linspace(math.log(__UpperCAmelCase ) , math.log(__UpperCAmelCase ) , __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : bool = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) SCREAMING_SNAKE_CASE__ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) SCREAMING_SNAKE_CASE__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda SCREAMING_SNAKE_CASE__ = timesteps.to(self.discrete_sigmas.device ) SCREAMING_SNAKE_CASE__ = self.discrete_sigmas[timesteps].to(sample.device ) SCREAMING_SNAKE_CASE__ = self.get_adjacent_sigma(__UpperCAmelCase , __UpperCAmelCase ).to(sample.device ) SCREAMING_SNAKE_CASE__ = torch.zeros_like(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods SCREAMING_SNAKE_CASE__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE__ = diffusion.unsqueeze(-1 ) SCREAMING_SNAKE_CASE__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of SCREAMING_SNAKE_CASE__ = randn_tensor( sample.shape , layout=sample.layout , generator=__UpperCAmelCase , device=sample.device , dtype=sample.dtype ) SCREAMING_SNAKE_CASE__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? SCREAMING_SNAKE_CASE__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__UpperCAmelCase , prev_sample_mean=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction SCREAMING_SNAKE_CASE__ = randn_tensor(sample.shape , layout=sample.layout , generator=__UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr SCREAMING_SNAKE_CASE__ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE__ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 SCREAMING_SNAKE_CASE__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term SCREAMING_SNAKE_CASE__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE__ = step_size.unsqueeze(-1 ) SCREAMING_SNAKE_CASE__ = sample + step_size * model_output SCREAMING_SNAKE_CASE__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE__ = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE__ = self.discrete_sigmas.to(original_samples.device )[timesteps] SCREAMING_SNAKE_CASE__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__UpperCAmelCase ) * sigmas[:, None, None, None] ) SCREAMING_SNAKE_CASE__ = noise + original_samples return noisy_samples def __len__( self : str ) -> int: return self.config.num_train_timesteps
165
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowercase ( A_ )-> str: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def lowercase ( A_ )-> int: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main a : int = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ )
40
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` ''' def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=8 ) -> Tuple: UpperCamelCase : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> int: super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_, movq=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: if latents is None: UpperCamelCase : Dict = randn_tensor(SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCamelCase : List[str] = latents.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def snake_case_ ( self, SCREAMING_SNAKE_CASE_=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCamelCase : List[Any] = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_=0 ) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version('>=', '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCamelCase : Optional[int] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu', silence_dtype_warnings=SCREAMING_SNAKE_CASE_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase : int = cpu_offload_with_hook(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, prev_module_hook=SCREAMING_SNAKE_CASE_ ) # We'll offload the last model manually. UpperCamelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_ ( self ) -> Any: if not hasattr(self.unet, '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_, '_hf_hook' ) and hasattr(module._hf_hook, 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 512, SCREAMING_SNAKE_CASE_ = 512, SCREAMING_SNAKE_CASE_ = 100, SCREAMING_SNAKE_CASE_ = 4.0, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "pil", SCREAMING_SNAKE_CASE_ = True, ) -> List[str]: UpperCamelCase : Dict = self._execution_device UpperCamelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = torch.cat(SCREAMING_SNAKE_CASE_, dim=0 ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = torch.cat(SCREAMING_SNAKE_CASE_, dim=0 ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = torch.cat(SCREAMING_SNAKE_CASE_, dim=0 ) UpperCamelCase : str = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCamelCase : Tuple = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_, dim=0 ) UpperCamelCase : Optional[Any] = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_, dim=0 ) UpperCamelCase : Union[str, Any] = hint.repeat_interleave(SCREAMING_SNAKE_CASE_, dim=0 ) UpperCamelCase : int = torch.cat([negative_image_embeds, image_embeds], dim=0 ).to(dtype=self.unet.dtype, device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.cat([hint, hint], dim=0 ).to(dtype=self.unet.dtype, device=SCREAMING_SNAKE_CASE_ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_, device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.scheduler.timesteps UpperCamelCase : List[Any] = self.movq.config.latent_channels UpperCamelCase : Optional[int] = downscale_height_and_width(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.movq_scale_factor ) # create initial latent UpperCamelCase : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width), image_embeds.dtype, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.scheduler, ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Optional[int] = {"""image_embeds""": image_embeds, """hint""": hint} UpperCamelCase : Optional[Any] = self.unet( sample=SCREAMING_SNAKE_CASE_, timestep=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, added_cond_kwargs=SCREAMING_SNAKE_CASE_, return_dict=SCREAMING_SNAKE_CASE_, )[0] if do_classifier_free_guidance: UpperCamelCase : Any = noise_pred.split(latents.shape[1], dim=1 ) UpperCamelCase : Union[str, Any] = noise_pred.chunk(2 ) UpperCamelCase : List[Any] = variance_pred.chunk(2 ) UpperCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase : int = torch.cat([noise_pred, variance_pred_text], dim=1 ) if not ( hasattr(self.scheduler.config, 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase : Any = noise_pred.split(latents.shape[1], dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Optional[Any] = self.scheduler.step( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, )[0] # post-processing UpperCamelCase : Optional[int] = self.movq.decode(SCREAMING_SNAKE_CASE_, force_not_quantize=SCREAMING_SNAKE_CASE_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase : Optional[Any] = image * 0.5 + 0.5 UpperCamelCase : Union[str, Any] = image.clamp(0, 1 ) UpperCamelCase : List[Any] = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
0
import datasets from .evaluate import evaluate _UpperCAmelCase : Union[str, Any] = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _UpperCAmelCase : Any = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _UpperCAmelCase : Any = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def a ( self , snake_case , snake_case ): snake_case_ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case_ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case_ = evaluate(dataset=snake_case , predictions=snake_case ) return score
285
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowercase__ : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowercase__ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print('''\n'''.join(upper_files) + '''\n''') lowercase__ : Dict = [file for file in filepaths if ''' ''' in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print('''\n'''.join(space_files) + '''\n''') lowercase__ : Union[str, Any] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print('''\n'''.join(hyphen_files) + '''\n''') lowercase__ : int = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print('''\n'''.join(nodir_files) + '''\n''') lowercase__ : List[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
190
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : List[Any] = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['ViTFeatureExtractor'] lowerCAmelCase : str = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0