code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> str: _snake_case : Union[str, Any] = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] _snake_case : List[str] = True if """large""" in model_name or """huge""" in model_name else False _snake_case : str = True if """large""" in model_name or """huge""" in model_name else False _snake_case : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _snake_case : Optional[Any] = [3, 3, 3, 3] _snake_case : str = [5, 5, 5, 5] elif "fl4" in model_name: _snake_case : List[str] = [4, 4, 4, 4] _snake_case : str = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _snake_case : Optional[Any] = [3, 3, 3, 3] if "lrf" in model_name: _snake_case : List[str] = [3, 3, 3, 3] else: _snake_case : Dict = [2, 2, 2, 2] if "tiny" in model_name: _snake_case : Tuple = 96 elif "small" in model_name: _snake_case : List[str] = 96 elif "base" in model_name: _snake_case : str = 128 elif "large" in model_name: _snake_case : Dict = 192 elif "xlarge" in model_name: _snake_case : str = 256 elif "huge" in model_name: _snake_case : List[str] = 352 # set label information _snake_case : Optional[int] = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: _snake_case : str = """imagenet-22k-id2label.json""" else: _snake_case : Dict = """imagenet-1k-id2label.json""" _snake_case : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} _snake_case : Dict = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , focal_levels=SCREAMING_SNAKE_CASE__ , focal_windows=SCREAMING_SNAKE_CASE__ , use_conv_embed=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , use_post_layernorm=SCREAMING_SNAKE_CASE__ , use_layerscale=SCREAMING_SNAKE_CASE__ , ) return config def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> Tuple: if "patch_embed.proj" in name: _snake_case : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _snake_case : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: _snake_case : Dict = """encoder.""" + name if "encoder.layers" in name: _snake_case : Union[str, Any] = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: _snake_case : str = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: _snake_case : List[Any] = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _snake_case : Union[str, Any] = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _snake_case : Union[str, Any] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _snake_case : Union[str, Any] = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": _snake_case : Tuple = """layernorm.weight""" if name == "norm.bias": _snake_case : Optional[int] = """layernorm.bias""" if "head" in name: _snake_case : Any = name.replace("""head""" , """classifier""" ) else: _snake_case : Any = """focalnet.""" + name return name def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> str: # fmt: off _snake_case : Optional[Any] = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on _snake_case : Dict = model_name_to_url[model_name] print("""Checkpoint URL: """ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): _snake_case : Dict = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = val _snake_case : Optional[Any] = get_focalnet_config(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = FocalNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify conversion _snake_case : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Union[str, Any] = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE__ , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE__ , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ , ) _snake_case : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _snake_case : Tuple = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) _snake_case : Optional[Any] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _snake_case : Any = image_transforms(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) _snake_case : str = model(**SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _snake_case : str = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": _snake_case : Optional[Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": _snake_case : Optional[Any] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": _snake_case : List[Any] = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": _snake_case : Dict = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": _snake_case : Tuple = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) a__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
from __future__ import annotations import queue class snake_case : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = data _snake_case : Any = None _snake_case : Dict = None def lowercase ( ) -> TreeNode: print("""\n********Press N to stop entering at any point of time********\n""" ) _snake_case : Optional[int] = input("""Enter the value of the root node: """ ).strip().lower() _snake_case : queue.Queue = queue.Queue() _snake_case : Tuple = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): _snake_case : Dict = q.get() _snake_case : Optional[Any] = F'''Enter the left node of {node_found.data}: ''' _snake_case : Optional[Any] = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or """n""" if check == "n": return tree_node _snake_case : List[Any] = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) _snake_case : str = left_node q.put(SCREAMING_SNAKE_CASE__ ) _snake_case : str = F'''Enter the right node of {node_found.data}: ''' _snake_case : List[Any] = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or """n""" if check == "n": return tree_node _snake_case : str = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) _snake_case : Optional[int] = right_node q.put(SCREAMING_SNAKE_CASE__ ) raise def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return _snake_case : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): _snake_case : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return _snake_case : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): _snake_case : str = [] while not q.empty(): _snake_case : List[Any] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return _snake_case : list[TreeNode] = [] _snake_case : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(SCREAMING_SNAKE_CASE__ ) _snake_case : int = n.left # end of while means current node doesn't have left child _snake_case : List[Any] = stack.pop() # start to traverse its right child _snake_case : Dict = n.right def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return _snake_case : list[TreeNode] = [] _snake_case : List[str] = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = n.left _snake_case : Optional[int] = stack.pop() print(n.data , end=""",""" ) _snake_case : str = n.right def lowercase ( SCREAMING_SNAKE_CASE__ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return _snake_case , _snake_case : Dict = [], [] _snake_case : Any = node stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # to find the reversed order of post order, store it in stack2 _snake_case : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : str = "" , SCREAMING_SNAKE_CASE__ : int=50 , SCREAMING_SNAKE_CASE__ : List[str]="*" ) -> str: if not s: return "\n" + width * char _snake_case , _snake_case : List[Any] = divmod(width - len(SCREAMING_SNAKE_CASE__ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) a__ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
import datasets from .evaluate import evaluate a__ = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ a__ = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ a__ = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string"""), """prediction_text""": datasets.Value("""string""")}, """references""": { """id""": datasets.Value("""string"""), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string"""), """answer_start""": datasets.Value("""int32"""), }), }, }) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]) -> int: """simple docstring""" _snake_case : Tuple = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _snake_case : int = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _snake_case : Tuple = evaluate(dataset=lowerCAmelCase , predictions=lowerCAmelCase) return score
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
a__ = """Tobias Carryer""" from time import time class snake_case : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int=int(time())) -> Union[str, Any]: # noqa: B008 """simple docstring""" _snake_case : Union[str, Any] = multiplier _snake_case : Any = increment _snake_case : Tuple = modulo _snake_case : str = seed def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Any = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a__ = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a__ = (7_20, 12_80) # Height, Width a__ = (0.4, 0.6) # if height or width lower than this scale, drop it. a__ = 1 / 1_00 a__ = """""" a__ = """""" a__ = """""" a__ = 2_50 def lowercase ( ) -> None: _snake_case , _snake_case : Union[str, Any] = get_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for index in range(SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ) , 4 ) _snake_case , _snake_case , _snake_case : str = update_image_and_anno( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , filter_scale=SCREAMING_SNAKE_CASE__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _snake_case : Optional[int] = random_chars(32 ) _snake_case : Union[str, Any] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _snake_case : List[Any] = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , SCREAMING_SNAKE_CASE__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) _snake_case : List[str] = [] for anno in new_annos: _snake_case : str = anno[3] - anno[1] _snake_case : str = anno[4] - anno[2] _snake_case : Any = anno[1] + width / 2 _snake_case : List[str] = anno[2] + height / 2 _snake_case : Tuple = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(SCREAMING_SNAKE_CASE__ ) with open(F'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> tuple[list, list]: _snake_case : List[str] = [] _snake_case : List[str] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE__ , """*.txt""" ) ): _snake_case : Optional[int] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(SCREAMING_SNAKE_CASE__ ) as in_file: _snake_case : Optional[Any] = in_file.readlines() _snake_case : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{label_name}.jpg''' ) _snake_case : List[str] = [] for obj_list in obj_lists: _snake_case : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) _snake_case : Dict = float(obj[1] ) - float(obj[3] ) / 2 _snake_case : List[str] = float(obj[2] ) - float(obj[4] ) / 2 _snake_case : Any = float(obj[1] ) + float(obj[3] ) / 2 _snake_case : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE__ ) labels.append(SCREAMING_SNAKE_CASE__ ) return img_paths, labels def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : tuple[int, int] , SCREAMING_SNAKE_CASE__ : tuple[float, float] , SCREAMING_SNAKE_CASE__ : float = 0.0 , ) -> tuple[list, list, str]: _snake_case : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _snake_case : Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _snake_case : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _snake_case : Any = int(scale_x * output_size[1] ) _snake_case : List[Any] = int(scale_y * output_size[0] ) _snake_case : Tuple = [] _snake_case : Tuple = [] for i, index in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case : int = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = all_annos[index] _snake_case : Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE__ ) if i == 0: # top-left _snake_case : Any = cva.resize(SCREAMING_SNAKE_CASE__ , (divid_point_x, divid_point_y) ) _snake_case : Optional[Any] = img for bbox in img_annos: _snake_case : List[str] = bbox[1] * scale_x _snake_case : List[str] = bbox[2] * scale_y _snake_case : List[str] = bbox[3] * scale_x _snake_case : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _snake_case : int = cva.resize(SCREAMING_SNAKE_CASE__ , (output_size[1] - divid_point_x, divid_point_y) ) _snake_case : str = img for bbox in img_annos: _snake_case : Optional[int] = scale_x + bbox[1] * (1 - scale_x) _snake_case : List[str] = bbox[2] * scale_y _snake_case : List[str] = scale_x + bbox[3] * (1 - scale_x) _snake_case : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _snake_case : Optional[int] = cva.resize(SCREAMING_SNAKE_CASE__ , (divid_point_x, output_size[0] - divid_point_y) ) _snake_case : str = img for bbox in img_annos: _snake_case : Union[str, Any] = bbox[1] * scale_x _snake_case : List[Any] = scale_y + bbox[2] * (1 - scale_y) _snake_case : List[Any] = bbox[3] * scale_x _snake_case : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _snake_case : str = cva.resize( SCREAMING_SNAKE_CASE__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _snake_case : Any = img for bbox in img_annos: _snake_case : List[str] = scale_x + bbox[1] * (1 - scale_x) _snake_case : List[str] = scale_y + bbox[2] * (1 - scale_y) _snake_case : List[Any] = scale_x + bbox[3] * (1 - scale_x) _snake_case : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _snake_case : int = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> str: assert number_char > 1, "The number of character should greater than 1" _snake_case : int = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
from __future__ import annotations def lowercase ( SCREAMING_SNAKE_CASE__ : int = 4 ) -> list[list[int]]: _snake_case : Any = abs(SCREAMING_SNAKE_CASE__ ) or 4 return [[1 + x + y * row_size for x in range(SCREAMING_SNAKE_CASE__ )] for y in range(SCREAMING_SNAKE_CASE__ )] def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(SCREAMING_SNAKE_CASE__ ) ) # OR.. transpose(reverse_column(matrix)) def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(SCREAMING_SNAKE_CASE__ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(SCREAMING_SNAKE_CASE__ ) ) # OR.. transpose(reverse_row(matrix)) def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> list[list[int]]: _snake_case : str = [list(SCREAMING_SNAKE_CASE__ ) for x in zip(*SCREAMING_SNAKE_CASE__ )] return matrix def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> list[list[int]]: _snake_case : Dict = matrix[::-1] return matrix def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> list[list[int]]: _snake_case : int = [x[::-1] for x in matrix] return matrix def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> None: for i in matrix: print(*SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) a__ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) a__ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a__ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a__ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") a__ = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") a__ = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") a__ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") a__ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class snake_case : '''simple docstring''' snake_case_ : List[str] snake_case_ : Optional[str] = None # Automatically constructed snake_case_ : ClassVar[str] = "dict" snake_case_ : ClassVar[Any] = None snake_case_ : str = field(default="""Translation""" ,init=SCREAMING_SNAKE_CASE_ ,repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Tuple) -> List[Any]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def UpperCamelCase_ ( self : int) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("""string""") for k in sorted(self.languages)} @dataclass class snake_case : '''simple docstring''' snake_case_ : Optional[List] = None snake_case_ : Optional[int] = None snake_case_ : Optional[str] = None # Automatically constructed snake_case_ : ClassVar[str] = "dict" snake_case_ : ClassVar[Any] = None snake_case_ : str = field(default="""TranslationVariableLanguages""" ,init=SCREAMING_SNAKE_CASE_ ,repr=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Optional[int]) -> List[str]: """simple docstring""" _snake_case : Any = sorted(set(self.languages)) if self.languages else None _snake_case : Dict = len(self.languages) if self.languages else None def __call__( self : Dict) -> Union[str, Any]: """simple docstring""" return pa.struct({"""language""": pa.list_(pa.string()), """translation""": pa.list_(pa.string())}) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" _snake_case : Dict = set(self.languages) if self.languages and set(lowerCAmelCase) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(lowerCAmelCase) - lang_set))}) are not in valid set ({', '.join(lowerCAmelCase)}).''') # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _snake_case : Optional[int] = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. _snake_case , _snake_case : Optional[int] = zip(*sorted(lowerCAmelCase)) return {"language": languages, "translation": translations} def UpperCamelCase_ ( self : List[str]) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("""string""")), "translation": Sequence(Value("""string""")), }
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE__ ) ) def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> bool: # Base Case if index == len(SCREAMING_SNAKE_CASE__ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE__ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Color current vertex _snake_case : int = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ): return True # Backtrack _snake_case : List[Any] = -1 return False def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int ) -> list[int]: _snake_case : Tuple = [-1] * len(SCREAMING_SNAKE_CASE__ ) if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 ): return colored_vertices return []
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file a__ = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowercase ( SCREAMING_SNAKE_CASE__ : Dict=None ) -> Dict: if subparsers is not None: _snake_case : int = subparsers.add_parser("""tpu-config""" , description=_description ) else: _snake_case : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments _snake_case : int = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=SCREAMING_SNAKE_CASE__ , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=SCREAMING_SNAKE_CASE__ , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) _snake_case : List[str] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=SCREAMING_SNAKE_CASE__ , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: _snake_case : int = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE__ ): _snake_case : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _snake_case : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: _snake_case : List[str] = defaults.commands if not args.tpu_name: _snake_case : Optional[Any] = defaults.tpu_name if not args.tpu_zone: _snake_case : Tuple = defaults.tpu_zone if args.accelerate_version == "dev": _snake_case : Union[str, Any] = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": _snake_case : Optional[Any] = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[int] = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: _snake_case : Tuple = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE__ ): _snake_case : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _snake_case : str = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command _snake_case : Any = """; """.join(SCREAMING_SNAKE_CASE__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _snake_case : Optional[int] = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {' '.join(SCREAMING_SNAKE_CASE__ )}''' ) return subprocess.run(SCREAMING_SNAKE_CASE__ ) print("""Successfully setup pod.""" ) def lowercase ( ) -> List[str]: _snake_case : Optional[Any] = tpu_command_parser() _snake_case : str = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE__ )
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a__ = get_logger() a__ = None class snake_case ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Dict=None , lowerCAmelCase : int=None , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" super().__init__(features=lowerCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError( F'''Expected {device} to be a `str` not {type(lowerCAmelCase)}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""") _snake_case : Optional[int] = device if isinstance(lowerCAmelCase , lowerCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _snake_case : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ''' F'''device: {str(jax.devices()[0])}.''') _snake_case : Optional[Any] = str(jax.devices()[0]) _snake_case : List[Any] = jnp_array_kwargs @staticmethod def UpperCamelCase_ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(lowerCAmelCase): device for device in jax.devices()} def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCAmelCase , lowerCAmelCase) and column: if all( isinstance(lowerCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(lowerCAmelCase , axis=0) return column def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase))): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() _snake_case : List[Any] = {} if isinstance(lowerCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _snake_case : List[Any] = {"""dtype""": jnp.intaa} else: _snake_case : str = {"""dtype""": jnp.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): _snake_case : List[Any] = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image): _snake_case : Union[str, Any] = np.asarray(lowerCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _snake_case : Any = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowerCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Any) -> List[Any]: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowerCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(lowerCAmelCase , """__array__""") and not isinstance(lowerCAmelCase , jax.Array): _snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase) for substruct in data_struct]) elif isinstance(lowerCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(lowerCAmelCase) for substruct in data_struct]) return self._tensorize(lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : dict) -> Tuple: """simple docstring""" return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> Mapping: """simple docstring""" _snake_case : List[Any] = self.numpy_arrow_extractor().extract_row(lowerCAmelCase) _snake_case : int = self.python_features_decoder.decode_row(lowerCAmelCase) return self.recursive_tensorize(lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> "jax.Array": """simple docstring""" _snake_case : Optional[Any] = self.numpy_arrow_extractor().extract_column(lowerCAmelCase) _snake_case : Any = self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0]) _snake_case : Optional[Any] = self.recursive_tensorize(lowerCAmelCase) _snake_case : Union[str, Any] = self._consolidate(lowerCAmelCase) return column def UpperCamelCase_ ( self : Any , lowerCAmelCase : pa.Table) -> Mapping: """simple docstring""" _snake_case : int = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase) _snake_case : Optional[int] = self.python_features_decoder.decode_batch(lowerCAmelCase) _snake_case : Optional[Any] = self.recursive_tensorize(lowerCAmelCase) for column_name in batch: _snake_case : Union[str, Any] = self._consolidate(batch[column_name]) return batch
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from math import asin, atan, cos, radians, sin, sqrt, tan a__ = 6_378_137.0 a__ = 6_356_752.314_245 a__ = 6_37_81_37 def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: _snake_case : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A _snake_case : Tuple = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) _snake_case : Any = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) _snake_case : List[Any] = radians(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = radians(SCREAMING_SNAKE_CASE__ ) # Equation _snake_case : str = sin((phi_a - phi_a) / 2 ) _snake_case : Union[str, Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _snake_case : List[str] = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=13 , lowerCAmelCase : str=7 , lowerCAmelCase : Dict=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : Dict=64 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : Dict=4 , lowerCAmelCase : int=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : List[Any]=None , ) -> Dict: """simple docstring""" _snake_case : Optional[int] = parent _snake_case : Dict = batch_size _snake_case : Any = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Union[str, Any] = use_input_mask _snake_case : str = use_token_type_ids _snake_case : Dict = use_labels _snake_case : Any = vocab_size _snake_case : Tuple = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : int = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = type_sequence_label_size _snake_case : List[Any] = initializer_range _snake_case : int = num_labels _snake_case : Tuple = num_choices _snake_case : List[Any] = scope _snake_case : str = vocab_size - 1 def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : Dict = None if self.use_input_mask: _snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : List[Any] = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCamelCase_ ( self : Tuple) -> Dict: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = self.prepare_config_and_inputs() _snake_case : Optional[Any] = True return config, input_ids, input_mask, token_labels def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = GPTNeoXModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Optional[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase) _snake_case : Dict = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : int) -> Dict: """simple docstring""" _snake_case : Tuple = True _snake_case : Union[str, Any] = GPTNeoXModel(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : str) -> int: """simple docstring""" _snake_case : Optional[Any] = GPTNeoXForCausalLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : List[str]) -> str: """simple docstring""" _snake_case : Optional[Any] = self.num_labels _snake_case : str = GPTNeoXForQuestionAnswering(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase_ ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Any) -> Any: """simple docstring""" _snake_case : Any = self.num_labels _snake_case : Tuple = GPTNeoXForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str) -> Any: """simple docstring""" _snake_case : Any = self.num_labels _snake_case : str = GPTNeoXForTokenClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Dict = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" _snake_case : Optional[Any] = True _snake_case : List[Any] = GPTNeoXForCausalLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() # first forward pass _snake_case : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase) _snake_case : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) _snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and _snake_case : Any = torch.cat([input_ids, next_tokens] , dim=-1) _snake_case : int = torch.cat([input_mask, next_mask] , dim=-1) _snake_case : Dict = model(lowerCAmelCase , attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase) _snake_case : List[str] = output_from_no_past["""hidden_states"""][0] _snake_case : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] # select random slice _snake_case : Any = ids_tensor((1,) , output_from_past.shape[-1]).item() _snake_case : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3)) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : str = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ : Dict = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ : int = False snake_case_ : List[Any] = False snake_case_ : Any = False snake_case_ : str = False def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = GPTNeoXModelTester(self) _snake_case : List[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=64 , num_attention_heads=8) def UpperCamelCase_ ( self : List[str]) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int) -> str: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case : Dict = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> Dict: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) @unittest.skip(reason="""Feed forward chunking is not implemented""") def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)]) def UpperCamelCase_ ( self : int , lowerCAmelCase : List[Any]) -> Any: """simple docstring""" _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = ids_tensor([1, 10] , config.vocab_size) _snake_case : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights _snake_case : Tuple = GPTNeoXModel(lowerCAmelCase) original_model.to(lowerCAmelCase) original_model.eval() _snake_case : Union[str, Any] = original_model(lowerCAmelCase).last_hidden_state _snake_case : Union[str, Any] = original_model(lowerCAmelCase).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights _snake_case : str = {"""type""": scaling_type, """factor""": 10.0} _snake_case : Optional[Any] = GPTNeoXModel(lowerCAmelCase) scaled_model.to(lowerCAmelCase) scaled_model.eval() _snake_case : Any = scaled_model(lowerCAmelCase).last_hidden_state _snake_case : List[Any] = scaled_model(lowerCAmelCase).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[int]) -> Any: """simple docstring""" _snake_case : int = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""") for checkpointing in [True, False]: _snake_case : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""") if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase) _snake_case : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""").to(lowerCAmelCase) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _snake_case : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" _snake_case : Optional[Any] = model.generate(**lowerCAmelCase , do_sample=lowerCAmelCase , max_new_tokens=20) _snake_case : List[Any] = tokenizer.batch_decode(lowerCAmelCase)[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from functools import reduce a__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str(int(SCREAMING_SNAKE_CASE__ ) * int(SCREAMING_SNAKE_CASE__ ) ) , n[i : i + 13] ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
from __future__ import annotations def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowercase ( ) -> int: with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" _snake_case : List[Any] = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE__ ): with parallel_backend("""unsupported backend""" ): map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): with parallel_backend("""unsupported backend""" ): map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: _snake_case : int = [1, 2] _snake_case : List[Any] = {"""a""": 1, """b""": 2} _snake_case : Optional[int] = {"""a""": [1, 2], """b""": [3, 4]} _snake_case : int = {"""a""": {"""1""": 1}, """b""": 2} _snake_case : str = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} _snake_case : Tuple = [2, 3] _snake_case : List[str] = {"""a""": 2, """b""": 3} _snake_case : List[str] = {"""a""": [2, 3], """b""": [4, 5]} _snake_case : Any = {"""a""": {"""1""": 2}, """b""": 3} _snake_case : str = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ = 16 a__ = 32 def lowercase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ) -> Dict: _snake_case : Any = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _snake_case : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE__ : str ): # max_length=None => use the model max length (it's actually the default) _snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : List[str] = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : Any = 16 elif accelerator.mixed_precision != "no": _snake_case : str = 8 else: _snake_case : List[Any] = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _snake_case : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) _snake_case : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ = mocked_dataloaders # noqa: F811 def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , SCREAMING_SNAKE_CASE__ ) == "1": _snake_case : int = 2 # New Code # _snake_case : Tuple = int(args.gradient_accumulation_steps ) _snake_case : Optional[Any] = int(args.local_sgd_steps ) # Initialize accelerator _snake_case : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Union[str, Any] = config["""lr"""] _snake_case : Optional[int] = int(config["""num_epochs"""] ) _snake_case : Any = int(config["""seed"""] ) _snake_case : Optional[Any] = int(config["""batch_size"""] ) _snake_case : Any = evaluate.load("""glue""" , """mrpc""" ) set_seed(SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : List[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : Tuple = model.to(accelerator.device ) # Instantiate optimizer _snake_case : Optional[int] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler _snake_case : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , local_sgd_steps=SCREAMING_SNAKE_CASE__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Dict = model(**SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) _snake_case : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> Any: _snake_case : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=SCREAMING_SNAKE_CASE__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _snake_case : int = parser.parse_args() _snake_case : str = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) # TODO Update this a__ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = """esm""" def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=768 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Union[str, Any]=1026 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]="absolute" , lowerCAmelCase : Dict=True , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Any=False , lowerCAmelCase : Tuple=False , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , mask_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : Dict = vocab_size _snake_case : Tuple = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : Optional[Any] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : List[str] = use_cache _snake_case : Any = emb_layer_norm_before _snake_case : int = token_dropout _snake_case : Any = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""") _snake_case : Any = EsmFoldConfig() elif isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = EsmFoldConfig(**lowerCAmelCase) _snake_case : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""") _snake_case : List[str] = get_default_vocab_list() else: _snake_case : List[str] = vocab_list else: _snake_case : List[str] = None _snake_case : str = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowerCAmelCase): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""") def UpperCamelCase_ ( self : Tuple) -> List[str]: """simple docstring""" _snake_case : int = super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase): _snake_case : Union[str, Any] = self.esmfold_config.to_dict() return output @dataclass class snake_case : '''simple docstring''' snake_case_ : str = None snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = False snake_case_ : bool = False snake_case_ : float = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : int = 1_28 snake_case_ : "TrunkConfig" = None def UpperCamelCase_ ( self : Any) -> Union[str, Any]: """simple docstring""" if self.trunk is None: _snake_case : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase): _snake_case : int = TrunkConfig(**self.trunk) def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" _snake_case : Dict = asdict(self) _snake_case : Tuple = self.trunk.to_dict() return output @dataclass class snake_case : '''simple docstring''' snake_case_ : int = 48 snake_case_ : int = 10_24 snake_case_ : int = 1_28 snake_case_ : int = 32 snake_case_ : int = 32 snake_case_ : int = 32 snake_case_ : float = 0 snake_case_ : float = 0 snake_case_ : bool = False snake_case_ : int = 4 snake_case_ : Optional[int] = 1_28 snake_case_ : "StructureModuleConfig" = None def UpperCamelCase_ ( self : Tuple) -> Optional[Any]: """simple docstring""" if self.structure_module is None: _snake_case : int = StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase): _snake_case : Optional[int] = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''') if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''') if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''') _snake_case : Dict = self.sequence_state_dim // self.sequence_head_width _snake_case : List[str] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''') if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''') if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''') if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''') def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _snake_case : str = asdict(self) _snake_case : Any = self.structure_module.to_dict() return output @dataclass class snake_case : '''simple docstring''' snake_case_ : int = 3_84 snake_case_ : int = 1_28 snake_case_ : int = 16 snake_case_ : int = 1_28 snake_case_ : int = 12 snake_case_ : int = 4 snake_case_ : int = 8 snake_case_ : float = 0.1 snake_case_ : int = 8 snake_case_ : int = 1 snake_case_ : int = 2 snake_case_ : int = 7 snake_case_ : int = 10 snake_case_ : float = 1E-8 snake_case_ : float = 1E5 def UpperCamelCase_ ( self : Dict) -> List[Any]: """simple docstring""" return asdict(self) def lowercase ( ) -> Dict: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a__ = [ord(letter) for letter in string.ascii_lowercase] a__ = {ord(char) for char in VALID_CHARS} a__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : tuple[int, ...] ) -> str | None: _snake_case : str = "" _snake_case : int _snake_case : int _snake_case : int for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[int] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE__ ) return decoded def lowercase ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[str]: _snake_case : list[str] = [] for key in product(SCREAMING_SNAKE_CASE__ , repeat=3 ): _snake_case : List[Any] = try_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE__ ) return possibles def lowercase ( SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowercase ( SCREAMING_SNAKE_CASE__ : str = "p059_cipher.txt" ) -> int: _snake_case : list[int] _snake_case : list[str] _snake_case : str _snake_case : str _snake_case : str = Path(SCREAMING_SNAKE_CASE__ ).parent.joinpath(SCREAMING_SNAKE_CASE__ ).read_text(encoding="""utf-8""" ) _snake_case : Optional[int] = [int(SCREAMING_SNAKE_CASE__ ) for number in data.strip().split(""",""" )] _snake_case : str = filter_valid_chars(SCREAMING_SNAKE_CASE__ ) for common_word in COMMON_WORDS: _snake_case : List[Any] = filter_common_word(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 1: break _snake_case : Dict = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE__ ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) - pat_len + 1 ): _snake_case : str = True for j in range(SCREAMING_SNAKE_CASE__ ): if s[i + j] != pattern[j]: _snake_case : Optional[Any] = False break if match_found: position.append(SCREAMING_SNAKE_CASE__ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a__ = False class snake_case ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""") pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""") _snake_case : Tuple = torch.manual_seed(0) _snake_case : str = pipe( image=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _snake_case : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _snake_case : int = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = """ctrl""" snake_case_ : Union[str, Any] = ["""past_key_values"""] snake_case_ : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , lowerCAmelCase : Optional[Any]=24_6534 , lowerCAmelCase : List[str]=256 , lowerCAmelCase : Union[str, Any]=1280 , lowerCAmelCase : int=8192 , lowerCAmelCase : List[str]=48 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : int=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Tuple=1E-6 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Any=True , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" _snake_case : List[Any] = vocab_size _snake_case : int = n_positions _snake_case : Dict = n_embd _snake_case : Any = n_layer _snake_case : Dict = n_head _snake_case : Any = dff _snake_case : Optional[int] = resid_pdrop _snake_case : Tuple = embd_pdrop _snake_case : Optional[int] = layer_norm_epsilon _snake_case : Union[str, Any] = initializer_range _snake_case : Union[str, Any] = use_cache super().__init__(**lowerCAmelCase)
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @register_to_config def __init__( self : Union[str, Any] , *, lowerCAmelCase : int = 4 , lowerCAmelCase : int = 768 , lowerCAmelCase : int , lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : List[Any] = nn.Parameter(torch.zeros(lowerCAmelCase)) # parameters for additional clip time embeddings _snake_case : List[str] = nn.Linear(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase) # parameters for encoder hidden states _snake_case : str = clip_extra_context_tokens _snake_case : Dict = nn.Linear( lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim) _snake_case : Tuple = nn.Linear(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = nn.LayerNorm(lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , *, lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Dict) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _snake_case : int = image_embeddings.shape[0] _snake_case : int = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) _snake_case : Union[str, Any] = classifier_free_guidance_embeddings.expand( lowerCAmelCase , -1) _snake_case : int = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _snake_case : Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _snake_case : str = self.embedding_proj(lowerCAmelCase) _snake_case : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase) _snake_case : Dict = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _snake_case : Any = self.clip_extra_context_tokens_proj(lowerCAmelCase) _snake_case : Optional[int] = clip_extra_context_tokens.reshape(lowerCAmelCase , -1 , self.clip_extra_context_tokens) _snake_case : int = clip_extra_context_tokens.permute(0 , 2 , 1) _snake_case : Any = self.encoder_hidden_states_proj(lowerCAmelCase) _snake_case : Dict = self.text_encoder_hidden_states_norm(lowerCAmelCase) _snake_case : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any) -> List[Any]: """simple docstring""" _snake_case : List[str] = tempfile.mkdtemp() # fmt: off _snake_case : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) _snake_case : List[Any] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _snake_case : Optional[int] = os.path.join(self.tmpdirname , lowerCAmelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCamelCase_ ( self : str , **lowerCAmelCase : int) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase_ ( self : List[str]) -> Tuple: """simple docstring""" _snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] _snake_case : str = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Union[str, Any]) -> Dict: """simple docstring""" _snake_case : List[Any] = self.get_tokenizer() _snake_case : int = self.get_image_processor() _snake_case : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) processor.save_pretrained(self.tmpdirname) _snake_case : str = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : Any = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _snake_case : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _snake_case : int = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0) _snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int]) -> Any: """simple docstring""" _snake_case : Tuple = self.get_image_processor() _snake_case : int = self.get_tokenizer() _snake_case : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) _snake_case : Dict = self.prepare_image_inputs() _snake_case : int = image_processor(lowerCAmelCase , return_tensors="""np""") _snake_case : str = processor(images=lowerCAmelCase , return_tensors="""np""") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCamelCase_ ( self : Tuple) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : Tuple = self.get_tokenizer() _snake_case : str = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) _snake_case : Optional[Any] = """lower newer""" _snake_case : Union[str, Any] = processor(text=lowerCAmelCase) _snake_case : Optional[int] = tokenizer(lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" _snake_case : str = self.get_image_processor() _snake_case : Optional[int] = self.get_tokenizer() _snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) _snake_case : int = """lower newer""" _snake_case : List[Any] = self.prepare_image_inputs() _snake_case : List[Any] = processor(text=lowerCAmelCase , images=lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""]) # test if it raises when no input is passed with self.assertRaises(lowerCAmelCase): processor() def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" _snake_case : Tuple = self.get_image_processor() _snake_case : Optional[int] = self.get_tokenizer() _snake_case : int = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) _snake_case : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Union[str, Any] = processor.batch_decode(lowerCAmelCase) _snake_case : Union[str, Any] = tokenizer.batch_decode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Any = self.get_image_processor() _snake_case : int = self.get_tokenizer() _snake_case : Tuple = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) _snake_case : Dict = """lower newer""" _snake_case : int = self.prepare_image_inputs() _snake_case : Tuple = processor(text=lowerCAmelCase , images=lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
class snake_case : '''simple docstring''' def __init__( self : Union[str, Any]) -> None: """simple docstring""" _snake_case : dict[str, TrieNode] = {} # Mapping from char to TrieNode _snake_case : str = False def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : list[str]) -> None: """simple docstring""" for word in words: self.insert(lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str) -> None: """simple docstring""" _snake_case : str = self for char in word: if char not in curr.nodes: _snake_case : Dict = TrieNode() _snake_case : List[str] = curr.nodes[char] _snake_case : Optional[int] = True def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str) -> bool: """simple docstring""" _snake_case : List[str] = self for char in word: if char not in curr.nodes: return False _snake_case : Union[str, Any] = curr.nodes[char] return curr.is_leaf def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> None: """simple docstring""" def _delete(lowerCAmelCase : TrieNode , lowerCAmelCase : str , lowerCAmelCase : int) -> bool: if index == len(lowerCAmelCase): # If word does not exist if not curr.is_leaf: return False _snake_case : List[str] = False return len(curr.nodes) == 0 _snake_case : List[Any] = word[index] _snake_case : List[str] = curr.nodes.get(lowerCAmelCase) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _snake_case : Optional[int] = _delete(lowerCAmelCase , lowerCAmelCase , index + 1) if delete_curr: del curr.nodes[char] return len(curr.nodes) == 0 return delete_curr _delete(self , lowerCAmelCase , 0) def lowercase ( SCREAMING_SNAKE_CASE__ : TrieNode , SCREAMING_SNAKE_CASE__ : str ) -> None: if node.is_leaf: print(SCREAMING_SNAKE_CASE__ , end=""" """ ) for key, value in node.nodes.items(): print_words(SCREAMING_SNAKE_CASE__ , word + key ) def lowercase ( ) -> bool: _snake_case : Optional[int] = """banana bananas bandana band apple all beast""".split() _snake_case : List[str] = TrieNode() root.insert_many(SCREAMING_SNAKE_CASE__ ) # print_words(root, "") assert all(root.find(SCREAMING_SNAKE_CASE__ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool ) -> None: print(str(SCREAMING_SNAKE_CASE__ ) , """works!""" if passes else """doesn't work :(""" ) def lowercase ( ) -> None: assert test_trie() def lowercase ( ) -> None: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> Any: _snake_case : List[Any] = SwinConfig() _snake_case : str = swin_name.split("""_""" ) _snake_case : int = name_split[1] _snake_case : Union[str, Any] = int(name_split[4] ) _snake_case : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": _snake_case : Optional[int] = 96 _snake_case : List[Any] = (2, 2, 6, 2) _snake_case : Optional[int] = (3, 6, 12, 24) elif model_size == "small": _snake_case : Union[str, Any] = 96 _snake_case : List[Any] = (2, 2, 18, 2) _snake_case : int = (3, 6, 12, 24) elif model_size == "base": _snake_case : str = 128 _snake_case : Dict = (2, 2, 18, 2) _snake_case : Dict = (4, 8, 16, 32) else: _snake_case : Dict = 192 _snake_case : List[Any] = (2, 2, 18, 2) _snake_case : Tuple = (6, 12, 24, 48) if "in22k" in swin_name: _snake_case : Dict = 21_841 else: _snake_case : List[str] = 1_000 _snake_case : List[str] = """huggingface/label-files""" _snake_case : int = """imagenet-1k-id2label.json""" _snake_case : Optional[int] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[str] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _snake_case : int = idalabel _snake_case : Optional[int] = {v: k for k, v in idalabel.items()} _snake_case : Optional[Any] = img_size _snake_case : Dict = num_classes _snake_case : Dict = embed_dim _snake_case : Optional[Any] = depths _snake_case : Dict = num_heads _snake_case : List[str] = window_size return config def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if "patch_embed.proj" in name: _snake_case : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _snake_case : List[str] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: _snake_case : Dict = """encoder.""" + name if "attn.proj" in name: _snake_case : Union[str, Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _snake_case : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _snake_case : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _snake_case : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _snake_case : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _snake_case : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": _snake_case : Tuple = """layernorm.weight""" if name == "norm.bias": _snake_case : Tuple = """layernorm.bias""" if "head" in name: _snake_case : str = name.replace("""head""" , """classifier""" ) else: _snake_case : Tuple = """swin.""" + name return name def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: for key in orig_state_dict.copy().keys(): _snake_case : int = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "mask" in key: continue elif "qkv" in key: _snake_case : Optional[int] = key.split(""".""" ) _snake_case : List[Any] = int(key_split[1] ) _snake_case : Optional[Any] = int(key_split[3] ) _snake_case : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _snake_case : List[str] = val[:dim, :] _snake_case : Union[str, Any] = val[ dim : dim * 2, : ] _snake_case : int = val[-dim:, :] else: _snake_case : Tuple = val[ :dim ] _snake_case : Optional[int] = val[ dim : dim * 2 ] _snake_case : Tuple = val[ -dim: ] else: _snake_case : int = val return orig_state_dict def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> str: _snake_case : Dict = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() _snake_case : int = get_swin_config(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = SwinForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() _snake_case : List[str] = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : List[str] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) _snake_case : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _snake_case : Any = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) _snake_case : Any = timm_model(inputs["""pixel_values"""] ) _snake_case : List[str] = model(**SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets a__ = datasets.logging.get_logger(__name__) a__ = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ a__ = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ a__ = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ a__ = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> Any: """simple docstring""" if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""") _snake_case : Any = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: _snake_case : Union[str, Any] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _snake_case : List[str] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''') # download the model checkpoint specified by self.config_name and set up the scorer _snake_case : int = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) _snake_case : int = score.BleurtScorer(os.path.join(lowerCAmelCase , lowerCAmelCase)) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[str]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.scorer.score(references=lowerCAmelCase , candidates=lowerCAmelCase) return {"scores": scores}
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
import tensorflow as tf from ...tf_utils import shape_list class snake_case ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , **lowerCAmelCase : Any) -> Dict: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[Any] = vocab_size _snake_case : List[str] = d_embed _snake_case : Optional[Any] = d_proj _snake_case : int = cutoffs + [vocab_size] _snake_case : List[Any] = [0] + self.cutoffs _snake_case : List[Any] = div_val _snake_case : str = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : Any = self.shortlist_size + self.n_clusters _snake_case : Dict = keep_order _snake_case : Union[str, Any] = [] _snake_case : List[Any] = [] def UpperCamelCase_ ( self : str , lowerCAmelCase : int) -> str: """simple docstring""" if self.n_clusters > 0: _snake_case : Optional[Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=lowerCAmelCase , name="""cluster_weight""") _snake_case : List[str] = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=lowerCAmelCase , name="""cluster_bias""") if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: _snake_case : List[Any] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=lowerCAmelCase , name=F'''out_projs_._{i}''' , ) self.out_projs.append(lowerCAmelCase) else: self.out_projs.append(lowerCAmelCase) _snake_case : int = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=lowerCAmelCase , name=F'''out_layers_._{i}_._weight''' , ) _snake_case : Optional[int] = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=lowerCAmelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : str = self.d_embed // (self.div_val**i) _snake_case : List[Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=lowerCAmelCase , name=F'''out_projs_._{i}''') self.out_projs.append(lowerCAmelCase) _snake_case : List[str] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=lowerCAmelCase , name=F'''out_layers_._{i}_._weight''' , ) _snake_case : Union[str, Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=lowerCAmelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) super().build(lowerCAmelCase) @staticmethod def UpperCamelCase_ ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = x if proj is not None: _snake_case : Tuple = tf.einsum("""ibd,ed->ibe""" , lowerCAmelCase , lowerCAmelCase) return tf.einsum("""ibd,nd->ibn""" , lowerCAmelCase , lowerCAmelCase) + b @staticmethod def UpperCamelCase_ ( lowerCAmelCase : List[str] , lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = shape_list(lowerCAmelCase) _snake_case : Tuple = tf.range(lp_size[0] , dtype=target.dtype) _snake_case : int = tf.stack([r, target] , 1) return tf.gather_nd(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]=False) -> Tuple: """simple docstring""" _snake_case : str = 0 if self.n_clusters == 0: _snake_case : Optional[Any] = self._logit(lowerCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0]) if target is not None: _snake_case : Dict = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase , logits=lowerCAmelCase) _snake_case : Union[str, Any] = tf.nn.log_softmax(lowerCAmelCase , axis=-1) else: _snake_case : List[str] = shape_list(lowerCAmelCase) _snake_case : Optional[Any] = [] _snake_case : List[Any] = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): _snake_case , _snake_case : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _snake_case : str = (target >= l_idx) & (target < r_idx) _snake_case : Optional[Any] = tf.where(lowerCAmelCase) _snake_case : List[str] = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase) - l_idx if self.div_val == 1: _snake_case : int = self.out_layers[0][0][l_idx:r_idx] _snake_case : str = self.out_layers[0][1][l_idx:r_idx] else: _snake_case : Any = self.out_layers[i][0] _snake_case : Optional[Any] = self.out_layers[i][1] if i == 0: _snake_case : Union[str, Any] = tf.concat([cur_W, self.cluster_weight] , 0) _snake_case : int = tf.concat([cur_b, self.cluster_bias] , 0) _snake_case : Optional[Any] = self._logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.out_projs[0]) _snake_case : Dict = tf.nn.log_softmax(lowerCAmelCase) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: _snake_case : str = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = self._gather_logprob(lowerCAmelCase , lowerCAmelCase) else: _snake_case : List[Any] = self._logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.out_projs[i]) _snake_case : str = tf.nn.log_softmax(lowerCAmelCase) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster _snake_case : Any = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase) if target is not None: _snake_case : int = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = tf.boolean_mask(lowerCAmelCase , lowerCAmelCase) _snake_case : Tuple = self._gather_logprob(lowerCAmelCase , lowerCAmelCase) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase , -cur_logprob , shape_list(lowerCAmelCase)) _snake_case : int = tf.concat(lowerCAmelCase , axis=-1) if target is not None: if return_mean: _snake_case : Any = tf.reduce_mean(lowerCAmelCase) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase , name=self.name , aggregation="""mean""" if return_mean else """""") return out
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase ( SCREAMING_SNAKE_CASE__ : Features ) -> Optional[int]: _snake_case : Union[str, Any] = np.inf def set_batch_size(SCREAMING_SNAKE_CASE__ : FeatureType ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : str = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : int = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": _snake_case : Tuple = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : int , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : Optional[int] = _PACKAGED_DATASETS_MODULES["""parquet"""][1] _snake_case : Union[str, Any] = Parquet( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , hash=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" if self.streaming: _snake_case : Any = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : List[Any] = None _snake_case : List[str] = None _snake_case : Optional[int] = None _snake_case : Optional[int] = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = dataset _snake_case : List[Any] = path_or_buf _snake_case : List[Any] = batch_size or get_writer_batch_size(dataset.features) _snake_case : List[str] = parquet_writer_kwargs def UpperCamelCase_ ( self : Union[str, Any]) -> int: """simple docstring""" _snake_case : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , """wb+""") as buffer: _snake_case : int = self._write(file_obj=lowerCAmelCase , batch_size=lowerCAmelCase , **self.parquet_writer_kwargs) else: _snake_case : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=lowerCAmelCase , **self.parquet_writer_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : BinaryIO , lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> int: """simple docstring""" _snake_case : Tuple = 0 _snake_case : Union[str, Any] = parquet_writer_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Tuple = self.dataset.features.arrow_schema _snake_case : Dict = pq.ParquetWriter(lowerCAmelCase , schema=lowerCAmelCase , **lowerCAmelCase) for offset in logging.tqdm( range(0 , len(self.dataset) , lowerCAmelCase) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): _snake_case : Union[str, Any] = query_table( table=self.dataset._data , key=slice(lowerCAmelCase , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCAmelCase) written += batch.nbytes writer.close() return written
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
import os import sys a__ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a__ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> int: return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(lowerCAmelCase) _snake_case : Optional[Any] = -1 _snake_case : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase) _snake_case : int = model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase) _snake_case : int = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: _snake_case : List[str] = TextStreamer(lowerCAmelCase) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _snake_case : str = cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : int) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(lowerCAmelCase) _snake_case : Optional[int] = -1 _snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase) _snake_case : str = model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase) _snake_case : int = tokenizer.decode(greedy_ids[0]) _snake_case : Optional[Any] = TextIteratorStreamer(lowerCAmelCase) _snake_case : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} _snake_case : int = Thread(target=model.generate , kwargs=lowerCAmelCase) thread.start() _snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : int) -> Dict: """simple docstring""" _snake_case : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(lowerCAmelCase) _snake_case : Optional[int] = -1 _snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase) _snake_case : Optional[int] = model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase) _snake_case : Optional[int] = greedy_ids[:, input_ids.shape[1] :] _snake_case : Optional[Any] = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: _snake_case : int = TextStreamer(lowerCAmelCase , skip_prompt=lowerCAmelCase) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _snake_case : Optional[int] = cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Tuple: """simple docstring""" _snake_case : Optional[int] = AutoTokenizer.from_pretrained("""distilgpt2""") _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""distilgpt2""").to(lowerCAmelCase) _snake_case : int = -1 _snake_case : Tuple = torch.ones((1, 5) , device=lowerCAmelCase).long() * model.config.bos_token_id with CaptureStdout() as cs: _snake_case : List[Any] = TextStreamer(lowerCAmelCase , skip_special_tokens=lowerCAmelCase) model.generate(lowerCAmelCase , max_new_tokens=1 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _snake_case : str = cs.out[:-1] # Remove the final "\n" _snake_case : str = tokenizer(lowerCAmelCase , return_tensors="""pt""") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def UpperCamelCase_ ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") _snake_case : int = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""").to(lowerCAmelCase) _snake_case : Optional[int] = -1 _snake_case : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowerCAmelCase) _snake_case : str = TextIteratorStreamer(lowerCAmelCase , timeout=0.001) _snake_case : Dict = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} _snake_case : Any = Thread(target=model.generate , kwargs=lowerCAmelCase) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase): _snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case : Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : str=True , lowerCAmelCase : str=False , lowerCAmelCase : Optional[Any]=99 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[int]=32 , lowerCAmelCase : Any=2 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Dict=0.02 , ) -> Dict: """simple docstring""" _snake_case : str = parent _snake_case : Dict = batch_size _snake_case : Tuple = seq_length _snake_case : Tuple = is_training _snake_case : Optional[int] = use_labels _snake_case : Any = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : int = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Any = intermediate_size _snake_case : str = hidden_act _snake_case : int = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = eos_token_id _snake_case : Optional[Any] = pad_token_id _snake_case : str = bos_token_id _snake_case : Dict = initializer_range def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) _snake_case : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) _snake_case : Optional[Any] = shift_tokens_right(lowerCAmelCase , 1 , 2) _snake_case : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , ) _snake_case : int = prepare_blenderbot_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) return config, inputs_dict def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" _snake_case , _snake_case : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" _snake_case : str = 20 _snake_case : List[str] = model_class_name(lowerCAmelCase) _snake_case : str = model.encode(inputs_dict["""input_ids"""]) _snake_case , _snake_case : Optional[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case : str = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase) _snake_case : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") _snake_case : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : Tuple = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) _snake_case : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _snake_case : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase , ) _snake_case : Union[str, Any] = model.decode(lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def UpperCamelCase_ ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" _snake_case : Dict = 20 _snake_case : Union[str, Any] = model_class_name(lowerCAmelCase) _snake_case : int = model.encode(inputs_dict["""input_ids"""]) _snake_case , _snake_case : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _snake_case : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : Optional[int] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) _snake_case : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _snake_case : Tuple = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) _snake_case : Union[str, Any] = model.decode(lowerCAmelCase , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase) _snake_case : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' snake_case_ : int = 99 def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" _snake_case : Any = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case : Any = input_ids.shape[0] _snake_case : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase_ ( self : int) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case : Dict = self._get_config_and_data() _snake_case : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase) _snake_case : Tuple = lm_model(input_ids=lowerCAmelCase) _snake_case : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" _snake_case : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case : Optional[int] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase) _snake_case : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) _snake_case : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) _snake_case : List[Any] = lm_model(input_ids=lowerCAmelCase , decoder_input_ids=lowerCAmelCase) _snake_case : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) _snake_case : Tuple = shift_tokens_right(lowerCAmelCase , 1 , 2) _snake_case : Any = np.equal(lowerCAmelCase , 1).astype(np.floataa).sum() _snake_case : int = np.equal(lowerCAmelCase , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = True snake_case_ : int = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ : Dict = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase_ ( self : str) -> int: """simple docstring""" _snake_case : int = FlaxBlenderbotModelTester(self) def UpperCamelCase_ ( self : Union[str, Any]) -> Dict: """simple docstring""" _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _snake_case : str = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[Any] = model_class(lowerCAmelCase) @jax.jit def encode_jitted(lowerCAmelCase : List[str] , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any]): return model.encode(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase) with self.subTest("""JIT Enabled"""): _snake_case : str = encode_jitted(**lowerCAmelCase).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _snake_case : Any = encode_jitted(**lowerCAmelCase).to_tuple() self.assertEqual(len(lowerCAmelCase) , len(lowerCAmelCase)) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase): self.assertEqual(jitted_output.shape , output.shape) def UpperCamelCase_ ( self : List[str]) -> Any: """simple docstring""" _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _snake_case : List[str] = model_class(lowerCAmelCase) _snake_case : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) _snake_case : List[str] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]): return model.decode( decoder_input_ids=lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , encoder_outputs=lowerCAmelCase , ) with self.subTest("""JIT Enabled"""): _snake_case : Optional[Any] = decode_jitted(**lowerCAmelCase).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _snake_case : Any = decode_jitted(**lowerCAmelCase).to_tuple() self.assertEqual(len(lowerCAmelCase) , len(lowerCAmelCase)) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: _snake_case : List[str] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case : Union[str, Any] = np.ones((1, 1)) * model.config.eos_token_id _snake_case : str = model(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def UpperCamelCase_ ( self : Optional[Any]) -> Dict: """simple docstring""" _snake_case : List[str] = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case : Dict = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase) _snake_case : Optional[int] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") _snake_case : Optional[Any] = ["""Sam"""] _snake_case : Union[str, Any] = tokenizer(lowerCAmelCase , return_tensors="""jax""") _snake_case : int = model.generate(**lowerCAmelCase , **lowerCAmelCase) _snake_case : Dict = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case : Any = tokenizer.batch_decode(lowerCAmelCase , **lowerCAmelCase) assert generated_txt[0].strip() == tgt_text
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.json"""} a__ = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } a__ = {"""mgp-str""": 27} class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = VOCAB_FILES_NAMES snake_case_ : str = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]="[GO]" , lowerCAmelCase : Tuple="[GO]" , lowerCAmelCase : str="[s]" , lowerCAmelCase : Any="[GO]" , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" super().__init__( unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding="""utf-8""") as vocab_handle: _snake_case : int = json.load(lowerCAmelCase) _snake_case : List[str] = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase_ ( self : List[Any]) -> Any: """simple docstring""" return len(self.vocab) def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : int = [] for s in text: char_tokens.extend(lowerCAmelCase) return char_tokens def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token)) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCAmelCase)) return _snake_case : int = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(lowerCAmelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + """\n""") return (vocab_file,)
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: a__ = None a__ = logging.get_logger(__name__) a__ = """▁""" a__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } a__ = { """google/pegasus-xsum""": 5_12, } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = VOCAB_FILES_NAMES snake_case_ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : str = PegasusTokenizer snake_case_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , lowerCAmelCase : int=None , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]="<pad>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : Tuple="<mask_2>" , lowerCAmelCase : List[Any]="<mask_1>" , lowerCAmelCase : int=None , lowerCAmelCase : Any=103 , **lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase): raise TypeError( F'''additional_special_tokens should be of type {type(lowerCAmelCase)}, but is''' F''' {type(lowerCAmelCase)}''') _snake_case : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowerCAmelCase) , self.offset - 1) ] if len(set(lowerCAmelCase)) != len(lowerCAmelCase): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''') _snake_case : Optional[int] = additional_special_tokens_extended else: _snake_case : Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset)] super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , pad_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , mask_token=lowerCAmelCase , mask_token_sent=lowerCAmelCase , offset=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Any = vocab_file _snake_case : str = False if not self.vocab_file else True def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str) -> Any: """simple docstring""" _snake_case : Optional[int] = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F''' {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}''') return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str=None) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(lowerCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _snake_case : int = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase): copyfile(self.vocab_file , lowerCAmelCase) return (out_vocab_file,)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
import requests a__ = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> None: # fetching a list of articles in json format _snake_case : Dict = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
import os a__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: _snake_case : List[Any] = 0 _snake_case : List[str] = 0 while index < len(SCREAMING_SNAKE_CASE__ ) - 1: _snake_case : List[str] = SYMBOLS[numerals[index]] _snake_case : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> str: _snake_case : Tuple = """""" _snake_case : Optional[int] = num // 1_000 numerals += m_count * "M" num %= 1_000 _snake_case : Optional[Any] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _snake_case : Optional[int] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowercase ( SCREAMING_SNAKE_CASE__ : str = "/p089_roman.txt" ) -> int: _snake_case : int = 0 with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + roman_numerals_filename ) as filea: _snake_case : Dict = filea.readlines() for line in lines: _snake_case : Union[str, Any] = line.strip() _snake_case : Optional[Any] = parse_roman_numerals(SCREAMING_SNAKE_CASE__ ) _snake_case : int = generate_roman_numerals(SCREAMING_SNAKE_CASE__ ) savings += len(SCREAMING_SNAKE_CASE__ ) - len(SCREAMING_SNAKE_CASE__ ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: _snake_case : Tuple = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _snake_case : str = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : DatasetInfo ) -> List[Any]: _snake_case : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) dataset_info.write_to_directory(SCREAMING_SNAKE_CASE__ ) _snake_case : str = DatasetInfo.from_directory(SCREAMING_SNAKE_CASE__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """dataset_info.json""" ) ) def lowercase ( ) -> Any: _snake_case : Tuple = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) _snake_case : str = dataset_info._to_yaml_dict() assert sorted(SCREAMING_SNAKE_CASE__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _snake_case : Optional[int] = yaml.safe_dump(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = yaml.safe_load(SCREAMING_SNAKE_CASE__ ) assert dataset_info_yaml_dict == reloaded def lowercase ( ) -> Optional[int]: _snake_case : Union[str, Any] = DatasetInfo() _snake_case : str = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1_337 ), } ), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : DatasetInfosDict ) -> Dict: _snake_case : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) dataset_infos_dict.write_to_directory(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _snake_case : Optional[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _snake_case : Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """README.md""" ) )
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Dict=13 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Dict=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : Any=32 , lowerCAmelCase : int=5 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : int=64 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : Any=16 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : int=4 , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=2 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Dict=1 , ) -> int: """simple docstring""" _snake_case : Any = parent _snake_case : Union[str, Any] = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Optional[int] = is_training _snake_case : Tuple = use_input_mask _snake_case : Dict = use_token_type_ids _snake_case : Union[str, Any] = use_labels _snake_case : Optional[int] = vocab_size _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : str = intermediate_size _snake_case : Dict = hidden_act _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : Optional[int] = num_labels _snake_case : Union[str, Any] = num_choices _snake_case : List[str] = scope _snake_case : List[Any] = q_groups _snake_case : str = k_groups _snake_case : Union[str, Any] = v_groups _snake_case : List[Any] = post_attention_groups _snake_case : Optional[Any] = intermediate_groups _snake_case : Union[str, Any] = output_groups def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : str = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : List[Any] = None _snake_case : Optional[Any] = None _snake_case : Dict = None if self.use_labels: _snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _snake_case : int = ids_tensor([self.batch_size] , self.num_choices) _snake_case : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : str) -> int: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def UpperCamelCase_ ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]) -> int: """simple docstring""" _snake_case : Optional[int] = SqueezeBertModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Optional[Any] = model(lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" _snake_case : Optional[Any] = SqueezeBertForMaskedLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : List[str] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple) -> str: """simple docstring""" _snake_case : List[Any] = SqueezeBertForQuestionAnswering(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Any = model( lowerCAmelCase , attention_mask=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : Dict = self.num_labels _snake_case : List[str] = SqueezeBertForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = self.num_labels _snake_case : Optional[int] = SqueezeBertForTokenClassification(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Dict = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase_ ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.num_choices _snake_case : int = SqueezeBertForMultipleChoice(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _snake_case : Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _snake_case : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase_ ( self : Any) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : str = config_and_inputs _snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : List[Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) snake_case_ : str = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ : Any = False snake_case_ : List[Any] = True snake_case_ : Dict = False def UpperCamelCase_ ( self : int) -> Union[str, Any]: """simple docstring""" _snake_case : str = SqueezeBertModelTester(self) _snake_case : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , dim=37) def UpperCamelCase_ ( self : str) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase) def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase) @slow def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = SqueezeBertModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @require_sentencepiece @require_tokenizers @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : List[str] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""") _snake_case : int = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]]) _snake_case : List[Any] = model(lowerCAmelCase)[0] _snake_case : Dict = torch.Size((1, 3)) self.assertEqual(output.shape , lowerCAmelCase) _snake_case : Dict = torch.tensor([[0.6_401, -0.0_349, -0.6_041]]) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-4))
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py a__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a__ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. a__ = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") a__ = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a__ = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) a__ = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , SCREAMING_SNAKE_CASE__ ) return [m.group(0 ) for m in matches] def lowercase ( ) -> int: _snake_case : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _snake_case : int = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _snake_case : List[Any] = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) _snake_case : str = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = None if _re_tf_models.match(SCREAMING_SNAKE_CASE__ ) is not None: _snake_case : Optional[Any] = tf_models _snake_case : List[Any] = _re_tf_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE__ ) is not None: _snake_case : Tuple = flax_models _snake_case : Dict = _re_flax_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE__ ) is not None: _snake_case : int = pt_models _snake_case : List[Any] = _re_pt_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE__ ) > 0: if attr_name in model_prefix_to_model_type: _snake_case : Union[str, Any] = True break # Try again after removing the last word in the name _snake_case : Optional[int] = """""".join(camel_case_split(SCREAMING_SNAKE_CASE__ )[:-1] ) _snake_case : Optional[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _snake_case : str = list(SCREAMING_SNAKE_CASE__ ) all_models.sort() _snake_case : int = {"""model_type""": all_models} _snake_case : List[str] = [pt_models[t] for t in all_models] _snake_case : List[str] = [tf_models[t] for t in all_models] _snake_case : Tuple = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _snake_case : List[str] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _snake_case : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _snake_case : Union[str, Any] = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _snake_case : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _snake_case : Union[str, Any] = """AutoTokenizer""" _snake_case : Union[str, Any] = [processors[t] for t in all_models] return pd.DataFrame(SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : str = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _snake_case : str = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] _snake_case : Tuple = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # The type of pipeline may not exist in this framework if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): continue # First extract all model_names _snake_case : Union[str, Any] = [] for name in getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).values(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model_names.append(SCREAMING_SNAKE_CASE__ ) else: model_names.extend(list(SCREAMING_SNAKE_CASE__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: _snake_case : List[str] = get_frameworks_table() _snake_case : Dict = Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = Dataset.from_json(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(SCREAMING_SNAKE_CASE__ ) ) } _snake_case : Any = update_pipeline_and_auto_class_table(SCREAMING_SNAKE_CASE__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _snake_case : Optional[int] = sorted(table.keys() ) _snake_case : str = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _snake_case : Optional[int] = Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _snake_case : Optional[Any] = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: _snake_case : int = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , token=SCREAMING_SNAKE_CASE__ , commit_message=SCREAMING_SNAKE_CASE__ , ) def lowercase ( ) -> List[Any]: _snake_case : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _snake_case : Any = transformers_module.pipelines.SUPPORTED_TASKS _snake_case : Any = [] for key in pipeline_tasks: if key not in in_table: _snake_case : Dict = pipeline_tasks[key]["""pt"""] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): _snake_case : List[Any] = model[0] _snake_case : Optional[Any] = model.__name__ if model not in in_table.values(): missing.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _snake_case : Tuple = """, """.join(SCREAMING_SNAKE_CASE__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") a__ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""image_processor""", """tokenizer"""] snake_case_ : int = """BlipImageProcessor""" snake_case_ : Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int) -> Dict: """simple docstring""" _snake_case : Tuple = False super().__init__(lowerCAmelCase , lowerCAmelCase) _snake_case : Union[str, Any] = self.image_processor def __call__( self : List[str] , lowerCAmelCase : ImageInput = None , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""") # Get only text if images is None: _snake_case : Union[str, Any] = self.tokenizer _snake_case : Optional[int] = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) return text_encoding # add pixel_values _snake_case : Any = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase) if text is not None: _snake_case : Tuple = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) else: _snake_case : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase) return encoding_image_processor def UpperCamelCase_ ( self : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Dict) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.tokenizer.model_input_names _snake_case : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = """SpeechT5FeatureExtractor""" snake_case_ : List[str] = """SpeechT5Tokenizer""" def __init__( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase) def __call__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" _snake_case : Any = kwargs.pop("""audio""" , lowerCAmelCase) _snake_case : Tuple = kwargs.pop("""text""" , lowerCAmelCase) _snake_case : Dict = kwargs.pop("""text_target""" , lowerCAmelCase) _snake_case : Union[str, Any] = kwargs.pop("""audio_target""" , lowerCAmelCase) _snake_case : List[Any] = kwargs.pop("""sampling_rate""" , lowerCAmelCase) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""") if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""") if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""") if audio is not None: _snake_case : Tuple = self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase) elif text is not None: _snake_case : Optional[int] = self.tokenizer(lowerCAmelCase , **lowerCAmelCase) else: _snake_case : int = None if audio_target is not None: _snake_case : str = self.feature_extractor(audio_target=lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase) _snake_case : int = targets["""input_values"""] elif text_target is not None: _snake_case : List[Any] = self.tokenizer(lowerCAmelCase , **lowerCAmelCase) _snake_case : int = targets["""input_ids"""] else: _snake_case : Optional[int] = None if inputs is None: return targets if targets is not None: _snake_case : Tuple = labels _snake_case : Tuple = targets.get("""attention_mask""") if decoder_attention_mask is not None: _snake_case : Dict = decoder_attention_mask return inputs def UpperCamelCase_ ( self : Tuple , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> int: """simple docstring""" _snake_case : Any = kwargs.pop("""input_values""" , lowerCAmelCase) _snake_case : str = kwargs.pop("""input_ids""" , lowerCAmelCase) _snake_case : Union[str, Any] = kwargs.pop("""labels""" , lowerCAmelCase) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""") if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""") if input_values is not None: _snake_case : str = self.feature_extractor.pad(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) elif input_ids is not None: _snake_case : int = self.tokenizer.pad(lowerCAmelCase , **lowerCAmelCase) else: _snake_case : Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase , lowerCAmelCase) and "input_ids" in labels[0]): _snake_case : Union[str, Any] = self.tokenizer.pad(lowerCAmelCase , **lowerCAmelCase) _snake_case : Optional[int] = targets["""input_ids"""] else: _snake_case : Union[str, Any] = self.feature_extractor.feature_size _snake_case : List[str] = self.feature_extractor.num_mel_bins _snake_case : int = self.feature_extractor.pad(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) _snake_case : List[str] = feature_size_hack _snake_case : Optional[Any] = targets["""input_values"""] else: _snake_case : Tuple = None if inputs is None: return targets if targets is not None: _snake_case : Dict = labels _snake_case : Optional[int] = targets.get("""attention_mask""") if decoder_attention_mask is not None: _snake_case : List[Any] = decoder_attention_mask return inputs def UpperCamelCase_ ( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase)
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
a__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} a__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowercase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ) -> list[int]: _snake_case : int = True _snake_case : Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) order.append(SCREAMING_SNAKE_CASE__ ) return order def lowercase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ) -> list[int]: _snake_case : List[str] = True _snake_case : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return component def lowercase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] ) -> list[list[int]]: _snake_case : List[Any] = len(SCREAMING_SNAKE_CASE__ ) * [False] _snake_case : dict[int, list[int]] = {vert: [] for vert in range(len(SCREAMING_SNAKE_CASE__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE__ ) _snake_case : str = [] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE__ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = [] _snake_case : Any = len(SCREAMING_SNAKE_CASE__ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Optional[Any] = order[len(SCREAMING_SNAKE_CASE__ ) - i - 1] if not visited[vert]: _snake_case : str = find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) components_list.append(SCREAMING_SNAKE_CASE__ ) return components_list
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : torch.FloatTensor snake_case_ : torch.FloatTensor class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = 1 @register_to_config def __init__( self : Dict , lowerCAmelCase : int = 2000 , lowerCAmelCase : float = 0.15 , lowerCAmelCase : float = 0.01 , lowerCAmelCase : float = 1_348.0 , lowerCAmelCase : float = 1E-5 , lowerCAmelCase : int = 1 , ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = sigma_max # setable values _snake_case : str = None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : float = None , lowerCAmelCase : Union[str, torch.device] = None) -> int: """simple docstring""" _snake_case : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps _snake_case : Optional[Any] = torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : float = None , lowerCAmelCase : float = None , lowerCAmelCase : float = None) -> str: """simple docstring""" _snake_case : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min _snake_case : Union[str, Any] = sigma_max if sigma_max is not None else self.config.sigma_max _snake_case : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _snake_case : Union[str, Any] = torch.exp(torch.linspace(math.log(lowerCAmelCase) , math.log(lowerCAmelCase) , lowerCAmelCase)) _snake_case : Optional[int] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def UpperCamelCase_ ( self : int , lowerCAmelCase : str , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : int , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""") _snake_case : Union[str, Any] = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _snake_case : Union[str, Any] = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _snake_case : Any = timesteps.to(self.discrete_sigmas.device) _snake_case : Union[str, Any] = self.discrete_sigmas[timesteps].to(sample.device) _snake_case : Union[str, Any] = self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase).to(sample.device) _snake_case : int = torch.zeros_like(lowerCAmelCase) _snake_case : List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _snake_case : Tuple = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _snake_case : Dict = diffusion.unsqueeze(-1) _snake_case : Any = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _snake_case : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype) _snake_case : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _snake_case : str = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _snake_case : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase).to(sample.device) # compute step size from the model_output, the noise, and the snr _snake_case : Any = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() _snake_case : Dict = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() _snake_case : List[str] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _snake_case : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _snake_case : Dict = step_size.flatten() while len(step_size.shape) < len(sample.shape): _snake_case : str = step_size.unsqueeze(-1) _snake_case : int = sample + step_size * model_output _snake_case : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" _snake_case : Dict = timesteps.to(original_samples.device) _snake_case : Any = self.discrete_sigmas.to(original_samples.device)[timesteps] _snake_case : Optional[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase) * sigmas[:, None, None, None] ) _snake_case : Union[str, Any] = noise + original_samples return noisy_samples def __len__( self : str) -> int: """simple docstring""" return self.config.num_train_timesteps
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 600_851_475_143 ) -> int: try: _snake_case : int = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _snake_case : Optional[int] = 1 _snake_case : List[Any] = 2 while i * i <= n: while n % i == 0: _snake_case : Optional[int] = i n //= i i += 1 if n > 1: _snake_case : Optional[int] = n return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''{solution() = }''')
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
from math import factorial a__ = {str(digit): factorial(digit) for digit in range(10)} def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def lowercase ( SCREAMING_SNAKE_CASE__ : int = 60 , SCREAMING_SNAKE_CASE__ : int = 1_000_000 ) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length _snake_case : Tuple = 0 # the cached sizes of the previous chains _snake_case : dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ): # The temporary set will contain the elements of the chain _snake_case : Optional[int] = set() _snake_case : int = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _snake_case : int = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE__ ) chain_set_length += 1 _snake_case : Optional[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _snake_case : Optional[Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = ["""model.decoder.embed_positions.weights"""] def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if "emb" in name: _snake_case : List[str] = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: _snake_case : int = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: _snake_case : Optional[Any] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: _snake_case : List[Any] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: _snake_case : Optional[int] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: _snake_case : int = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: _snake_case : List[Any] = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: _snake_case : Optional[Any] = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: _snake_case : str = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: _snake_case : Tuple = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: _snake_case : Dict = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def lowercase ( SCREAMING_SNAKE_CASE__ : OrderedDict , SCREAMING_SNAKE_CASE__ : int ) -> Tuple[Dict, Dict]: _snake_case : Dict = list(state_dict.keys() ) _snake_case : List[Any] = {} for key in keys: _snake_case : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = rename_keys(SCREAMING_SNAKE_CASE__ ) if "in_proj_weight" in key: # split fused qkv proj _snake_case : List[str] = val[:hidden_size, :] _snake_case : Tuple = val[hidden_size : 2 * hidden_size, :] _snake_case : Any = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _snake_case : Any = val else: _snake_case : Any = val return state_dict, enc_dec_proj_state_dict def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values _snake_case : Union[str, Any] = 1_024 _snake_case : List[Any] = 24 _snake_case : Dict = 16 elif checkpoint == "medium": _snake_case : Dict = 1_536 _snake_case : List[str] = 48 _snake_case : str = 24 elif checkpoint == "large": _snake_case : Any = 2_048 _snake_case : Optional[Any] = 48 _snake_case : Tuple = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _snake_case : Optional[Any] = MusicgenDecoderConfig( hidden_size=SCREAMING_SNAKE_CASE__ , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE__ , num_attention_heads=SCREAMING_SNAKE_CASE__ , ) return config @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]="cpu" ) -> List[Any]: _snake_case : Optional[Any] = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE__ ) _snake_case : int = fairseq_model.lm.state_dict() _snake_case , _snake_case : List[str] = rename_state_dict( SCREAMING_SNAKE_CASE__ , hidden_size=decoder_config.hidden_size ) _snake_case : Optional[int] = TaEncoderModel.from_pretrained("""t5-base""" ) _snake_case : Tuple = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) _snake_case : List[str] = MusicgenForCausalLM(SCREAMING_SNAKE_CASE__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _snake_case , _snake_case : Dict = decoder.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _snake_case : Any = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE__ , audio_encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE__ ) # check we can do a forward pass _snake_case : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _snake_case : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _snake_case : int = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""t5-base""" ) _snake_case : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) _snake_case : List[Any] = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # set the appropriate bos/pad token ids _snake_case : Tuple = 2_048 _snake_case : Any = 2_048 # set other default generation config params _snake_case : List[str] = int(30 * audio_encoder.config.frame_rate ) _snake_case : Optional[Any] = True _snake_case : Optional[int] = 3.0 if pytorch_dump_folder is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) a__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: _snake_case : Optional[int] = [] _snake_case : List[Any] = set({"""(""", """[""", """{"""} ) _snake_case : str = set({""")""", """]""", """}"""} ) _snake_case : str = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(SCREAMING_SNAKE_CASE__ ) == 0 or (len(SCREAMING_SNAKE_CASE__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(SCREAMING_SNAKE_CASE__ ) == 0 def lowercase ( ) -> Optional[Any]: _snake_case : int = input("""Enter sequence of brackets: """ ) if is_balanced(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ , """is balanced""" ) else: print(SCREAMING_SNAKE_CASE__ , """is not balanced""" ) if __name__ == "__main__": main()
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""") _snake_case : List[str] = AutoTokenizer.from_pretrained("""google/mt5-small""") _snake_case : int = tokenizer("""Hello there""" , return_tensors="""tf""").input_ids _snake_case : int = tokenizer("""Hi I am""" , return_tensors="""tf""").input_ids _snake_case : Dict = model(lowerCAmelCase , labels=lowerCAmelCase).loss _snake_case : Any = -tf.math.reduce_mean(lowerCAmelCase).numpy() _snake_case : Tuple = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2E-4)
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: _snake_case : Optional[int] = [1] _snake_case , _snake_case , _snake_case : Optional[Any] = 0, 0, 0 _snake_case : str = ugly_nums[ia] * 2 _snake_case : Dict = ugly_nums[ia] * 3 _snake_case : Dict = ugly_nums[ia] * 5 for _ in range(1 , SCREAMING_SNAKE_CASE__ ): _snake_case : int = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ugly_nums.append(SCREAMING_SNAKE_CASE__ ) if next_num == next_a: ia += 1 _snake_case : Any = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _snake_case : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _snake_case : Union[str, Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_00) = }''')
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""MobileNetV2FeatureExtractor"""] a__ = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> Tuple: _snake_case : List[str] = OmegaConf.load(SCREAMING_SNAKE_CASE__ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE__ ) ) ) return config def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=None ) -> Optional[int]: if conf_path is None: _snake_case : str = """./model_checkpoints/vqgan_only.yaml""" _snake_case : List[str] = load_config(SCREAMING_SNAKE_CASE__ , display=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = VQModel(**config.model.params ) if ckpt_path is None: _snake_case : Optional[Any] = """./model_checkpoints/vqgan_only.pt""" _snake_case : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) if ".ckpt" in ckpt_path: _snake_case : List[str] = sd["""state_dict"""] model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) del sd return model def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case , _snake_case , _snake_case : int = model.encode(SCREAMING_SNAKE_CASE__ ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) _snake_case : Union[str, Any] = model.decode(SCREAMING_SNAKE_CASE__ ) return xrec def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=False ) -> str: _snake_case , _snake_case : List[str] = string.rsplit(""".""" , 1 ) if reload: _snake_case : int = importlib.import_module(SCREAMING_SNAKE_CASE__ ) importlib.reload(SCREAMING_SNAKE_CASE__ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE__ , package=SCREAMING_SNAKE_CASE__ ) , cls ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : str=True ) -> Dict: _snake_case : Any = instantiate_from_config(SCREAMING_SNAKE_CASE__ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> str: # load the specified checkpoint if ckpt: _snake_case : int = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : Optional[Any] = pl_sd["""global_step"""] print(F'''loaded model from global step {global_step}.''' ) else: _snake_case : List[Any] = {"""state_dict""": None} _snake_case : Union[str, Any] = None _snake_case : str = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=SCREAMING_SNAKE_CASE__ , eval_mode=SCREAMING_SNAKE_CASE__ )["""model"""] return model, global_step
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from ...configuration_utils import PretrainedConfig class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = """bert-generation""" def __init__( self : Optional[Any] , lowerCAmelCase : Optional[int]=5_0358 , lowerCAmelCase : Any=1024 , lowerCAmelCase : str=24 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : Optional[Any]=4096 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Union[str, Any]=512 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : List[str]=1E-12 , lowerCAmelCase : int=0 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Any=1 , lowerCAmelCase : Optional[int]="absolute" , lowerCAmelCase : Union[str, Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : List[str] = hidden_size _snake_case : str = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : str = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : Tuple = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : Union[str, Any] = max_position_embeddings _snake_case : Tuple = initializer_range _snake_case : Tuple = layer_norm_eps _snake_case : Tuple = position_embedding_type _snake_case : Union[str, Any] = use_cache
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = """beit""" def __init__( self : str , lowerCAmelCase : int=8192 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Optional[Any]=3072 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Tuple=1E-12 , lowerCAmelCase : Union[str, Any]=224 , lowerCAmelCase : int=16 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Any=True , lowerCAmelCase : Dict=[3, 5, 7, 11] , lowerCAmelCase : List[Any]=[1, 2, 3, 6] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any=0.4 , lowerCAmelCase : Tuple=256 , lowerCAmelCase : str=1 , lowerCAmelCase : Dict=False , lowerCAmelCase : str=255 , **lowerCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[Any] = vocab_size _snake_case : Tuple = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : int = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Dict = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : Dict = initializer_range _snake_case : Any = layer_norm_eps _snake_case : Optional[Any] = image_size _snake_case : Union[str, Any] = patch_size _snake_case : int = num_channels _snake_case : List[str] = use_mask_token _snake_case : Union[str, Any] = use_absolute_position_embeddings _snake_case : int = use_relative_position_bias _snake_case : Union[str, Any] = use_shared_relative_position_bias _snake_case : str = layer_scale_init_value _snake_case : List[str] = drop_path_rate _snake_case : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) _snake_case : List[str] = out_indices _snake_case : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) _snake_case : Any = use_auxiliary_head _snake_case : Union[str, Any] = auxiliary_loss_weight _snake_case : Tuple = auxiliary_channels _snake_case : Optional[int] = auxiliary_num_convs _snake_case : List[Any] = auxiliary_concat_input _snake_case : Tuple = semantic_loss_ignore_index class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : str) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Optional[Any]) -> float: """simple docstring""" return 1E-4
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : List[str] = XGLMTokenizer snake_case_ : List[str] = XGLMTokenizerFast snake_case_ : str = True snake_case_ : int = True def UpperCamelCase_ ( self : Tuple) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _snake_case : List[str] = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Tuple = """<pad>""" _snake_case : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> int: """simple docstring""" _snake_case : str = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(len(lowerCAmelCase) , 1008) def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1008) def UpperCamelCase_ ( self : int) -> Optional[Any]: """simple docstring""" _snake_case : Dict = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) _snake_case : Optional[int] = tokenizer.tokenize("""This is a test""") self.assertListEqual(lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _snake_case : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""") def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) _snake_case : Optional[int] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) _snake_case : Any = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" if not self.test_rust_tokenizer: return _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : str = """I was born in 92000, and this is falsé.""" _snake_case : List[Any] = tokenizer.tokenize(lowerCAmelCase) _snake_case : Tuple = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) _snake_case : int = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) _snake_case : Dict = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = self.get_rust_tokenizer() _snake_case : int = tokenizer.encode(lowerCAmelCase) _snake_case : str = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : List[Any]) -> List[Any]: """simple docstring""" _snake_case : Dict = """Hello World!""" _snake_case : List[str] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCamelCase_ ( self : List[Any]) -> Tuple: """simple docstring""" _snake_case : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off _snake_case : List[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" _snake_case : Optional[int] = { """input_ids""": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""facebook/xglm-564M""" , padding=lowerCAmelCase , )
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
from collections.abc import Generator from math import sin def lowercase ( SCREAMING_SNAKE_CASE__ : bytes ) -> bytes: if len(SCREAMING_SNAKE_CASE__ ) != 32: raise ValueError("""Input must be of length 32""" ) _snake_case : str = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : int = format(SCREAMING_SNAKE_CASE__ , """08x""" )[-8:] _snake_case : Optional[int] = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def lowercase ( SCREAMING_SNAKE_CASE__ : bytes ) -> bytes: _snake_case : List[str] = b"""""" for char in message: bit_string += format(SCREAMING_SNAKE_CASE__ , """08b""" ).encode("""utf-8""" ) _snake_case : Optional[int] = format(len(SCREAMING_SNAKE_CASE__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(SCREAMING_SNAKE_CASE__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase ( SCREAMING_SNAKE_CASE__ : bytes ) -> Generator[list[int], None, None]: if len(SCREAMING_SNAKE_CASE__ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 512 ): _snake_case : Optional[Any] = bit_string[pos : pos + 512] _snake_case : Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : str = format(SCREAMING_SNAKE_CASE__ , """032b""" ) _snake_case : Tuple = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(SCREAMING_SNAKE_CASE__ , 2 ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: return (a + b) % 2**32 def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase ( SCREAMING_SNAKE_CASE__ : bytes ) -> bytes: _snake_case : Any = preprocess(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _snake_case : List[Any] = 0X6_7_4_5_2_3_0_1 _snake_case : Union[str, Any] = 0XE_F_C_D_A_B_8_9 _snake_case : Union[str, Any] = 0X9_8_B_A_D_C_F_E _snake_case : int = 0X1_0_3_2_5_4_7_6 _snake_case : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = aa _snake_case : Dict = ba _snake_case : int = ca _snake_case : str = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _snake_case : Any = d ^ (b & (c ^ d)) _snake_case : List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _snake_case : List[Any] = c ^ (d & (b ^ c)) _snake_case : Optional[int] = (5 * i + 1) % 16 elif i <= 47: _snake_case : Optional[Any] = b ^ c ^ d _snake_case : Union[str, Any] = (3 * i + 5) % 16 else: _snake_case : Optional[int] = c ^ (b | not_aa(SCREAMING_SNAKE_CASE__ )) _snake_case : str = (7 * i) % 16 _snake_case : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 _snake_case : List[str] = d _snake_case : Tuple = c _snake_case : Optional[Any] = b _snake_case : Optional[Any] = sum_aa(SCREAMING_SNAKE_CASE__ , left_rotate_aa(SCREAMING_SNAKE_CASE__ , shift_amounts[i] ) ) # Add hashed chunk to running total _snake_case : List[Any] = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = sum_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = reformat_hex(SCREAMING_SNAKE_CASE__ ) + reformat_hex(SCREAMING_SNAKE_CASE__ ) + reformat_hex(SCREAMING_SNAKE_CASE__ ) + reformat_hex(SCREAMING_SNAKE_CASE__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 600_851_475_143 ) -> int: try: _snake_case : int = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _snake_case : Optional[Any] = 2 _snake_case : Optional[int] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _snake_case : Dict = i while n % i == 0: _snake_case : Optional[Any] = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''{solution() = }''')
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a__ = pytest.mark.integration a__ = {"""comet"""} a__ = importlib.util.find_spec("""fairseq""") is not None a__ = {"""code_eval"""} a__ = os.name == """nt""" a__ = {"""bertscore""", """frugalscore""", """perplexity"""} a__ = importlib.util.find_spec("""transformers""") is not None def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self : int , SCREAMING_SNAKE_CASE__ : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def lowercase ( ) -> Any: _snake_case : List[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) @local class snake_case ( parameterized.TestCase ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : List[Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""") @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""") def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple) -> str: """simple docstring""" _snake_case : List[Any] = """[...]""" _snake_case : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowerCAmelCase)).module_path) _snake_case : Optional[int] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase) # check parameters _snake_case : Tuple = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase , metric_module.__name__): with self.use_local_metrics(): try: _snake_case : Optional[int] = doctest.testmod(lowerCAmelCase , verbose=lowerCAmelCase , raise_on_error=lowerCAmelCase) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def UpperCamelCase_ ( self : Any , lowerCAmelCase : str) -> Any: """simple docstring""" _snake_case : List[Any] = """[...]""" _snake_case : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowerCAmelCase)).module_path) # run doctest with self.use_local_metrics(): _snake_case : List[str] = doctest.testmod(lowerCAmelCase , verbose=lowerCAmelCase , raise_on_error=lowerCAmelCase) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase): yield else: yield @contextmanager def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" def load_local_metric(lowerCAmelCase : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]): return load_metric(os.path.join("""metrics""" , lowerCAmelCase) , *lowerCAmelCase , **lowerCAmelCase) with patch("""datasets.load_metric""") as mock_load_metric: _snake_case : Any = load_local_metric yield @classmethod def UpperCamelCase_ ( cls : int , lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" def wrapper(lowerCAmelCase : Optional[Any]): _snake_case : Dict = contextmanager(lowerCAmelCase) _snake_case : Optional[int] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict , lowerCAmelCase : str) -> str: """simple docstring""" assert len(input_dict["""input_ids"""]) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _snake_case : Optional[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> str: import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _snake_case : Tuple = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: def load_from_checkpoint(SCREAMING_SNAKE_CASE__ : int ): class snake_case : '''simple docstring''' def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Dict: """simple docstring""" assert len(lowerCAmelCase) == 2 _snake_case : str = [0.19, 0.92] return scores, sum(lowerCAmelCase) / len(lowerCAmelCase) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _snake_case : Optional[int] = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _snake_case : List[Any] = load_from_checkpoint yield def lowercase ( ) -> Union[str, Any]: _snake_case : Tuple = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _snake_case : List[str] = """ERROR""" _snake_case : int = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(SCREAMING_SNAKE_CASE__ , match=re.escape(SCREAMING_SNAKE_CASE__ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE__ )
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ) -> Any: _snake_case : int = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=SCREAMING_SNAKE_CASE__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=SCREAMING_SNAKE_CASE__ , default=5 ) parser.add_argument("""--batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument("""--freeze""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--learning_rate""" , type=SCREAMING_SNAKE_CASE__ , default=5e-4 ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=SCREAMING_SNAKE_CASE__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=SCREAMING_SNAKE_CASE__ , default=10 ) parser.add_argument("""--weight_decay""" , type=SCREAMING_SNAKE_CASE__ , default=0.0_1 ) parser.add_argument("""--output_dir""" , type=SCREAMING_SNAKE_CASE__ , default="""./results""" ) return parser.parse_args() a__ = load("""accuracy""") def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: _snake_case , _snake_case : int = eval_pred _snake_case : List[str] = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str) -> None: """simple docstring""" super().__init__() _snake_case : Any = trainer def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Tuple: """simple docstring""" if control.should_evaluate: _snake_case : str = deepcopy(lowerCAmelCase) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""") return control_copy def lowercase ( ) -> int: _snake_case : str = get_args() set_seed(args.seed ) _snake_case : int = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) _snake_case : str = dataset.train_test_split(test_size=0.2 ) _snake_case : Dict = train_test["""test"""].train_test_split(test_size=0.5 ) _snake_case : Optional[Any] = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _snake_case : List[Any] = tokenizer.eos_token _snake_case : Tuple = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _snake_case : Optional[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _snake_case : Optional[Any] = False _snake_case : Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(SCREAMING_SNAKE_CASE__ : Dict ): _snake_case : int = tokenizer(example["""src"""] , truncation=SCREAMING_SNAKE_CASE__ , max_length=1_024 ) _snake_case : Tuple = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _snake_case : str = train_test_validation.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=train_test_validation["""train"""].column_names , ) _snake_case : Union[str, Any] = DataCollatorWithPadding(tokenizer=SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) _snake_case : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(SCREAMING_SNAKE_CASE__ ) ) trainer.train() if __name__ == "__main__": main()
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ = logging.get_logger(__name__) # pylint: disable=invalid-name a__ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=8 ) -> str: _snake_case : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]=512 , SCREAMING_SNAKE_CASE__ : Any=512 ) -> Dict: _snake_case : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _snake_case : Union[str, Any] = np.array(pil_image.convert("""RGB""" ) ) _snake_case : List[str] = arr.astype(np.floataa ) / 1_2_7.5 - 1 _snake_case : str = np.transpose(SCREAMING_SNAKE_CASE__ , [2, 0, 1] ) _snake_case : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) return image class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : DDPMScheduler , lowerCAmelCase : VQModel , ) -> int: """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase , scheduler=lowerCAmelCase , movq=lowerCAmelCase , ) _snake_case : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str) -> Tuple: """simple docstring""" _snake_case : List[str] = min(int(num_inference_steps * strength) , lowerCAmelCase) _snake_case : List[Any] = max(num_inference_steps - init_timestep , 0) _snake_case : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : str=None) -> Any: """simple docstring""" if not isinstance(lowerCAmelCase , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase)}''') _snake_case : Optional[int] = image.to(device=lowerCAmelCase , dtype=lowerCAmelCase) _snake_case : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _snake_case : Any = image else: if isinstance(lowerCAmelCase , lowerCAmelCase) and len(lowerCAmelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') elif isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Dict = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCAmelCase) ] _snake_case : Tuple = torch.cat(lowerCAmelCase , dim=0) else: _snake_case : Dict = self.movq.encode(lowerCAmelCase).latent_dist.sample(lowerCAmelCase) _snake_case : Dict = self.movq.config.scaling_factor * init_latents _snake_case : Optional[int] = torch.cat([init_latents] , dim=0) _snake_case : str = init_latents.shape _snake_case : List[str] = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase) # get latents _snake_case : int = self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = init_latents return latents def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[str]=0) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") _snake_case : int = torch.device(F'''cuda:{gpu_id}''') _snake_case : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Optional[Any]=0) -> Optional[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") _snake_case : Optional[int] = torch.device(F'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case : Dict = cpu_offload_with_hook(lowerCAmelCase , lowerCAmelCase , prev_module_hook=lowerCAmelCase) # We'll offload the last model manually. _snake_case : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase_ ( self : List[str]) -> Tuple: """simple docstring""" if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase) def __call__( self : List[str] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 100 , lowerCAmelCase : float = 4.0 , lowerCAmelCase : float = 0.3 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ) -> int: """simple docstring""" _snake_case : Any = self._execution_device _snake_case : List[Any] = guidance_scale > 1.0 if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[Any] = torch.cat(lowerCAmelCase , dim=0) _snake_case : str = image_embeds.shape[0] if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Tuple = torch.cat(lowerCAmelCase , dim=0) if do_classifier_free_guidance: _snake_case : Dict = image_embeds.repeat_interleave(lowerCAmelCase , dim=0) _snake_case : Optional[int] = negative_image_embeds.repeat_interleave(lowerCAmelCase , dim=0) _snake_case : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase) if not isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : str = [image] if not all(isinstance(lowerCAmelCase , (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( F'''Input is in incorrect format: {[type(lowerCAmelCase) for i in image]}. Currently, we only support PIL image and pytorch tensor''') _snake_case : List[Any] = torch.cat([prepare_image(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for i in image] , dim=0) _snake_case : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase) _snake_case : int = self.movq.encode(lowerCAmelCase)["""latents"""] _snake_case : Optional[Any] = latents.repeat_interleave(lowerCAmelCase , dim=0) self.scheduler.set_timesteps(lowerCAmelCase , device=lowerCAmelCase) _snake_case , _snake_case : List[str] = self.get_timesteps(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt) _snake_case , _snake_case : List[Any] = downscale_height_and_width(lowerCAmelCase , lowerCAmelCase , self.movq_scale_factor) _snake_case : Tuple = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , image_embeds.dtype , lowerCAmelCase , lowerCAmelCase) for i, t in enumerate(self.progress_bar(lowerCAmelCase)): # expand the latents if we are doing classifier free guidance _snake_case : Any = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _snake_case : Tuple = {"""image_embeds""": image_embeds} _snake_case : Union[str, Any] = self.unet( sample=lowerCAmelCase , timestep=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , added_cond_kwargs=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] if do_classifier_free_guidance: _snake_case , _snake_case : Dict = noise_pred.split(latents.shape[1] , dim=1) _snake_case , _snake_case : Dict = noise_pred.chunk(2) _snake_case , _snake_case : Tuple = variance_pred.chunk(2) _snake_case : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case : Optional[int] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 _snake_case : Dict = self.scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase , )[0] # post-processing _snake_case : Dict = self.movq.decode(lowerCAmelCase , force_not_quantize=lowerCAmelCase)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: _snake_case : Dict = image * 0.5 + 0.5 _snake_case : List[str] = image.clamp(0 , 1) _snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": _snake_case : int = self.numpy_to_pil(lowerCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase)
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) snake_case_ : Dict = """CIDAS/clipseg-rd64-refined""" snake_case_ : Dict = """image_segmenter""" snake_case_ : Tuple = CLIPSegForImageSegmentation snake_case_ : List[Any] = ["""image""", """text"""] snake_case_ : Union[str, Any] = ["""image"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""vision"""]) super().__init__(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : "Image" , lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=lowerCAmelCase , return_tensors="""pt""") def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" with torch.no_grad(): _snake_case : List[Any] = self.model(**lowerCAmelCase).logits return logits def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : List[Any]) -> Dict: """simple docstring""" _snake_case : str = outputs.cpu().detach().numpy() _snake_case : int = 0 _snake_case : Optional[int] = 1 return Image.fromarray((array * 255).astype(np.uinta))
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(SCREAMING_SNAKE_CASE__ ) == 1: return True _snake_case : str = series[1] - series[0] for index in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> float: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) _snake_case : int = 0 for val in series: answer += val return answer / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a__ = open # noqa: we just need to have a builtin inside this module to test it properly
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: a__ = None a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } a__ = { """camembert-base""": 5_12, } a__ = """▁""" class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = VOCAB_FILES_NAMES snake_case_ : str = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Dict = ["""input_ids""", """attention_mask"""] snake_case_ : Union[str, Any] = CamembertTokenizer def __init__( self : List[Any] , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]="<s>" , lowerCAmelCase : str="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : List[str]="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : Any="<mask>" , lowerCAmelCase : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCAmelCase : Dict , ) -> Tuple: """simple docstring""" _snake_case : List[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Any = vocab_file _snake_case : Optional[int] = False if not self.vocab_file else True def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] _snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : List[Any] = [self.sep_token_id] _snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(lowerCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _snake_case : List[str] = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase): copyfile(self.vocab_file , lowerCAmelCase) return (out_vocab_file,)
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_000 ) -> int: _snake_case , _snake_case : List[str] = 1, 1 _snake_case : List[str] = [] for i in range(1 , n + 1 ): _snake_case : str = prev_numerator + 2 * prev_denominator _snake_case : Any = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE__ ) ) > len(str(SCREAMING_SNAKE_CASE__ ) ): result.append(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = numerator _snake_case : int = denominator return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''{solution() = }''')
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : List[str] , lowerCAmelCase : Any=None , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = eval_examples _snake_case : Union[str, Any] = post_process_function _snake_case : str = quant_trainer_args _snake_case : Any = 128 # default number of calibration samples def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : int=None) -> Optional[int]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""") _snake_case : int = calib_dataset if calib_dataset is not None else self.calib_dataset _snake_case : Union[str, Any] = self._remove_unused_columns(lowerCAmelCase , description="""Calibration""") return DataLoader( lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase , ) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int=None) -> Optional[Any]: """simple docstring""" _snake_case : Optional[Any] = self.train_dataset if calib_dataset is None else calib_dataset _snake_case : Dict = self.get_calib_dataloader(lowerCAmelCase) _snake_case : Dict = self.model quant_trainer.configure_model(lowerCAmelCase , self.quant_trainer_args , calib=lowerCAmelCase) model.eval() quant_trainer.enable_calibration(lowerCAmelCase) logger.info("""***** Running calibration *****""") logger.info(F''' Num examples = {self.calib_num}''') logger.info(F''' Batch size = {calib_dataloader.batch_size}''') for step, inputs in enumerate(lowerCAmelCase): # Prediction step _snake_case , _snake_case , _snake_case : Optional[Any] = self.prediction_step(lowerCAmelCase , lowerCAmelCase , prediction_loss_only=lowerCAmelCase) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCAmelCase , self.quant_trainer_args) _snake_case : List[str] = model def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str = "eval") -> Any: """simple docstring""" _snake_case : Dict = self.eval_dataset if eval_dataset is None else eval_dataset _snake_case : Dict = self.get_eval_dataloader(lowerCAmelCase) _snake_case : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _snake_case : Tuple = self.compute_metrics _snake_case : Tuple = None _snake_case : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case : List[str] = eval_loop( lowerCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , ) finally: _snake_case : Tuple = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _snake_case : Optional[Any] = self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions) _snake_case : List[str] = self.compute_metrics(lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _snake_case : Dict = metrics.pop(lowerCAmelCase) self.log(lowerCAmelCase) else: _snake_case : str = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _snake_case : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase) return metrics def UpperCamelCase_ ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str = "test") -> List[Any]: """simple docstring""" _snake_case : Any = self.get_test_dataloader(lowerCAmelCase) # Temporarily disable metric computation, we will do it in the loop here. _snake_case : Tuple = self.compute_metrics _snake_case : Tuple = None _snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case : Any = eval_loop( lowerCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , ) finally: _snake_case : Union[str, Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _snake_case : List[Any] = self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions , """predict""") _snake_case : Optional[int] = self.compute_metrics(lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _snake_case : List[str] = metrics.pop(lowerCAmelCase) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Dict="./") -> Any: """simple docstring""" _snake_case : List[Any] = self.eval_dataset _snake_case : List[str] = self.get_eval_dataloader(lowerCAmelCase) _snake_case : Tuple = next(iter(lowerCAmelCase)) # saving device - to make it consistent _snake_case : List[str] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") # convert to tuple _snake_case : Optional[int] = tuple(v.to(lowerCAmelCase) for k, v in batch.items()) logger.info("""Converting model to be onnx compatible""") from pytorch_quantization.nn import TensorQuantizer _snake_case : Optional[int] = True _snake_case : Union[str, Any] = self.model.to(lowerCAmelCase) model.eval() model.float() _snake_case : Optional[int] = model.module if hasattr(lowerCAmelCase , """module""") else model quant_trainer.configure_model(lowerCAmelCase , self.quant_trainer_args) _snake_case : Dict = os.path.join(lowerCAmelCase , """model.onnx""") logger.info(F'''exporting model to {output_model_file}''') _snake_case : Union[str, Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , export_params=lowerCAmelCase , opset_version=13 , do_constant_folding=lowerCAmelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCAmelCase , ) logger.info("""onnx export finished""")
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
from manim import * class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" _snake_case : int = Rectangle(height=0.5 , width=0.5) _snake_case : int = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) _snake_case : Dict = [mem.copy() for i in range(6)] _snake_case : Optional[int] = [mem.copy() for i in range(6)] _snake_case : Optional[int] = VGroup(*lowerCAmelCase).arrange(lowerCAmelCase , buff=0) _snake_case : Union[str, Any] = VGroup(*lowerCAmelCase).arrange(lowerCAmelCase , buff=0) _snake_case : List[str] = VGroup(lowerCAmelCase , lowerCAmelCase).arrange(lowerCAmelCase , buff=0) _snake_case : Optional[int] = Text("""CPU""" , font_size=24) _snake_case : Optional[Any] = Group(lowerCAmelCase , lowerCAmelCase).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(lowerCAmelCase) _snake_case : Dict = [mem.copy() for i in range(4)] _snake_case : Union[str, Any] = VGroup(*lowerCAmelCase).arrange(lowerCAmelCase , buff=0) _snake_case : Tuple = Text("""GPU""" , font_size=24) _snake_case : Union[str, Any] = Group(lowerCAmelCase , lowerCAmelCase).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase) gpu.move_to([-1, -1, 0]) self.add(lowerCAmelCase) _snake_case : Tuple = [mem.copy() for i in range(6)] _snake_case : List[Any] = VGroup(*lowerCAmelCase).arrange(lowerCAmelCase , buff=0) _snake_case : int = Text("""Model""" , font_size=24) _snake_case : Dict = Group(lowerCAmelCase , lowerCAmelCase).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase) model.move_to([3, -1.0, 0]) self.add(lowerCAmelCase) _snake_case : Union[str, Any] = [] for i, rect in enumerate(lowerCAmelCase): rect.set_stroke(lowerCAmelCase) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowerCAmelCase , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowerCAmelCase) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCAmelCase , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCAmelCase , buff=0.0) self.add(lowerCAmelCase) cpu_targs.append(lowerCAmelCase) _snake_case : Optional[int] = [mem.copy() for i in range(6)] _snake_case : str = VGroup(*lowerCAmelCase).arrange(lowerCAmelCase , buff=0) _snake_case : Tuple = Text("""Loaded Checkpoint""" , font_size=24) _snake_case : List[Any] = Group(lowerCAmelCase , lowerCAmelCase).arrange(lowerCAmelCase , aligned_edge=lowerCAmelCase , buff=0.4) checkpoint.move_to([3, 0.5, 0]) _snake_case : Optional[int] = Square(side_length=2.2) key.move_to([-5, 2, 0]) _snake_case : int = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowerCAmelCase , lowerCAmelCase) _snake_case : Union[str, Any] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left()) _snake_case : Optional[int] = MarkupText( F'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowerCAmelCase) , Write(lowerCAmelCase)) self.play(Write(lowerCAmelCase , run_time=1) , Create(lowerCAmelCase , run_time=1)) _snake_case : Dict = [] _snake_case : Optional[int] = [] for i, rect in enumerate(lowerCAmelCase): _snake_case : str = fill.copy().set_fill(lowerCAmelCase , opacity=0.7) target.move_to(lowerCAmelCase) first_animations.append(GrowFromCenter(lowerCAmelCase , run_time=1)) _snake_case : int = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowerCAmelCase , run_time=1.5)) self.play(*lowerCAmelCase) self.play(*lowerCAmelCase) self.wait()
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
a__ = 0 # The first color of the flag. a__ = 1 # The second color of the flag. a__ = 2 # The third color of the flag. a__ = (red, white, blue) def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> list: if not sequence: return [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return list(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = 0 _snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 _snake_case : Optional[int] = 0 while mid <= high: if sequence[mid] == colors[0]: _snake_case , _snake_case : Optional[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _snake_case , _snake_case : Union[str, Any] = sequence[high], sequence[mid] high -= 1 else: _snake_case : str = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(SCREAMING_SNAKE_CASE__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() a__ = input("""Enter numbers separated by commas:\n""").strip() a__ = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a__ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> Optional[int]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase_ ( self : str , lowerCAmelCase : Any=None) -> Optional[int]: """simple docstring""" _snake_case : int = {} if top_k is not None: _snake_case : List[Any] = top_k return {}, {}, postprocess_params def __call__( self : Any , lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase : Any) -> Optional[int]: """simple docstring""" return super().__call__(lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" _snake_case : Any = load_image(lowerCAmelCase) _snake_case : Union[str, Any] = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework) return model_inputs def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.model(**lowerCAmelCase) return model_outputs def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : List[Any]=5) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: _snake_case : Any = self.model.config.num_labels if self.framework == "pt": _snake_case : Union[str, Any] = model_outputs.logits.softmax(-1)[0] _snake_case , _snake_case : str = probs.topk(lowerCAmelCase) elif self.framework == "tf": _snake_case : Optional[int] = stable_softmax(model_outputs.logits , axis=-1)[0] _snake_case : Tuple = tf.math.top_k(lowerCAmelCase , k=lowerCAmelCase) _snake_case , _snake_case : Tuple = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _snake_case : List[Any] = scores.tolist() _snake_case : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase , lowerCAmelCase)]
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class snake_case : '''simple docstring''' def UpperCamelCase_ ( self : Dict) -> List[str]: """simple docstring""" torch.manual_seed(0) _snake_case : Any = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""") torch.manual_seed(0) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""") torch.manual_seed(0) _snake_case : int = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _snake_case : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0) _snake_case : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self : str) -> int: """simple docstring""" torch.manual_seed(0) _snake_case : List[str] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""") torch.manual_seed(0) _snake_case : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""") torch.manual_seed(0) _snake_case : Dict = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _snake_case : Any = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0) _snake_case : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0) _snake_case : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**lowerCAmelCase) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Any = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Tuple = inputs["""prompt"""] _snake_case : int = inputs["""generator"""] _snake_case : Optional[int] = inputs["""num_inference_steps"""] _snake_case : Tuple = inputs["""output_type"""] if "image" in inputs: _snake_case : List[str] = inputs["""image"""] else: _snake_case : Dict = None if "mask_image" in inputs: _snake_case : Dict = inputs["""mask_image"""] else: _snake_case : Optional[int] = None if "original_image" in inputs: _snake_case : List[str] = inputs["""original_image"""] else: _snake_case : List[str] = None _snake_case , _snake_case : List[Any] = pipe.encode_prompt(lowerCAmelCase) # inputs with prompt converted to embeddings _snake_case : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: _snake_case : Union[str, Any] = image if mask_image is not None: _snake_case : Dict = mask_image if original_image is not None: _snake_case : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = pipe(**lowerCAmelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase) _snake_case : Dict = self.pipeline_class.from_pretrained(lowerCAmelCase) pipe_loaded.to(lowerCAmelCase) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase , lowerCAmelCase) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) _snake_case : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : str = inputs["""generator"""] _snake_case : Optional[Any] = inputs["""num_inference_steps"""] _snake_case : Dict = inputs["""output_type"""] # inputs with prompt converted to embeddings _snake_case : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: _snake_case : Dict = image if mask_image is not None: _snake_case : Union[str, Any] = mask_image if original_image is not None: _snake_case : Any = original_image _snake_case : List[Any] = pipe_loaded(**lowerCAmelCase)[0] _snake_case : Union[str, Any] = np.abs(to_np(lowerCAmelCase) - to_np(lowerCAmelCase)).max() self.assertLess(lowerCAmelCase , 1E-4) def UpperCamelCase_ ( self : Tuple) -> Dict: """simple docstring""" _snake_case : List[Any] = self.get_dummy_components() _snake_case : str = self.pipeline_class(**lowerCAmelCase) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Dict = pipe(**lowerCAmelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase) _snake_case : int = self.pipeline_class.from_pretrained(lowerCAmelCase) pipe_loaded.to(lowerCAmelCase) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests _snake_case : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Tuple = pipe_loaded(**lowerCAmelCase)[0] _snake_case : Optional[Any] = np.abs(to_np(lowerCAmelCase) - to_np(lowerCAmelCase)).max() self.assertLess(lowerCAmelCase , 1E-4)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a__ = None a__ = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a__ = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class snake_case : '''simple docstring''' snake_case_ : bool = True snake_case_ : Optional[str] = None # Automatically constructed snake_case_ : ClassVar[str] = "PIL.Image.Image" snake_case_ : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) snake_case_ : str = field(default="""Image""" ,init=SCREAMING_SNAKE_CASE_ ,repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Optional[Any]) -> Optional[int]: """simple docstring""" return self.pa_type def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""") if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[int] = np.array(lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase , lowerCAmelCase): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase) elif isinstance(lowerCAmelCase , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase) elif value.get("""path""") is not None and os.path.isfile(value["""path"""]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""")} elif value.get("""bytes""") is not None or value.get("""path""") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes"""), "path": value.get("""path""")} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''') def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=None) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""") if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""") if token_per_repo_id is None: _snake_case : Optional[int] = {} _snake_case , _snake_case : Any = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''') else: if is_local_path(lowerCAmelCase): _snake_case : Union[str, Any] = PIL.Image.open(lowerCAmelCase) else: _snake_case : Dict = path.split("""::""")[-1] try: _snake_case : Union[str, Any] = string_to_dict(lowerCAmelCase , config.HUB_DATASETS_URL)["""repo_id"""] _snake_case : Optional[Any] = token_per_repo_id.get(lowerCAmelCase) except ValueError: _snake_case : int = None with xopen(lowerCAmelCase , """rb""" , use_auth_token=lowerCAmelCase) as f: _snake_case : int = BytesIO(f.read()) _snake_case : Tuple = PIL.Image.open(bytes_) else: _snake_case : Optional[Any] = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def UpperCamelCase_ ( self : int) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary"""), "path": Value("""string"""), } ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type): _snake_case : int = pa.array([None] * len(lowerCAmelCase) , type=pa.binary()) _snake_case : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): _snake_case : List[Any] = pa.array([None] * len(lowerCAmelCase) , type=pa.string()) _snake_case : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("""bytes""") >= 0: _snake_case : Any = storage.field("""bytes""") else: _snake_case : str = pa.array([None] * len(lowerCAmelCase) , type=pa.binary()) if storage.type.get_field_index("""path""") >= 0: _snake_case : Any = storage.field("""path""") else: _snake_case : Dict = pa.array([None] * len(lowerCAmelCase) , type=pa.string()) _snake_case : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_list(storage.type): _snake_case : Optional[int] = pa.array( [encode_np_array(np.array(lowerCAmelCase))["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _snake_case : List[str] = pa.array([None] * len(lowerCAmelCase) , type=pa.string()) _snake_case : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null()) return array_cast(lowerCAmelCase , self.pa_type) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.StructArray) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase : Tuple): with xopen(lowerCAmelCase , """rb""") as f: _snake_case : Dict = f.read() return bytes_ _snake_case : List[Any] = pa.array( [ (path_to_bytes(x["""path"""]) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _snake_case : int = pa.array( [os.path.basename(lowerCAmelCase) if path is not None else None for path in storage.field("""path""").to_pylist()] , type=pa.string() , ) _snake_case : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null()) return array_cast(lowerCAmelCase , self.pa_type) def lowercase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _snake_case : List[str] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowercase ( SCREAMING_SNAKE_CASE__ : "PIL.Image.Image" ) -> bytes: _snake_case : List[str] = BytesIO() if image.format in list_image_compression_formats(): _snake_case : Any = image.format else: _snake_case : Any = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(SCREAMING_SNAKE_CASE__ , format=SCREAMING_SNAKE_CASE__ ) return buffer.getvalue() def lowercase ( SCREAMING_SNAKE_CASE__ : "PIL.Image.Image" ) -> dict: if hasattr(SCREAMING_SNAKE_CASE__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE__ )} def lowercase ( SCREAMING_SNAKE_CASE__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) _snake_case : Optional[int] = array.dtype _snake_case : str = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _snake_case : Optional[int] = dtype.kind _snake_case : str = dtype.itemsize _snake_case : Optional[int] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _snake_case : Optional[int] = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _snake_case : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _snake_case : Optional[int] = dtype_byteorder + dtype_kind + str(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = np.dtype(SCREAMING_SNAKE_CASE__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) _snake_case : Tuple = PIL.Image.fromarray(array.astype(SCREAMING_SNAKE_CASE__ ) ) return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE__ )} def lowercase ( SCREAMING_SNAKE_CASE__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: _snake_case , _snake_case : List[str] = first_non_null_value(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): _snake_case : Optional[Any] = no_op_if_value_is_null(SCREAMING_SNAKE_CASE__ ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE__ ) for obj in objs] elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): _snake_case : str = no_op_if_value_is_null(SCREAMING_SNAKE_CASE__ ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE__ ) for obj in objs] else: return objs else: return objs
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""image_processor""", """tokenizer"""] snake_case_ : List[str] = """AutoImageProcessor""" snake_case_ : List[Any] = """AutoTokenizer""" def __init__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple) -> Any: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase) _snake_case : str = self.image_processor def __call__( self : List[Any] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None , **lowerCAmelCase : Any) -> Any: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _snake_case : Tuple = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: _snake_case : str = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if text is not None and images is not None: _snake_case : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a__ = logging.get_logger("""transformers.models.speecht5""") a__ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } a__ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } a__ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } a__ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } a__ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } a__ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } a__ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } a__ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } a__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a__ = [] a__ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] a__ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] a__ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] a__ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: for attribute in key.split(""".""" ): _snake_case : List[str] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: _snake_case : List[str] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: _snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case : List[Any] = value elif weight_type == "weight_g": _snake_case : Any = value elif weight_type == "weight_v": _snake_case : Union[str, Any] = value elif weight_type == "bias": _snake_case : int = value elif weight_type == "running_mean": _snake_case : Optional[int] = value elif weight_type == "running_var": _snake_case : Tuple = value elif weight_type == "num_batches_tracked": _snake_case : Dict = value else: _snake_case : int = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: _snake_case : int = [] if task == "s2t": _snake_case : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : Union[str, Any] = MAPPING_S2T _snake_case : List[Any] = IGNORE_KEYS_S2T elif task == "t2s": _snake_case : Any = None _snake_case : Union[str, Any] = MAPPING_T2S _snake_case : Optional[Any] = IGNORE_KEYS_T2S elif task == "s2s": _snake_case : int = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : Any = MAPPING_S2S _snake_case : Dict = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.info(F'''{name} was ignored''' ) continue _snake_case : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case , _snake_case : int = key.split(""".*.""" ) if prefix in name and suffix in name: _snake_case : List[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case : str = True if "*" in mapped_key: _snake_case : Dict = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] _snake_case : Union[str, Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: _snake_case : str = """weight_g""" elif "weight_v" in name: _snake_case : Dict = """weight_v""" elif "bias" in name: _snake_case : List[str] = """bias""" elif "weight" in name: _snake_case : Optional[Any] = """weight""" elif "running_mean" in name: _snake_case : Union[str, Any] = """running_mean""" elif "running_var" in name: _snake_case : Optional[int] = """running_var""" elif "num_batches_tracked" in name: _snake_case : Optional[Any] = """num_batches_tracked""" else: _snake_case : str = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> int: _snake_case : int = full_name.split("""conv_layers.""" )[-1] _snake_case : Optional[Any] = name.split(""".""" ) _snake_case : Optional[Any] = int(items[0] ) _snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , ) -> List[str]: if config_path is not None: _snake_case : List[str] = SpeechTaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: _snake_case : List[Any] = SpeechTaConfig() if task == "s2t": _snake_case : Union[str, Any] = config.max_text_positions _snake_case : Union[str, Any] = SpeechTaForSpeechToText(SCREAMING_SNAKE_CASE__ ) elif task == "t2s": _snake_case : str = 1_876 _snake_case : Any = 600 _snake_case : str = config.max_speech_positions _snake_case : Optional[Any] = SpeechTaForTextToSpeech(SCREAMING_SNAKE_CASE__ ) elif task == "s2s": _snake_case : List[str] = 1_876 _snake_case : List[str] = config.max_speech_positions _snake_case : str = SpeechTaForSpeechToSpeech(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _snake_case : int = SpeechTaTokenizer(SCREAMING_SNAKE_CASE__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case : str = AddedToken("""<mask>""" , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) _snake_case : int = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _snake_case : Tuple = SpeechTaFeatureExtractor() _snake_case : Any = SpeechTaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = torch.load(SCREAMING_SNAKE_CASE__ ) recursively_load_weights(fairseq_checkpoint["""model"""] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: for attribute in key.split(""".""" ): _snake_case : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: _snake_case : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: _snake_case : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case : Tuple = value elif weight_type == "weight_g": _snake_case : Union[str, Any] = value elif weight_type == "weight_v": _snake_case : str = value elif weight_type == "bias": _snake_case : Optional[Any] = value else: _snake_case : List[str] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: _snake_case : List[Any] = [] _snake_case : Dict = fairseq_model.state_dict() _snake_case : List[str] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Optional[int] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : str = True else: for key, mapped_key in MAPPING.items(): _snake_case : Optional[Any] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): _snake_case : Dict = True if "*" in mapped_key: _snake_case : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] _snake_case : int = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: _snake_case : Dict = """weight_g""" elif "weight_v" in name: _snake_case : Dict = """weight_v""" elif "weight" in name: _snake_case : Optional[Any] = """weight""" elif "bias" in name: _snake_case : Union[str, Any] = """bias""" else: _snake_case : Dict = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: _snake_case : str = full_name.split("""conv_layers.""" )[-1] _snake_case : Tuple = name.split(""".""" ) _snake_case : Dict = int(items[0] ) _snake_case : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _snake_case : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int=True ) -> Any: if config_path is not None: _snake_case : Dict = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: _snake_case : Union[str, Any] = HubertConfig() if is_finetuned: if dict_path: _snake_case : Dict = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Union[str, Any] = target_dict.pad_index _snake_case : List[str] = target_dict.bos_index _snake_case : Dict = target_dict.eos_index _snake_case : Any = len(target_dict.symbols ) _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) _snake_case : int = True if config.feat_extract_norm == """layer""" else False _snake_case : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) _snake_case : int = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : int = HubertForCTC(SCREAMING_SNAKE_CASE__ ) else: _snake_case : Dict = HubertModel(SCREAMING_SNAKE_CASE__ ) if is_finetuned: _snake_case , _snake_case , _snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _snake_case , _snake_case , _snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : Dict = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
import random from typing import Any def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> list[Any]: for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : int = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) _snake_case : List[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) _snake_case , _snake_case : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": a__ = [0, 1, 2, 3, 4, 5, 6, 7] a__ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
import numpy as np import qiskit def lowercase ( SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : int | None = None ) -> str: _snake_case : Optional[Any] = np.random.default_rng(seed=SCREAMING_SNAKE_CASE__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _snake_case : Any = 6 * key_len # Measurement basis for Alice's qubits. _snake_case : List[str] = rng.integers(2 , size=SCREAMING_SNAKE_CASE__ ) # The set of states Alice will prepare. _snake_case : List[str] = rng.integers(2 , size=SCREAMING_SNAKE_CASE__ ) # Measurement basis for Bob's qubits. _snake_case : Any = rng.integers(2 , size=SCREAMING_SNAKE_CASE__ ) # Quantum Circuit to simulate BB84 _snake_case : str = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE__ ): if alice_state[index] == 1: bbaa_circ.x(SCREAMING_SNAKE_CASE__ ) if alice_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE__ ): if bob_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _snake_case : Dict = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _snake_case : Optional[int] = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1 , seed_simulator=SCREAMING_SNAKE_CASE__ ) # Returns the result of measurement. _snake_case : str = job.result().get_counts(SCREAMING_SNAKE_CASE__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _snake_case : Tuple = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _snake_case : str = gen_key[:key_len] if len(SCREAMING_SNAKE_CASE__ ) >= key_len else gen_key.ljust(SCREAMING_SNAKE_CASE__ , """0""" ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 10**9 ) -> int: _snake_case : Tuple = 1 _snake_case : List[Any] = 2 _snake_case : List[str] = 0 _snake_case : Optional[Any] = 0 _snake_case : Optional[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.txt"""} a__ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } a__ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } a__ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = VOCAB_FILES_NAMES snake_case_ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case_ : List[Any] = PRETRAINED_INIT_CONFIGURATION snake_case_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : List[Any] = ConvBertTokenizer def __init__( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[str]="[UNK]" , lowerCAmelCase : List[Any]="[SEP]" , lowerCAmelCase : int="[PAD]" , lowerCAmelCase : str="[CLS]" , lowerCAmelCase : List[Any]="[MASK]" , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : int=None , **lowerCAmelCase : List[str] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(lowerCAmelCase , normalizer_state.pop("""type""")) _snake_case : Optional[int] = do_lower_case _snake_case : List[str] = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : List[Any] = normalizer_class(**lowerCAmelCase) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=None) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" _snake_case : Any = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase)
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ = logging.get_logger(__name__) # pylint: disable=invalid-name a__ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=8 ) -> Tuple: _snake_case : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : DDPMScheduler , lowerCAmelCase : VQModel , ) -> int: """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase , scheduler=lowerCAmelCase , movq=lowerCAmelCase , ) _snake_case : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels) - 1) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any) -> Tuple: """simple docstring""" if latents is None: _snake_case : Dict = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''') _snake_case : List[str] = latents.to(lowerCAmelCase) _snake_case : Optional[int] = latents * scheduler.init_noise_sigma return latents def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Tuple=0) -> Tuple: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") _snake_case : List[Any] = torch.device(F'''cuda:{gpu_id}''') _snake_case : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]=0) -> Optional[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") _snake_case : Optional[int] = torch.device(F'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case : int = cpu_offload_with_hook(lowerCAmelCase , lowerCAmelCase , prev_module_hook=lowerCAmelCase) # We'll offload the last model manually. _snake_case : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase) def __call__( self : str , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 100 , lowerCAmelCase : float = 4.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ) -> List[str]: """simple docstring""" _snake_case : Dict = self._execution_device _snake_case : Optional[Any] = guidance_scale > 1.0 if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Union[str, Any] = torch.cat(lowerCAmelCase , dim=0) if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[Any] = torch.cat(lowerCAmelCase , dim=0) if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = torch.cat(lowerCAmelCase , dim=0) _snake_case : str = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _snake_case : Tuple = image_embeds.repeat_interleave(lowerCAmelCase , dim=0) _snake_case : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCAmelCase , dim=0) _snake_case : Union[str, Any] = hint.repeat_interleave(lowerCAmelCase , dim=0) _snake_case : int = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase) _snake_case : Dict = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase) self.scheduler.set_timesteps(lowerCAmelCase , device=lowerCAmelCase) _snake_case : str = self.scheduler.timesteps _snake_case : List[Any] = self.movq.config.latent_channels _snake_case , _snake_case : Optional[int] = downscale_height_and_width(lowerCAmelCase , lowerCAmelCase , self.movq_scale_factor) # create initial latent _snake_case : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase)): # expand the latents if we are doing classifier free guidance _snake_case : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _snake_case : Optional[int] = {"""image_embeds""": image_embeds, """hint""": hint} _snake_case : Optional[Any] = self.unet( sample=lowerCAmelCase , timestep=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , added_cond_kwargs=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] if do_classifier_free_guidance: _snake_case , _snake_case : Any = noise_pred.split(latents.shape[1] , dim=1) _snake_case , _snake_case : Union[str, Any] = noise_pred.chunk(2) _snake_case , _snake_case : List[Any] = variance_pred.chunk(2) _snake_case : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case : Any = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 _snake_case : Optional[Any] = self.scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase , )[0] # post-processing _snake_case : Optional[int] = self.movq.decode(lowerCAmelCase , force_not_quantize=lowerCAmelCase)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: _snake_case : Optional[Any] = image * 0.5 + 0.5 _snake_case : Union[str, Any] = image.clamp(0 , 1) _snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": _snake_case : Optional[Any] = self.numpy_to_pil(lowerCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase)
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : str) -> Optional[Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=lowerCAmelCase , ) assert hasattr(self , """env""") def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Any) -> str: """simple docstring""" _snake_case : str = F'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings _snake_case : Dict = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowerCAmelCase , instance_count=lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase , py_version="""py36""" , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Any) -> List[Any]: """simple docstring""" TrainingJobAnalytics(lowerCAmelCase).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''') @parameterized.expand([(2,)]) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[str]) -> str: """simple docstring""" _snake_case : Dict = self.create_estimator(lowerCAmelCase) # run training estimator.fit() # result dataframe _snake_case : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _snake_case : Dict = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""]) _snake_case : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _snake_case : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy) assert all(t <= self.results["""eval_loss"""] for t in eval_loss) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , """w""") as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCAmelCase)
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : '''simple docstring''' def __init__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : int = 13 , lowerCAmelCase : int = 64 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : int = 128 , lowerCAmelCase : Tuple=[16, 32, 64, 128] , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 4 , lowerCAmelCase : int = 37 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : int = 10 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 128 , lowerCAmelCase : List[int] = [2, 2, 2, 2] , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> Optional[Any]: """simple docstring""" _snake_case : str = parent _snake_case : Tuple = batch_size _snake_case : int = image_size _snake_case : Optional[int] = patch_size _snake_case : List[Any] = num_channels _snake_case : Optional[int] = is_training _snake_case : Any = use_labels _snake_case : Union[str, Any] = hidden_size _snake_case : int = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Any = type_sequence_label_size _snake_case : List[Any] = initializer_range _snake_case : List[Any] = encoder_stride _snake_case : List[Any] = num_attention_outputs _snake_case : Optional[int] = embed_dim _snake_case : List[Any] = embed_dim + 1 _snake_case : List[str] = resolution _snake_case : Optional[Any] = depths _snake_case : Tuple = hidden_sizes _snake_case : int = dim _snake_case : int = mlp_expansion_ratio def UpperCamelCase_ ( self : str) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _snake_case : List[str] = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Tuple) -> List[Any]: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = TFEfficientFormerModel(config=lowerCAmelCase) _snake_case : Union[str, Any] = model(lowerCAmelCase , training=lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Tuple) -> Dict: """simple docstring""" _snake_case : Tuple = self.type_sequence_label_size _snake_case : List[str] = TFEfficientFormerForImageClassification(lowerCAmelCase) _snake_case : Union[str, Any] = model(lowerCAmelCase , labels=lowerCAmelCase , training=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _snake_case : Union[str, Any] = 1 _snake_case : Any = TFEfficientFormerForImageClassification(lowerCAmelCase) _snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _snake_case : str = model(lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : str = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Union[str, Any] = config_and_inputs _snake_case : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Union[str, Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) snake_case_ : Tuple = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) snake_case_ : Union[str, Any] = False snake_case_ : List[Any] = False snake_case_ : Tuple = False snake_case_ : Dict = False snake_case_ : List[str] = False def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Tuple = TFEfficientFormerModelTester(self) _snake_case : Optional[int] = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""") def UpperCamelCase_ ( self : int) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""") def UpperCamelCase_ ( self : int) -> int: """simple docstring""" pass def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(lowerCAmelCase) _snake_case : int = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[Any] = [*signature.parameters.keys()] _snake_case : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : str): _snake_case : Optional[int] = model_class(lowerCAmelCase) _snake_case : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) , training=lowerCAmelCase) _snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase) if hasattr(self.model_tester , """encoder_seq_length"""): _snake_case : int = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""") and self.model_tester.chunk_length > 1: _snake_case : Optional[int] = seq_length * self.model_tester.chunk_length else: _snake_case : Dict = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case : Optional[Any] = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase , (list, tuple)) self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase) _snake_case : Optional[int] = getattr(self.model_tester , """seq_length""" , lowerCAmelCase) _snake_case : Any = getattr(self.model_tester , """decoder_seq_length""" , lowerCAmelCase) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Dict=False) -> List[str]: """simple docstring""" _snake_case : List[Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""") def UpperCamelCase_ ( self : List[Any]) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase) @slow def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = TFEfficientFormerModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = True _snake_case : Optional[int] = getattr(self.model_tester , """seq_length""" , lowerCAmelCase) _snake_case : List[Any] = getattr(self.model_tester , """encoder_seq_length""" , lowerCAmelCase) _snake_case : Tuple = getattr(self.model_tester , """key_length""" , lowerCAmelCase) _snake_case : Any = getattr(self.model_tester , """chunk_length""" , lowerCAmelCase) if chunk_length is not None and hasattr(self.model_tester , """num_hashes"""): _snake_case : Optional[int] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case : Optional[Any] = True _snake_case : List[Any] = False _snake_case : Dict = True _snake_case : Optional[Any] = model_class(lowerCAmelCase) _snake_case : Dict = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) , training=lowerCAmelCase) _snake_case : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case : List[Any] = True _snake_case : List[Any] = model_class(lowerCAmelCase) _snake_case : str = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) , training=lowerCAmelCase) _snake_case : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case : int = model_class(lowerCAmelCase) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case : List[str] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case : Union[str, Any] = model(lowerCAmelCase) self.assertTrue(outputs_dict is not None) def lowercase ( ) -> Optional[int]: _snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : str) -> int: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""") if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""") _snake_case : Any = self.default_image_processor _snake_case : Union[str, Any] = prepare_img() _snake_case : Any = image_processor(images=lowerCAmelCase , return_tensors="""tf""") # forward pass _snake_case : Tuple = model(**lowerCAmelCase , training=lowerCAmelCase) # verify the logits _snake_case : Tuple = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase) _snake_case : List[Any] = tf.constant([-0.0_555, 0.4_825, -0.0_852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4)) @slow def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _snake_case : int = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""") _snake_case : Optional[int] = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : str = image_processor(images=lowerCAmelCase , return_tensors="""tf""") # forward pass _snake_case : Union[str, Any] = model(**lowerCAmelCase , training=lowerCAmelCase) # verify the logits _snake_case : Optional[Any] = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase) _snake_case : Optional[Any] = tf.constant([-0.1_312, 0.4_353, -1.0_499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4))
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
import string import numpy def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) class snake_case : '''simple docstring''' snake_case_ : Union[str, Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) snake_case_ : Any = numpy.vectorize(lambda SCREAMING_SNAKE_CASE_ : x % 36 ) snake_case_ : Union[str, Any] = numpy.vectorize(SCREAMING_SNAKE_CASE_ ) def __init__( self : Any , lowerCAmelCase : numpy.ndarray) -> None: """simple docstring""" _snake_case : List[str] = self.modulus(lowerCAmelCase) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _snake_case : int = encrypt_key.shape[0] def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str) -> int: """simple docstring""" return self.key_string.index(lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self.key_string[round(lowerCAmelCase)] def UpperCamelCase_ ( self : int) -> None: """simple docstring""" _snake_case : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _snake_case : Dict = det % len(self.key_string) _snake_case : Any = len(self.key_string) if greatest_common_divisor(lowerCAmelCase , len(self.key_string)) != 1: _snake_case : str = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str) -> str: """simple docstring""" _snake_case : int = [char for char in text.upper() if char in self.key_string] _snake_case : str = chars[-1] while len(lowerCAmelCase) % self.break_key != 0: chars.append(lowerCAmelCase) return "".join(lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" _snake_case : Optional[int] = self.process_text(text.upper()) _snake_case : str = """""" for i in range(0 , len(lowerCAmelCase) - self.break_key + 1 , self.break_key): _snake_case : Optional[Any] = text[i : i + self.break_key] _snake_case : Optional[Any] = [self.replace_letters(lowerCAmelCase) for char in batch] _snake_case : int = numpy.array([vec]).T _snake_case : Optional[Any] = self.modulus(self.encrypt_key.dot(lowerCAmelCase)).T.tolist()[ 0 ] _snake_case : List[str] = """""".join( self.replace_digits(lowerCAmelCase) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Any) -> numpy.ndarray: """simple docstring""" _snake_case : Tuple = round(numpy.linalg.det(self.encrypt_key)) if det < 0: _snake_case : Tuple = det % len(self.key_string) _snake_case : List[Any] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: _snake_case : List[Any] = i break _snake_case : Optional[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(lowerCAmelCase)) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : str) -> str: """simple docstring""" _snake_case : List[str] = self.make_decrypt_key() _snake_case : Optional[Any] = self.process_text(text.upper()) _snake_case : Tuple = """""" for i in range(0 , len(lowerCAmelCase) - self.break_key + 1 , self.break_key): _snake_case : Tuple = text[i : i + self.break_key] _snake_case : List[str] = [self.replace_letters(lowerCAmelCase) for char in batch] _snake_case : int = numpy.array([vec]).T _snake_case : List[Any] = self.modulus(decrypt_key.dot(lowerCAmelCase)).T.tolist()[0] _snake_case : Any = """""".join( self.replace_digits(lowerCAmelCase) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowercase ( ) -> None: _snake_case : Any = int(input("""Enter the order of the encryption key: """ ) ) _snake_case : List[str] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(SCREAMING_SNAKE_CASE__ ): _snake_case : str = [int(SCREAMING_SNAKE_CASE__ ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = HillCipher(numpy.array(SCREAMING_SNAKE_CASE__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _snake_case : Optional[int] = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _snake_case : int = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(SCREAMING_SNAKE_CASE__ ) ) elif option == "2": _snake_case : Optional[int] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool a__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = """facebook/nllb-200-distilled-600M""" snake_case_ : str = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) snake_case_ : Dict = """translator""" snake_case_ : int = AutoTokenizer snake_case_ : Any = AutoModelForSeqaSeqLM snake_case_ : List[Any] = LANGUAGE_CODES snake_case_ : Any = ["""text""", """text""", """text"""] snake_case_ : List[Any] = ["""text"""] def UpperCamelCase_ ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''') if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''') _snake_case : Tuple = self.lang_to_code[src_lang] _snake_case : Any = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase , return_tensors="""pt""" , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" return self.model.generate(**lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase)
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
from bisect import bisect from itertools import accumulate def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: _snake_case : List[str] = sorted(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , key=lambda SCREAMING_SNAKE_CASE__ : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : str = [i[0] for i in r], [i[1] for i in r] _snake_case : Optional[Any] = list(accumulate(SCREAMING_SNAKE_CASE__ ) ) _snake_case : Dict = bisect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Any: _snake_case , _snake_case : Union[str, Any] = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: _snake_case , _snake_case : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": a__ = input("""Enter numbers separated by a comma:\n""").strip() a__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
from typing import TYPE_CHECKING from ...utils import _LazyModule a__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''van''' def __init__( self : List[str] , __UpperCAmelCase : int=224 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[Any]=[7, 3, 3, 3] , __UpperCAmelCase : Tuple=[4, 2, 2, 2] , __UpperCAmelCase : Optional[Any]=[64, 128, 320, 512] , __UpperCAmelCase : List[str]=[3, 3, 12, 3] , __UpperCAmelCase : Optional[int]=[8, 8, 4, 4] , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Optional[Any]=1e-6 , __UpperCAmelCase : str=1e-2 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Optional[Any]=0.0 , **__UpperCAmelCase : List[Any] , ) ->Union[str, Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = image_size a = num_channels a = patch_sizes a = strides a = hidden_sizes a = depths a = mlp_ratios a = hidden_act a = initializer_range a = layer_norm_eps a = layer_scale_init_value a = drop_path_rate a = dropout_rate
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0